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Abstract
The recent progress in machine learning has shifted the trends in artificial intelligence (AI) toward an overreliance on increasing amounts 
of data, computing power, and model parameters. These trends have resulted in success, but have also created a monolithic perspective 
for AI, increased the barriers to entry outside of large tech companies, and raised concerns about computational sustainability. 
Neurosymbolic AI is a growing area that promotes methodological heterogeneity and aims to push the frontiers of AI through 
affordable data and computing power.
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Introduction
State-of-the-art foundation models, such as the Gemini Ultra 
model from Google, contain over 1 trillion parameters. The accel-
erated growth of these models, along with the improvement in 
their performance over the past few years, has been coined by 
the so-called scaling laws of artificial intelligence (AI).

This growth translates into prohibitive costs for the training 
and use of AI. It is not sustainable, as evidenced by the excessive 
energy consumed and the carbon footprint resulting from these 
models. For example, the data centers used for the training 
and inference of AI account for up to 3.7% of global greenhouse 
emissions (1). Despite these concerns, large companies continue 
to rely on scaling laws as part of a profitable business model 
that also leads to a gatekeeping AI, whereby the training 
and use of state-of-the-art AI models exceeds the resources 
available to researchers outside of large technology companies, 
with estimates for training Gemini Ultra reported at $191 million 
(2). This gatekeeping of AI is particularly problematic, given 
that companies tend to release their models in closed-source 
form. As a result, there are growing concerns over the trustworthi-
ness of these opaque models that are being proliferated far and 
wide.

Contemporary schools of thought, such as the bitter lesson 
popularized by Richard Sutton (3), align with the foregoing scaling 
laws. Sutton argues that, historically, general-purpose methods 
that scale with increased computation have consistently outper-
formed AI solutions relying heavily on human domain knowledge, 
going as far as to say that the only thing that matters, in the long 
run, is the leveraging of computation. This view has been rein-
forced in practice over the last few years, with the latest wave of 

large reasoning models, such as OpenAI’s o3 model, scaling both 
training- and inference-time compute.

However, the question remains as to whether the current and 
costly scaling trends are necessary for the future of AI. At any 
rate, biology has taught us a different lesson: The human brain 
achieves data-efficient intelligence using low-power computa-
tion, operating on approximately 20 W of power (4). Assuming 
24-h use over 18 yr, that is equivalent to 3.15 MWh of energy. In 
contrast, GPT-3 needed 1.287 GWh of training (1). In other words, 
the efficiency of the human brain in learning and inferencing is 
much greater than that of modern large models while also exceed-
ing their cognitive capabilities and generalizing from far fewer 
data points.

In this brief, we argue for upending the prevailing monolithic 
perspective in modern AI characterized by scaling laws. 
Although the perspectives of scaling laws and the bitter lesson 
emphasize the importance of computation and data in driving 
long-term progress of neural networks, we believe that other in-
novations, including the integration domain knowledge as sym-
bolic structures and reasoning, will significantly improve such 
models by making them much more efficient in terms of data, pa-
rameters, and power. We posit a practical high-level direction in 
the form of neurosymbolic AI, which spans the gamut of machine 
learning (ML) and has experienced growing interest in recent 
years. As we demonstrate, the constituent integration of data- 
driven neural methods and classical symbolic approaches 
has tremendous potential in reducing the scale of AI models. 
Moreover, the synergy of neural and symbolic methods lets 
us tackle tasks that purely neural methods find difficult (e.g. reli-
ably handling compositional reasoning, real-world knowledge 
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constraints, or interpretability demands) with a more efficient use 
of computation.

Of course, scale is not inherently problematic, and we have 
seen similar scaling laws in the logic and circuit design commu-
nity be tremendously successful, with the obvious historical ex-
amples of Moore’s law and Dennard scaling (5, 6). While Moore’s 
law predicted that the number of transistors on a chip would dou-
ble approximately every 2 yr, the modern AI scaling laws are ob-
serving a similar doubling of parameters at a faster rate, 
approximately every 6 mo (7). However, Moore’s law had the com-
plementary Dennard scaling to bound energy, with the perform-
ance per watt scaling exponentially, while the power density 
stayed mostly constant for decades by scaling down voltage and 
current as Moore’s law scaled up the number of transistors. AI 
scaling laws have no such counterbalance. In this brief, we posit 
the integration of symbolic methods as that counterbalance and 
provide a vision for the resulting neurosymbolic AI to mitigate 
the deleterious effects of the current inefficient scaling laws.

