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Chain-of-Thought (CoT) prompting has been shown to improve Large LanguageModel (LLM) performance
on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before
providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in
deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more
superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a
data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from
in-distribution data, allowing the model to conditionally generate reasoning paths that approximate
those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution
discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via
three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy,
an isolated and controlled environment to train LLMs from scratch and systematically probe them under
various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes
when it is pushed beyond training distributions. This work offers a deeper understanding of why and
when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable
reasoning. Our code is available at GitHub: https://github.com/ChengshuaiZhao0/DataAlchemy.

1. Introduction
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Figure 1 | The data perspective lens. CoT reason-
ing’s effectiveness is fundamentally bounded by
the degree of distribution discrepancy between the
training data and the test queries. Guided by this
lens, we dissect CoT reasoning via three dimen-
sions: task, length, and format.

Recent years have witnessed Large Language
Models’ (LLMs) dominant role in various do-
mains (Li et al., 2025b; Ting et al., 2025; Zhao
et al., 2025, 2023) through versatile prompt-
ing techniques (Kojima et al., 2022; Wei et al.,
2022; Yao et al., 2023). Among these, Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
has emerged as a prominent method for elic-
iting structured reasoning from LLMs (a.k.a.,
CoT reasoning). By appending a simple cue
such as “Let’s think step by step,” LLMs decom-
pose complex problems into intermediate steps,
producing outputs that resemble human-like
reasoning. It has been shown to be effective
in tasks requiring logical inference(Xu et al.,
2024), mathematical problem solving (Imani
et al., 2023), and commonsense reasoning (Wei
et al., 2022). The empirical successes of CoT rea-
soning lead to the perception that LLMs engage
in deliberate inferential processes (Ling et al.,
2023; Yu et al., 2023; Zhang et al., 2024a,c).
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However, a closer examination reveals inconsistencies that challenge this optimistic view. Consider
this straightforward question: “The day the US was established is in a leap year or a normal year?”
When prompted with the CoT prefix, the modern LLM Gemini responded: “The United States was
established in 1776. 1776 is divisible by 4, but it’s not a century year, so it’s a leap year. Therefore, the
day the US was established was in a normal year.” This response exemplifies a concerning pattern: the
model correctly recites the leap year rule and articulates intermediate reasoning steps, yet produces a
logically inconsistent conclusion (i.e., asserting 1776 is both a leap year and a normal year). Such
inconsistencies suggest that there is a distinction between human-like inference and CoT reasoning.

An expanding body of analyses reveals that LLMs tend to rely on surface-level semantics and clues
rather than logical procedures (Bentham et al., 2024; Chen et al., 2025b; Lanham et al., 2023). LLMs
construct superficial chains of logic based on learned token associations, often failing on tasks that
deviate from commonsense heuristics or familiar templates (Tang et al., 2023). In the reasoning
process, performance degrades sharply when irrelevant clauses are introduced, which indicates that
models cannot grasp the underlying logic (Mirzadeh et al., 2024). This fragility becomes even more
apparent when models are tested on more complex tasks, where they frequently produce incoherent
solutions and fail to follow consistent reasoning paths (Shojaee et al., 2025). Collectively, these
pioneering works deepen the skepticism surrounding the true nature of CoT reasoning.

In light of this line of research, we question the CoT reasoning by proposing an alternative lens
through data distribution and further investigating why and when it fails. We hypothesize that
CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the
model to conditionally generate reasoning paths that approximate those seen during training. As
such, its effectiveness is inherently limited by the nature and extent of the distribution discrepancy
between training data and the test queries. Guided by this data distribution lens, we dissect CoT
reasoning via three dimensions: (i) task—To what extent CoT reasoning can handle tasks that involve
transformations or previously unseen task structures. (2) length—how CoT reasoning generalizes to
chains with length different from that of training data; and (3) format—how sensitive CoT reasoning
is to surface-level query form variations. To evaluate each aspect, we introduce DataAlchemy,
a controlled and isolated experiment that allows us to train LLMs from scratch and systematically
probe them under various distribution shifts.