This paper is organized as follows. In Classical ML assumptions 
and neurosymbolic AI, we begin with a brief overview of some fun-
damental principles on which ML relies for effective use and how 
scaling up data and parameters leverages these principles for im-
proved performance. We then present arguments for how neuro-
symbolic AI can act as a complementary alternative to such 
scaling by integrating symbolic knowledge into neural models 
(Neurosymbolic AI: from symbols to neurons) and extracting sym-
bolic representations from neural models (Neurosymbolic AI: 
from neurons to symbols). These directions of going from symbols 
to neurons and neurons to symbols establishes a feedback loop 
that allows neurosymbolic methods to efficiently handle difficult 
optimization landscapes for which current AI models rely on scal-
ing laws. We present neurosymbolic methods for the develop-
ment of small models in Neurosymbolic AI for small data and 
models and offer a psychological perspective of neurosymbolic 
AI in A psychological perspective of neurosymbolic AI. Given these 
perspectives, we revisit the topic of scaling laws and provide a 
nuanced view on the ways in which scaling up models and incorp-
orating symbolic knowledge are not mutually exclusive, but ra-
ther are complementary, with an overreliance on either method 
being antithetical to the efficient and generalizable AI that we en-
vision. We provide concluding remarks in Revisiting scaling laws 
and the bitter lesson.

Classical ML assumptions and 
neurosymbolic AI
Neurosymbolic AI is the branch of AI that seeks to integrate data- 
driven neural networks and symbolic reasoning methods (8, 9). 
Symbolic methods provide semantically meaningful structures 
(e.g. logic-based representations, knowledge graphs, differential 
equations) that can be integrated into data-driven approaches. 
We proceed with the crux of this integration and its benefits in re-
ducing the scale of data, parameters, and computation required 
by AI while preserving generalization.

The reasons for why and how neurosymbolic AI may mitigate 
the inefficiency of modern scaling laws trace back to the principles 
of ML, including the manifold hypothesis and the universal ap-
proximation theorem, upon which these laws rely (10, 11). The 
manifold hypothesis, for example, states that if the high- 
dimensional data used to train AI models shares simple features 
(e.g. all faces have eyes), then the learned data representation 
will be a combination of smooth, or flat, manifolds (i.e. non-linear 
surfaces) in a space of lower dimension than the data. Neural 

networks are effective at traversing smooth manifolds with no 
or few sharp regions, as they are less likely to converge to poor lo-
cal optima. The universal approximation theorem states that if 
the neural network has enough parameters, it can be trained to 
find a suitable manifold representation. Therefore, the key enab-
ling factor is the smoothness of the manifold, with current models 
requiring large amounts of data and parameters in order to promote 
smoothness for effective learning (12). However, such sharpness 
seems unavoidable in practice, as evidenced by the proliferation of 
sharpness-aware training algorithms (13). Neurosymbolic AI can ad-
dress this fundamental challenge of sharpness through an alterna-
tive perspective compared with the current merely data-driven 
approaches.

Figure 1 (top) provides a rendering of the training process. The 
gray hill depicts an objective function (loss function) with respect 
to the parameters (or weights) of the neural network. Each dot on 
the gray hill is a point in this parametric space and represents the 
value of the objective function with respect to the current para-
metric configuration of the network. Conventional ML with neural 
networks entails moving in the direction of the gradient to opti-
mize the objective function. The optimal configuration represents 
a best fit for the training data. The representation, while being a 
good fit to the underlying training data, remains agnostic about 
the causality or the underlying mechanisms that produced the 
data. In the absence of any knowledge about the underlying 
mechanisms, inference tasks remain bound by the distribution 
of the training data and struggle to generalize beyond the training 
data distribution.

As Figure 1 (bottom) depicts, neurosymbolic AI models would 
help efficiently traverse such high-dimensional manifolds 
through liftings of the parameter space around sharp regions 
into symbolic representations, enabling symbolic computation 
and subsequent projections back onto a smooth submanifold. 
This iterative interleaving of neural and symbolic representations 
during training based on the sharpness of the manifold naturally 
decomposes the learning problem into a set of smooth submani-
folds separated by regions with sharpness. Small neural networks 
would suffice to learn on the smooth submanifold, whereas sym-
bolic computation would be used to traverse the regions with 
sharpness. The overall impact would be a reduction in the amount 
of data, parameters, and computation required compared with 
current data-driven methods, which attempt to address the inev-
itability of sharpness by scaling up to promote smoothness.

The resulting neurosymbolic systems may not even have to 
abide by the manifold hypothesis that has been relied upon until 
now for the successes in ML, which would enable the AI commu-
nity to develop much more data-efficient learning, as it is the 
sharp regions of the manifold that require excessive data for con-
ventional ML to overcome or excessive parameters to smoothen 
(14).

While the focus of this paper has been on the conventional def-
inition of scaling laws pertaining to the training phase of AI mod-
els, it is worth noting that scaling up inference- or test-time 
computation has become a very effective trend in Large 
Reasoning Models, in which techniques like chain-of-thought rea-
soning play an important role in optimizing the prompts used to 
interface with the trained model.

Neurosymbolic AI: From symbols to neurons
Perhaps the most common integration of symbolic human-derived 
knowledge into AI models comes from the physics-informed ML 
community, in which physics-informed neural networks (15), 
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physics-informed neural operators (16), and differentiable simula-
tion (17) have all leveraged the differentiability of physics knowl-
edge in the form of partial differential equations (PDEs) for 
various complex phenomena, such as predictive climate modeling 
(17) and predicting the dynamics of deformation (18). Due to their 
differentiability, these equations can be easily integrated into the 
loss function of the AI model, as is standard in physics-informed 
neural networks.

Alternatively, one can also parameterize the terms in these 
equations using small neural networks for each term, thereby in-
corporating human domain knowledge in the form of PDEs while 
mitigating for errors in the same through data-driven generaliza-
tion. Such is the approach taken by the neural constitutive laws 
(18), where the preceding framework is integrated within differen-
tiable simulations that define a visual loss function between the 
generated simulation that leverages the aforementioned parame-
terized PDEs and ground truth video data. The power of this neu-
rosymbolic framework is evidenced by its ability to generalize to 
new geometries and different initial and boundary conditions 
not seen during training. By introducing these symbolic physical 

priors as an inductive bias, the neural network can satisfy conser-
vation laws with minimal training data consisting of a single video 
capturing the relevant dynamics, a feat that was not possible with 
the competing purely neural approaches. Physics knowledge has 
also been integrated into popular AI-based rendering methods, 
such as neural radiance fields, which have been augmented 
with physics-based material point methods to enforce that the 
conservation laws of mechanics are followed by the rendered re-
sult while also accelerating the rendering process by 2 orders of 
magnitude compared with neural radiance field baselines (19).

Another increasingly popular trend for incorporating symbolic 
representations into neural models is to leverage knowledge 
graphs, which act as graph representations of semantic relations 
across objects, to improve accuracy and reduce the amount of 
training data (20). For example, Amazon uses a large-scale knowl-
edge graph in synergy with their large language models (LLMs) 
(21). Their COSMO framework leverages LLMs to construct 
common-sense knowledge graphs from customer interaction 
data, enabling Amazon’s recommendation engine to infer rela-
tionships between products and their human contexts, such as 

Fig. 1. Data-driven learning on a manifold (top). Data-driven learning and symbolic reasoning on a manifold (bottom). Conventional data-driven updates 
are followed with symbolic reasoning by lifting the neural representation to a symbolic one. After symbolic reasoning, the symbolic representation is 
projected back into a neural representation. The process repeats for efficient training and inference.
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functions or audiences. This knowledge is typically derived manu-
ally, but recent methods, such as GraphRAG (22), automatically 
extract knowledge graphs from a corpora of text data to augment 
the text generation capabilities of LLMs by incorporating the ex-
tracted knowledge graph into the retrieval-augmented generation 
process. Unlike conventional deep learning approaches that com-
bine data, representation, and downstream tasks into one set of 
parameters that are difficult to disentangle, knowledge graphs al-
low models to separate these components. Consequently, when 
creating a knowledge graph for one problem, it can be reused 
later on for other tasks, as it is independent of the problem. 
Furthermore, they are interpretable and can be easily expanded 
by users as needed, thereby growing over time and extending 
the capabilities of all models related to it.

Recent work, such as Zhang et al. (23), highlights the limita-
tions of pure scaling, as they reveal that large neural models 
lack true reasoning abilities and instead can tend to rely on statis-
tical data patterns that do not suffice for generalizing within the 
same family of reasoning tasks, much less out-of-distribution 
problems. Consequently, several methods have explored the up-
date of neural network parameters using projectors from symbol-
ic representations. For example, in Ahmed et al. (24), logical 
constraints are translated into differentiable loss functions that 
are used during neural model training that enables the embed-
ding of symbolic knowledge within neural networks while main-
taining full differentiability.

Neurosymbolic AI: From neurons to symbols
Extracting symbolic representations from neural networks that 
span a continuous topological space is an open area of research, 
often referred to as symbolic distillation (25). Some popular exam-
ples include the use of quantized ML models, such as vector quan-
tized variational auto-encoders (26, 27), vector quantized 
diffusion models (28), QLoRA (Quantized Low-Rank Adaptation) 
(29), and quantified bottleneck insertion (30, 31), to learn neural 
network representations whose weights take on categorical 
values, such as integers or binary values, as opposed to the 
conventional continuous-valued representations learned by 
conventional neural networks. Intuitively, such quantized 
representations enable neural networks to learn symbolic repre-
sentations. Indeed, consider a learned representation whose n 
weights or activations are binary. One can consider the 2n weight 
or activation values as the possible atomic propositions in some 
logic or the letters in the vocabulary of a symbolic language. 
Then, the observations of these atomic propositions can be used 
to extract symbolic graph representations, such as deterministic 
finite automata and knowledge graphs, by using classical techni-
ques like grammatical inference. Such methods have been used 
successfully in (31) to learn a quantized representation of recur-
rent neural networks and then using those quantized weights or 
activations to learn a finite state machine that is much smaller 
than the corresponding recurrent neural network and captures 
relevant dynamics for the same. Such quantization is also useful 
for improving the efficiency of AI models by enabling the weights 
of neural networks to be represented using much fewer bits, as 
evidenced by QLoRA in quantizing weights down to 4 bits (29).