Our findings reveal that CoT reasoning works effectively when applied to in-distribution or near
in-distribution data but becomes fragile and prone to failure even under moderate distribution shifts.
In some cases, LLMs generate fluent yet logically inconsistent reasoning steps. The results suggest that
what appears to be structured reasoning can be a mirage, emerging from memorized or interpolated
patterns in the training data rather than logical inference. These insights carry important implications
for both practitioners and researchers. For practitioners, our results highlight the risk of relying on
CoT as a plug-and-play solution for reasoning tasks and caution against equating CoT-style output
with human thinking. For researchers, the results underscore the ongoing challenge of achieving
reasoning that is both faithful and generalizable, motivating the need to develop models that can move
beyond surface-level pattern recognition to exhibit deeper inferential competence. Our contributions
are summarized as follows:

★ Novel perspective. We propose a data distribution lens for CoT reasoning, illuminating that its
effectiveness stems from structured inductive biases learned from in-distribution training data. This
framework provides a principled lens for understanding why and when CoT reasoning succeeds or
fails.

★ Controlled environment. We introduce DataAlchemy, an isolated experimental framework
that enables training LLMs from scratch and systematically probing CoT reasoning. This controlled
setting allows us to isolate and analyze the effects of distribution shifts on CoT reasoning without
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interference from complex patterns learned during large-scale pre-training.
★ Empirical validation. We conduct systematic empirical validation across three critical dimensions—
task, length, and format. Our experiments demonstrate that CoT reasoning exhibits sharp perfor-
mance degradation under distribution shifts, revealing that seemingly coherent reasoning masks
shallow pattern replication.

★ Real-world implication. This work reframes the understanding of contemporary LLMs’ reasoning
capabilities and emphasizes the risk of over-reliance on COT reasoning as a universal problem-
solving paradigm. It underscores the necessity for proper evaluation methods and the development
of LLMs that possess authentic and generalizable reasoning capabilities.

2. Related Work

2.1. LLM Prompting and CoT

Chain-of-Thought (CoT) prompting revolutionized how we elicit reasoning from Large Language
Models by decomposing complex problems into intermediate steps (Wei et al., 2022). By augmenting
few-shot exemplars with reasoning chains, CoT showed substantial performance gains on various
tasks (Imani et al., 2023; Wei et al., 2022; Xu et al., 2024). Building on this, several variants emerged.
Zero-shot CoT triggers reasoning without exemplars using instructional prompts (Kojima et al.,
2022), and self-consistency enhances performance via majority voting over sampled chains (Wang
et al., 2023). To reduce manual effort, Auto-CoT generates CoT exemplars using the models them-
selves (Zhang et al., 2023). Beyond linear chains, Tree-of-Thought (ToT) frames CoT as a tree search
over partial reasoning paths (Yao et al., 2023), enabling lookahead and backtracking. SymbCoT
combines symbolic reasoning with CoT by converting problems into formal representations (Xu
et al., 2024). Recent work increasingly integrates CoT into the LLM inference process, generating
long-form CoTs (Guo et al., 2025; Jaech et al., 2024; Team et al., 2025; Team, 2024). This enables
flexible strategies like mistake correction, step decomposition, reflection, and alternative reasoning
paths (Chen et al., 2025a; Yeo et al., 2025). The success of prompting techniques and long-form CoTs
has led many to view them as evidence of emergent, human-like reasoning in LLMs. In this work, we
challenge that viewpoint by adopting a data-centric perspective and demonstrating that CoT behavior
arises largely from pattern matching over training distributions.

2.2. Discussion on Illusion of LLM Reasoning

While Chain-of-Thought prompting has led to impressive gains on complex reasoning tasks, a growing
body of work has started questioning the nature of these gains. One major line of research highlights
the fragility of CoT reasoning. Minor and semantically irrelevant perturbations such as distractor
phrases or altered symbolic forms can cause significant performance drops in state-of-the-art mod-
els (Mirzadeh et al., 2024; Tang et al., 2023). Models often incorporate such irrelevant details into
their reasoning, revealing a lack of sensitivity to salient information. Other studies show that models
prioritize the surface form of reasoning over logical soundness; in some cases, longer but flawed
reasoning paths yield better final answers than shorter, correct ones (Bentham et al., 2024). Similarly,
performance does not scale with problem complexity as expected—models may overthink easy prob-
lems and give up on harder ones (Shojaee et al., 2025). Another critical concern is the faithfulness of
the reasoning process. Intervention-based studies reveal that final answers often remain unchanged
even when intermediate steps are falsified or omitted (Lanham et al., 2023), a phenomenon dubbed
the illusion of transparency (Bentham et al., 2024; Chen et al., 2025b). Together, these findings
suggest that LLMs are not principled reasoners but rather sophisticated simulators of reasoning-like
text. However, a systematic understanding of why and when CoT reasoning fails is still a mystery.
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Figure 2 | Framework of DataAlchemy. It creates an isolated and controlled environment to train
LLMs from scratch and probe the task, length, and format generalization.