Other methods have explored automated fine-tuning frame-
works using feedback signals from formal verification, uncer-
tainty quantification, and disentanglement of the outputs of 
foundation models (32). These methods uplift neural representa-
tions into a symbolic space and obtain a measure of compliance 
with task descriptions. This measure is then directly used to 

optimize neural model parameters. For example, the end user 
can provide formal specifications that a given generative AI model 
should satisfy. By using model checking techniques for formal 
verification, it is possible to verify how many of the properties 
are satisfied by the system and rank order responses from the AI 
model based on that. That rank ordering can then be used as a 
type of reward signal to fine-tune the model so that it generates 
outputs more likely to satisfy the given properties. One can also 
attempt to learn the symbolic representations from LLMs by treat-
ing the model as an oracle and leveraging grammatical inference 
techniques (33).

Neurosymbolic AI for small data and models
In the realm of language modeling and reasoning, there is ample 
evidence that neurosymbolic AI approaches can significantly im-
prove data and parameter efficiency. For example, symbolic 
knowledge distillation has been used to distill common sense 
knowledge from GPT-3 into a common sense knowledge graph 
and a corresponding neural model that are 100 smaller than 
GPT-3 while achieving superior common sense reasoning per-
formance (34). Similarly, the neurosymbolic framework Ctrl-G 
(35) takes symbolic logic constraints as inputs and integrates 
them into the distillation of a small LLM such that its generated 
text satisfies the aforementioned constraints. Ctrl-G can be used 
to distill any production-ready LLM into a tractable probabilistic 
model (e.g. a hidden Markov model) that supports efficient rea-
soning about logical constraints encoded as deterministic finite 
automata. Indeed, in a human evaluation study on the quality 
of generated text and its abidance to the given logical constraints, 
the Ctrl-G model consisting of a 7B-parameter LLM for text gener-
ation and the distilled 2B-parameter hidden Markov model for 
symbolic reasoning outperformed by over 30% the much larger 
175B-parameter GPT-3.5 and GPT-4 models, the latter of which 
is rumored to be over 1 trillion parameters. In contrast, models 
based on neural methods for distillation tend to underperform 
their larger counterparts (36).

While the preceding methods for neurosymbolic distillation 
from large models into small ones are promising for the develop-
ment of efficient models, these methods presuppose that the large 
models have already been trained, which is useful for leveraging 
the sizeable investments industry has made into developing large 
models. However, we envision that neurosymbolic AI will make it 
so that we do not have to train these large models to begin with. 
More specifically, symbolic knowledge should effectively and ro-
bustly fill the gaps at training and inference time, so that much 
fewer data and parameters would be needed. To that end, recent 
methods have explored the novel integration of physics and con-
servation laws within neural models (37). Rather than distilling 
physics laws into a neural network, this system involves co- 
designing neural networks for estimating physical variables and 
the symbolic equations that govern conservation laws in off-road 
autonomous driving. The system is able to match the perform-
ance of the state of the art in predicting the motion of the vehicle 
with just 0.1% of the training time and 1% of the training data, 
while requiring 96.9% fewer parameters. With further training, 
this approach achieves a 46% performance improvement over 
the state of the art.

Neurosymbolic AI also efficiently enables human subject mat-
ter experts to provide a small number of examples, which can be 
seamlessly integrated into the symbolic components of the model 
(e.g. via knowledge graphs) and are then used to more efficiently 
train the neural network component (38). The trained network 
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can then utilize the symbolic knowledge as a crucial part of its 
reasoning process, combining the best of both worlds: fast 
adaptation to novel situations from symbolic reasoning and 
generalization capabilities in high-dimensional spaces from ML. 
Through this integration of symbolic knowledge, neurosymbolic 
methods result in smaller models. In one such setup, 
utilizing symbolic knowledge for few-shot learning of novel 
objects results in models that are approximately 95% smaller 
compared with the best neural-only baseline while still outper-
forming it by 2% (38).

A psychological perspective of 
neurosymbolic AI
Human cognitive systems face a similar challenge as AI systems. 
Expertise requires a substantial amount of time and experience, 
but it is time-consuming and impractical to do this with trial 
and error. For example, learning to drive a car involves mastering 
a substantial number of rules for traffic and car operation as well 
as driving-specific perceptual and motor skills. Furthermore, a 
driver may need to drive in new contexts (e.g. a country with dif-
ferent traffic laws) and would not have time to relearn their driv-
ing skills from scratch. In AI terms, the learning challenge 
involves a high-dimensional space, sparse training data, intermit-
tent and possibly delayed rewards, unexpected distribution shifts, 
and the need for few-shot learning. How does human cognition 
solve this challenge?

One common theme that has emerged from the past 50+ years of 
cognitive psychology is that of dual process theories, which posit 
that there are 2 modes of knowledge representation and execution, 
variously termed subsymbolic/symbolic, implicit/explicit, parallel/ 
sequential, or system 1/system 2 (39). In the first mode (subsym-
bolic, implicit, parallel), learning is slow and guided by trial and er-
ror. However, once the habit is acquired, it is fast and automatic and 
can rapidly integrate perceptual and motor information (e.g. a soc-
cer player dribbling a ball without deliberate thought). In the second 
mode (symbolic, explicit, sequential), learning can be quick, but ap-
plying it can be quite slow and laborious.

Several researchers have noted that these two modes comple-
ment each other (40). Consider driving a car as a domain [for ana-
lysis of other domains, see Rousse and Dreyfus (41)]. The novice 
driver initially relies on symbolic knowledge and rules as training 
wheels or guardrails (e.g. “stay 2 seconds behind the car in 
front; stop when the light is red”). Application of this symbolic 
knowledge allows the novice driver to stay alive and continue to 
gain experience. The experience, in turn, slowly trains the percep-
tuomotor systems of the driver so that, eventually, stopping at a 
red light becomes automatic, and with even more experience, 
driving in rush-hour traffic becomes automatic as well (41). If 
the driver is in a context in which existing experience and symbol-
ic knowledge does not apply (e.g. operating a car with one-pedal 
driving), they can induce symbolic rules and reason over them, 
and use that to bootstrap their learning experience [see bottom- 
up learning in Sun (40)].

Crucially, because symbolic knowledge can be compositional, a 
small number of rules can cover a vast variety of potential scen-
arios, similar to how a small number of words and grammatical 
compositional rules can apply to a vast number of sentences 
(42). In ML parlance, symbolic knowledge provides a composition-
al inductive bias for the learning agent whenever the agent is out-
side a familiar or known operational regime. The bias is not 
necessarily optimal, but it usually gets the agent into the neigh-
borhood of optimal solutions similar to the symbolic updates in 

Figure 1. A related advantage is that if the agent is stuck in a local 
minimum, symbolic knowledge can provide guided exploration 
for a better solution. For example, if a novice driver has difficulty 
with parallel parking, they can “talk themselves” through it (simi-
lar to chain-of-thought reasoning with LLMs) using their symbolic 
knowledge of causal and geometric relationships.

While there has been debate about how exactly symbolic pro-
cessing is realized in the human brain (43), the overall lesson for 
AI systems is clear: the flexibility, fluidity, and adaptability of hu-
man cognition is supported by the complementary interplay of 
symbolic and neural, or subsymbolic, processing.

Revisiting scaling laws and the bitter lesson
Current foundation models rely on neural scaling laws under the as-
sumption that given sufficient parameters, data, and compute, 
models can discover general and flexible representations that can 
outperform handcrafted knowledge. The bitter lesson is a reflection 
on how such assumptions have been true in retrospect, with mem-
orable examples including the use of general purpose learning and 
search techniques in the AlphaGo Zero model that outperformed 
methods leveraging human tactics (44), as well as the shift from 
human-engineered features in computer vision to data-driven fea-
ture extraction (45). For the former, the system was able to discover 
the infamous move 37, which may not have been discovered if the 
bias imposed by human-derived tactics was in effect. However, a 
notable counterexample to such thinking includes AlphaStar (46), 
which incorporated human strategies into the learning process by 
bootstrapping the learning process from 987,000 replays from the 
top 22% of players. More to the point, the ablated system without 
the human strategies significantly underperformed both AlphaStar 
as well as human amateurs on StarCraft.

While the AlphaStar counterexample does not invalidate the 
bitter lesson (it is possible that, given sufficient training time, 
AlphaStar may have found novel optimal strategies), there are 
reasons for concern about the feasibility of continued scaling. In 
particular, there may not be enough data even in principle to sus-
tain data-driven improvements in frontier models (47). There are 
also many domains in which data and compute are inherently 
limited and not readily scalable, such as AI on the edge and low 
size, weight, and power systems. In such scale-limited situations, 
it is necessary to complement the neural model with strong in-
ductive biases.

Furthermore, while the bitter lesson argues for AI agents that 
can discover like we can, not which contain what we have discov-
ered, the integration of human-derived rules (inductive biases) 
and the discovery and refinement of new knowledge are not mu-
tually exclusive. By analogy, if a child is unable to solve a multidi-
git addition problem, a symbolic hint like “carry the 1” can guide 
them into a learning space in which they can productively gener-
alize (e.g. “carry the 2”). Indeed, we noted examples of neurosym-
bolic systems that demonstrate both discovery and efficient use of 
prior knowledge, such as the neural constitutive laws (18) where-
by human-discovered PDEs are parameterized to be used as in-
ductive biases (such biases can also be used train networks that 
outperform models one hundred times their size while using 1% 
of the data) (37). The field of physics-informed ML, and of human 
learning more generally, showcases how such approaches are 
complementary rather than contradictory.