2.3. OOD Generalization of LLMs

Out-of-distribution (OOD) generalization, where test inputs differ from training data, remains a
key challenge in machine learning, particularly for large language models (LLMs)(Budnikov et al.,
2025; Yang et al., 2024, 2023; Zhang et al., 2024b). Recent studies show that LLMs prompted
to learn novel functions often revert to similar functions encountered during pretraining (Garg
et al., 2022; Wang et al., 2024). Likewise, LLM generalization frequently depends on mapping new
problems onto familiar compositional structures (Song et al., 2025). CoT prompting improves OOD
generalization (Wei et al., 2022), with early work demonstrating length generalization for multi-step
problems beyond training distributions (Shen et al., 2025; Yao et al., 2025). However, this ability is
not inherent to CoT and heavily depends on model architecture and training setups. For instance,
strong generalization in arithmetic tasks was achieved only when algorithmic structures were encoded
into positional encodings (Cho et al., 2024). Similarly, finer-grained CoT demonstrations during
training boost OOD performance, highlighting the importance of data granularity (Wang et al., 2025a).
Theoretical and empirical evidence shows that CoT generalizes well only when test inputs share latent
structures with training data; otherwise, performance declines sharply (Li et al., 2025a; Wang et al.,
2025b). Despite its promise, CoT still struggles with genuinely novel tasks or formats. In the light
of these brilliant findings, we propose rethinking CoT reasoning through a data distribution lens:
decomposing CoT into task, length, and format generalization, and systematically investigating each
in a controlled setting.

3. The Data Distribution Lens

We propose a fundamental reframing to understand what CoT actually represents. We hypothesize
that the underlying mechanism is better understood through the lens of data distribution: rather than
executing explicit reasoning procedures, CoT operates as a pattern-matching process that interpolates
and extrapolates from the statistical regularities present in its training distribution. Specifically, we
posit that CoT’s success stems not from a model’s inherent reasoning capacity, but from its ability
to generalize conditionally to out-of-distribution (OOD) test cases that are structurally similar to
in-distribution exemplars.

To formalize this view, we model CoT prompting as a conditional generation process constrained
by the distributional properties of the training data. Let Dtrain denote the training distribution over
input-output pairs (𝑥, 𝑦), where 𝑥 represents a reasoning problem and 𝑦 denotes the solution sequence
(including intermediate reasoning steps). The model learns an approximation 𝑓𝜃(𝑥) ≈ 𝑦 by minimizing
empirical risk over samples drawn from Dtrain.
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Let the expected training risk be defined as:

𝑅train( 𝑓𝜃) = 𝔼(𝑥,𝑦)∼Dtrain [ℓ( 𝑓𝜃(𝑥), 𝑦)], (1)

where ℓ is a task-specific loss function (e.g., cross-entropy, token-level accuracy). At inference time,
given a test input 𝑎test sampled from a potentially different distribution Dtest, the model generates a
response 𝑦test conditioned on patterns learned from Dtrain. The corresponding expected test risk is:

𝑅test( 𝑓𝜃) = 𝔼(𝑥,𝑦)∼Dtest [ℓ( 𝑓𝜃(𝑥), 𝑦)]. (2)

The degree to which the model generalizes from Dtrain to Dtest is governed by the distributional
discrepancy between the two, which we quantify using divergence measures:

Definition 3.1 (Distributional Discrepancy). Given training distribution Dtrain and test distribution
Dtest, the distributional discrepancy is defined as:

Δ(Dtrain,Dtest) = H(Dtrain ∥ Dtest) (3)

where H(· ∥ ·) is a divergence measure (e.g., KL divergence, Wasserstein distance) that quantifies the
statistical distance between the two distributions.