Finally, there is the more fundamental problem of whether lo-
gical reasoning, which is broadly considered a precondition for 
artificial general intelligence, can be learned from data given suf-
ficient computation. In particular, current AI models can attain 
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near-perfect accuracy in one distribution of reasoning problems 
but are unable to generalize to other distributions in the same 
problem space (23). The evidence indicates that such models do 
not learn to reason, but rather simply learn statistical patterns 
that best fit the training data (48, 49). While such models have pro-
ven tremendously useful for applications such as code generation 
and text summarization, the evidence to date suggests that scal-
ing, by itself, may not suffice to endow models with sophisticated 
and rigorous reasoning expertise.

In summary, we advocate that discovery and knowledge in-
corporation are not mutually exclusive. It is crucial to have AI 
agents that can discover like we can, but part of what it means 
to discover like people is leveraging and refining pre-existing 
knowledge to facilitate discovery. As we have alluded to, the key 
issue is the nature of the inductive bias: how it is expressed, 
how it guides the learning and inference of the AI model, and 
how it can complement data-driven discovery. At a high level, 
we have suggested in this brief a hybrid architecture in which 
symbolic reasoning can be interleaved with neural computation 
to reduce scale as follows: 

• Data-driven representations provide powerful baseline cap-
abilities to the neural system.

• Translation, or lifting, of neural representations to symbolic 
forms for logical reasoning.

• Projection of symbolic representations back to neural space 
for continued learning.

• Symbols and associated relationships can be discovered by 
the neural system from data-driven representations (e.g. vis-
ual features), incorporated through domain-specific con-
straints (e.g. semantics of traffic signs), or refined through 
exploration guided by symbolic reasoning (e.g. identifying 
parking violations based on street signs).

• The symbolic system could also incorporate distilled knowl-
edge from larger neural models, enabling smaller, more effi-
cient models.

The previous approach creates a feedback loop, in which sym-
bolic reasoning guides the neural learning process toward more 
efficient solutions and leverages the benefits of data and compute 
scaling while addressing its limitations. Therefore, we see our vi-
sion for neurosymbolic AI as complementary to the scaling laws of 
modern AI while simultaneously providing an avenue to upend 
the gatekeeping of state-of-the-art AI that has resulted from the 
inefficient adoption of these same laws.

Conclusion
The scaling laws of recent years have produced impressive results 
in vision and language. However, this process of developing in-
creasingly costly models is unsustainable and introduces a gate-
keeping of AI by those entities that can afford the development 
of such models. Neurosymbolic AI is emerging as a conduit to up-
end the deleterious effects of these scaling laws. While some 
agencies have recognized the potential of neurosymbolic AI with 
investments in this space (50), a more concerted and interdiscip-
linary effort is necessary to balance the scaling laws and enable 
the advent of efficient and trustworthy AI systems.

Funding
The authors declare no funding.

Data Availability
All data are included in the manuscript and/or supporting 
information.

References
1 Cho R. AI’s growing carbon footprint. Columbia Climate School. State 

of the Planet, June 9, 2023 [accessed 2024 Dec 15]. https://news. 
climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/.

2 Maslej N,  et al. The AI index 2024 annual report. AI Index Steering 
Committee. Institute for Human–Centered AI, Stanford University, 
Stanford, CA, April 2024 [accessed 2024 Dec 15]. https://hai. 
stanford.edu/ai-index/2024-ai-index-report.

3 Sutton R. 2019. The Bitter Lesson. 2019 [accessed 2024 Dec 15]. 
http://incompleteideas.net/IncIdeas/BitterLesson.html.

4 Hofman MA. 2014. Evolution of the human brain: when bigger is 
better. Front Neuroanat. 8:15.

5 Moore GE. 1998. Cramming more components onto integrated 
circuits. Proc IEEE Inst Electr Electron Eng. 86(1):82–85.

6 Dennard RH, et al. 1974. Design of ion-implanted MOSFET’s with 
very small physical dimensions. IEEE J Solid-State Circuits. 9(5): 
256–268.

7 Pilz K, Heim L, Brown N. 2025. Increased compute efficiency and 
the diffusion of AI capabilities. In: Proceedings of the AAAI 
Conference on Artificial Intelligence. Vol. 39. 

8 d’Avila Garcez A, Lamb LC. 2023. Neurosymbolic AI: the 3rd 
wave. Artif Intell Rev. 56(11):12387–12406.

9 Besold TR, et al. 2021. Neural-symbolic learning and reasoning: a 
survey and interpretation 1. In: Hitzler P, Sarker MK, editors. 

Neuro-symbolic artificial intelligence: the state of the art. 
Amsterdam, the Netherlands: IOS Press. p. 1–51.

10 Fefferman C, Mitter S, Narayanan H. 2016. Testing the manifold 
hypothesis. J Amer Math Soc. 29(4):983–1049.

11 Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward 
networks are universal approximators. Neural Netw. 2(5): 
359–366.

12 Gamba M, Englesson E, Björkman M, Azizpour H. 2023. Deep dou-
ble descent via smooth interpolation. Transact Mach Learn Res. 
https://openreview.net/forum?id=fempQstMbV.

13 Foret P, Kleiner A, Mobahi H, Neyshabur B. 2020. 
Sharpness-aware minimization for efficiently improving gener-
alization. In: International Conference on Learning Representations.

14 Kiani BT, Wang J, Weber M. 2024. Hardness of learning neural 
networks under the manifold hypothesis. Adv Neural Inf Process 
Syst. 37:5661–5696.

15 Raissi M, Perdikaris P, Karniadakis GE. 2019. Physics-informed 
neural networks: a deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential 
equations. J Comput Phys. 378:686–707.

16 Li Z, et al. 2024. Physics-informed neural operator for learning 
partial differential equations. ACM/IMS J Data Sci. 1(3):1–27.

17 Liang J, Lin MC. 2020. Differentiable physics simulation. In: ICLR 
2020 workshop on integration of deep neural models and differential 
equations. 

18 Ma P, et al. 2023. Learning neural constitutive laws from motion 

observations for generalizable PDE dynamics. In: International 
Conference on Machine Learning, PMLR, p. 23279–23300.

19 Li X, et al. PAC-NeRF: Physics augmented continuum neural radi-
ance fields for geometry-agnostic system identification. In: The 
eleventh international conference on learning representations.

20 An B, Chen B, Han X, Sun L. 2018. Accurate text-enhanced knowl-
edge graph representation learning. In: Proceedings of the 2018 

6 | PNAS Nexus, 2025, Vol. 4, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/5/pgaf117/8134151 by guest on 13 August 2025

https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/
https://hai.stanford.edu/ai-index/2024-ai-index-report
https://hai.stanford.edu/ai-index/2024-ai-index-report
http://incompleteideas.net/IncIdeas/BitterLesson.html
https://openreview.net/forum?id=fempQstMbV


Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, volume 1 
(long papers), p. 745–755.

21 Yu C,  et al. COSMO: a large-scale e-commerce common 
sense knowledge generation and serving system at Amazon. 
2024 [accessed 2024 Dec 15]. https://www.amazon.science/ 
publications/cosmo-a-large-scale-e-commerce-common-sense- 
knowledge-generation-and-serving-system-at-amazon

22 Edge D, et al. 2024. From local to global: a graph rag approach to 
query-focused summarization. arXiv 2404.16130. https://doi.org/ 
10.48550/arXiv.2404.16130, preprint: not peer reviewed.

23 Zhang H, Li LH, Meng T, Chang K-W, Van Den Broeck G. 2023. On 
the paradox of learning to reason from data. In: Proceedings of the 
Thirty-second International Joint Conference on Artificial Intelligence, 
p. 3365–3373.

24 Ahmed K, Teso S, Chang K-W, Van den Broeck G, Vergari A. 2022. 
Semantic probabilistic layers for neuro-symbolic learning. Adv 
Neural Inf Process Syst. 35:29944–29959.

25 Acharya K, Velasquez A, Song HH. 2024. A survey on symbolic 
knowledge distillation of large language models. IEEE Trans 
Artif Intell. 5(12):5928–5948.

26 Van Den Oord A, Vinyals O, Kavukcuoglu K. 2017. Neural discrete 
representation learning. Adv Neural Inf Process Syst. 30. 

27 Razavi A, Van den Oord A, Vinyals O. 2019. Generating diverse 
high-fidelity images with vq-vae-2. Adv Neural Inf Process Syst. 32. 

28 Gu S, et al. 2022. Vector quantized diffusion model for text-to- 
image synthesis. In: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, p. 10696–10706.

29 Dettmers T, Pagnoni A, Holtzman A, Zettlemoyer L. 2023. Qlora: 
efficient finetuning of quantized llms. Adv Neural Inf Process Syst. 

36:10088-10115.
30 Koul A, Fern A, Greydanus S. 2019. Learning finite state represen-

tations of recurrent policy networks. In: International conference on 
learning representations.

31 Carr S, Jansen N, Topcu U. 2021. Task-aware verifiable 
RNN-based policies for partially observable Markov decision 
processes. J Artif Intell Res. 72:819–847.

32 Yang Y, et al. 2024. Fine-tuning language models using formal 
methods feedback: a use case in autonomous systems. Proc 
Mach Learn Syst. 6:339–350.