Theorem 3.1 (CoT Generalization Bound). Let 𝑓𝜃 denote a model trained on Dtrain with expected
training risk 𝑅train( 𝑓𝜃). For a test distribution Dtest, the expected test risk 𝑅test( 𝑓𝜃) is bounded by:

𝑅test( 𝑓𝜃) ≤ 𝑅train( 𝑓𝜃) + Λ · Δ(Dtrain,Dtest) + O
(√︂

log(1/𝛿)
𝑛

)
(4)

where Λ > 0 is a Lipschitz constant that depends on the model architecture and task complexity, 𝑛 is the
training sample size, and the bound holds with probability 1 − 𝛿, where 𝛿 is the failure propability.

The proof is provided in Appendix A.1

Building on this data distribution perspective, we identify three critical dimensions along which
distributional shifts can occur, each revealing different aspects of CoT’s pattern-matching nature:
➊ Task generalization examines how well CoT transfers across different types of reasoning tasks. Novel
tasks may have unique elements and underlying logical structure, which introduces distributional
shifts that challenge the model’s ability to apply learned reasoning patterns. ➋ Length generalization
investigates CoT’s robustness to reasoning chains of varying lengths. Since training data typically
contains reasoning sequences within a certain length range, test cases requiring substantially longer or
shorter reasoning chains represent a form of distributional shift along the sequence length dimension.
This length discrepancy could result from the reasoning step or the text-dependent solution space.
➌ Format generalization explores how sensitive CoT is to variations in prompt formulation and
structure. Due to various reasons (e.g., sophistical training data or diverse background of users), it
is challenging for LLM practitioners to design a golden prompt to elicit knowledge suitable for the
current case. Their detailed definition and implementation are given in subsequent sections.

Each dimension provides a unique lens for understanding the boundaries of CoT’s effectiveness
and the mechanisms underlying its apparent reasoning capabilities. By systematically varying these
dimensions in controlled experimental settings, we can empirically validate our hypothesis that
CoT performance degrades predictably as distributional discrepancy increases, thereby revealing its
fundamental nature as a pattern-matching rather than reasoning system.
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4. DataAlchemy: An Isolated and Controlled Environment

To systematically investigate the influence of distributional shifts on CoT reasoning capabilities, we
introduce DataAlchemy, a synthetic dataset framework designed for controlled experimentation.
This environment enables us to train language models from scratch under precisely defined conditions,
allowing for rigorous analysis of CoT behavior across different OOD scenarios. The overview is shown
in Figure 2.

4.1. Basic Atoms and Elements

Let A = {A,B,C, . . . ,Z} denote the alphabet of 26 basic atoms. An element e is defined as an ordered
sequence of atoms:

e = (𝑎0, 𝑎1, . . . , 𝑎𝑙−1) where 𝑎𝑖 ∈ A, 𝑙 ∈ ℤ+ (5)

This design provides a versatile manipulation for the size of the dataset D (i.e., |D| = |A|𝑙) by varying
element length 𝑙 to train language models with various capacities. Meanwhile, it also allows us to
systematically probe text length generalization capabilities.

4.2. Transformations

A transformation is an operation that operates on elements 𝐹 : e → ê. In this work, we consider two
fundamental transformations: the ROT Transformation and the Cyclic Position Shift. To formally define
the transformations, we introduce a bijective mapping 𝜙 : A → ℤ26, where ℤ26 = {0, 1, . . . , 25}, such
that 𝜙(𝑐) maps a character to its zero-based alphabetical index.

Definition 4.1 (ROT Transformation). Given an element e = (𝑎0, . . . , 𝑎𝑙−1) and a rotation parameter
𝑛 ∈ ℤ, the ROT Transformation 𝑓rot produces an element ê = (𝑎0, . . . , 𝑎𝑙−1). Each atom 𝑎𝑖 is:

𝑎𝑖 = 𝜙−1((𝜙(𝑎𝑖) + 𝑛) (mod 26)) (6)

This operation cyclically shifts each atom 𝑛 positions forward in alphabetical order. For example, if
e = (A,P,P,L,E) and 𝑛 = 13, then 𝑓rot(e, 13) = (N,C,C,Y,R).