33 Chen L, Trivedi A, Velasquez A. 2024. LLMs as probabilistic min-
imally adequate teachers for DFA learning. arXiv 2408.02999. 
https://doi.org/10.48550/arXiv.2408.02999, preprint: not peer 
reviewed.

34 West P, et al. 2022. Symbolic knowledge distillation: from general 
language models to commonsense models. In: Proceedings of the 
2022 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, p. 4602– 
4625.

35 Zhang H, Kung P-N, Yoshida M, den Broeck GV, Peng N. 2024. 
Adaptable logical control for large language models. Adv Neural 
Inf Process Syst. 37: 115563–115587.

36 Xu X, et al. 2024. A survey on knowledge distillation of large lan-
guage models. arXiv 2402.13116. https://doi.org/10.48550/arXiv. 
2402.13116, preprint: not peer reviewed.

37 Zhao Z, Li B, Du Y, Fu T, Wang C. 2024. PhysORD: a neuro- 
symbolic approach for physics-infused motion prediction in off- 
road driving. In: 2024 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS). 

38 Bhagat S, Stepputtis S, Campbell J, Sycara K. 2023. 
Sample-efficient learning of novel visual concepts. In: 
Conference on Lifelong Learning Agents, PMLR, p. 637–657.

39 Sun R. 2024. Dual-process theories, cognitive architectures, and 
hybrid neural-symbolic models. NeSy AI. 1:1–9. https://doi.org/ 
10.3233/NAI-240720

40 Sun R. 2013. Autonomous generation of symbolic representa-
tions through subsymbolic activities. Philos Psychol. 26(6): 
888–912. https://doi.org/10.1080/09515089.2012.711035

41 Rousse BS, Dreyfus S. 2021. Revisiting the six stages of skill acqui-
sition. In: Silva Mangiante E, Peno K, Northup J, editors. Teaching 
and learning for adult skill acquisition: Applying the Dreyfus & Dreyfus 
model in different fields. Charlotte (NC): Information Age. p. 3–30.

42 Dekker RB, Otto F, Summerfield C. 2022. Curriculum learning for 
human compositional generalization, Proc Natl Acad Sci U S A. 
119(41):e2205582119. https://doi.org/10.1073/pnas.2205582119

43 Marcus GF. 2001. The algebraic mind: integrating connectionism 
and cognitive science. Learning, development, and conceptual change. 
Cambridge (MA): MIT.

44 Silver D, et al. 2017. Mastering the game of go without human 

knowledge. Nature. 550(7676):354–359.
45 Nixon M, Aguado A. 2019. Feature extraction and image processing 

for computer vision. Cambridge (MA): Academic Press.
46 Vinyals O, et al. 2019. Grandmaster level in StarCraft II using 

multi-agent reinforcement learning. Nature. 575(7782):350–354.
47 Villalobos P,  et al. 2024. Position: will we run out of data? Limits of 

LLM scaling based on human-generated data. In: ICML’24: 
Proceedings of the 41st International Conference on Machine Learning. 
p. 49523–49544.

48 Valmeekam K, Stechly K, Gundawar A, Kambhampati S. 2024. 
Planning in strawberry fields: evaluating and improving the 
planning and scheduling capabilities of LRM o1. arXiv 
2410.02162. https://doi.org/10.48550/arXiv.2410.02162, preprint: 
not peer reviewed.

49 Wang K, et al. On the planning abilities of OpenAI’s o1 models: 
feasibility, optimality, and generalizability. In: Language 
Gamification-NeurIPS 2024 Workshop.

50 Velasquez A, Neema S. Assured neuro symbolic learning and rea-
soning (ANSR). Defense Advanced Research Projects Agency (DARPA).

Velasquez et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/5/pgaf117/8134151 by guest on 13 August 2025

https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-common-sense-knowledge-generation-and-serving-system-at-amazon
https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-common-sense-knowledge-generation-and-serving-system-at-amazon
https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-common-sense-knowledge-generation-and-serving-system-at-amazon
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2408.02999
https://doi.org/10.48550/arXiv.2402.13116
https://doi.org/10.48550/arXiv.2402.13116
https://doi.org/10.3233/NAI-240720
https://doi.org/10.3233/NAI-240720
https://doi.org/10.1080/09515089.2012.711035
https://doi.org/10.1073/pnas.2205582119
https://doi.org/10.48550/arXiv.2410.02162

	Neurosymbolic AI as an antithesis to scaling laws
	Introduction
	Classical ML assumptions and neurosymbolic AI
	Neurosymbolic AI: From symbols to neurons
	Neurosymbolic AI: From neurons to symbols
	Neurosymbolic AI for small data and models
	A psychological perspective of neurosymbolic AI
	Revisiting scaling laws and the bitter lesson
	Conclusion
	Funding
	Data Availability
	References