Definition 4.2 (Cyclic Position Shift). Given an element e = (𝑎0, . . . , 𝑎𝑙−1) and a shift parameter 𝑛 ∈ ℤ,
the Cyclic Position Shift 𝑓pos produces an element ê = (𝑎0, . . . , 𝑎𝑙−1). Each atom 𝑎𝑖 is defined by a cyclic
shift of indices:

𝑎𝑖 = 𝑎(𝑖−𝑛) (mod 𝑙) (7)

This transformation cyclically shifts the positions of the atoms within the sequence by 𝑛 positions to the
right. For instance, if e = (A,P,P,L,E) and 𝑛 = 1, then 𝑓pos(e, 1) = (E,A,P,P,L).

Definition 4.3 (Generalized Compositional Transformation). To model multi-step reasoning, we define
a compositional transformation as the successive application of a sequence of operations. Let 𝑆 =

( 𝑓1, 𝑓2, . . . , 𝑓𝑘) be a sequence of operations, where each 𝑓𝑖 is one of the fundamental transformations
F = { 𝑓rot, 𝑓pos} with its respective parameters. The compositional transformation 𝑓S for the sequence 𝑆 is
the function composition:

𝑓S = 𝑓𝑘 ◦ 𝑓𝑘 ◦ · · · ◦ 𝑓1 (8)

The resulting element ê is obtained by applying the operations sequentially to an initial element e:

ê = 𝑓𝑘 ( 𝑓𝑘−1(. . . ( 𝑓1(e)) . . .)) (9)
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This design enables the construction of arbitrarily complex transformation chains by varying the
type, parameters, order, and length of operations within the sequence. At the sample time, we can
naturally acquire the COT reasoning step by decomposing the intermediate process:

𝑓S(e) :︸ ︷︷ ︸
Query

e
𝑓1−→ e(1) 𝑓2−→ e(2) · · ·

𝑓𝑘−1−−−→ e(𝑘−1) 𝑓𝑘−→︸                                            ︷︷                                            ︸
COT reasoning steps

ê︸︷︷︸
Answer

(10)

4.3. Environment Setting

Through systematic manipulation of elements and transformations, DataAlchemyoffers a flexible
and controllable framework for training LLMs from scratch, facilitating rigorous investigation of
diverse OOD scenarios. Without specification, we employ a decoder-only language model GPT-
2 (Radford et al., 2019) with a configuration of 4 layers, 32 hidden dimensions, and 4 attention
heads. We utilize a Byte-Pair Encoding (BPE) tokenizer. Both LLMs and the tokenizer follow the
general modern LLM pipeline. During the inference time, we set the temperature to 1e-5. For rigor,
we also study LLMs with various parameters, architectures, and temperatures in Section 8. Details
of the implementation are provided in the Appendix B. We consider that each element consists of
4 basic atoms, which produces 456,976 samples for each dataset with varied transformations and
token amounts. We initialize the two transformations 𝑓1 = 𝑓rot(𝑒, 13) and 𝑓2 = 𝑓pos(𝑒, 1). We consider
the exact match rate, Levenshtein distance (i.e., edit distance) (Yujian and Bo, 2007), and BLEU
score (Papineni et al., 2002) as metrics and evaluate the produced reasoning step, answer, and full
chain. Examples of the datasets and evaluations are shown in Appendix C

5. Task Generalization

Task generalization represents a fundamental challenge for CoT reasoning, as it directly tests a model’s
ability to apply learned concepts and reasoning patterns to unseen scenarios. In our controlled ex-
periments, both transformation and elements could be novel. Following this, we decompose task
generalization into two primary dimensions: element generalization and transformation generaliza-
tion.

Task Generalization Complexity. Guided by the data distribution lens, we first introduce a
measure for generalization difficulty:
Proposition 5.1 (Task Generalization Complexity). For a reasoning chain 𝑓𝑆 operating on elements
e = (𝑎0, . . . , 𝑎𝑙−1), define:

TGC(𝐶) =𝛼
𝑚∑︁
𝑖=1

𝕀
[
𝑎𝑖 ∉ E 𝑖

train
]
+ 𝛽

𝑛∑︁
𝑗=1

𝕀
[
𝑓 𝑗 ∉ Ftrain

]
+ 𝛾𝕀 [( 𝑓1, 𝑓2, . . . , 𝑓𝑘) ∉ Ptrain ] + 𝐶𝑇 (11)

as a measurement of task discrepancy Δ𝑡𝑎𝑠𝑘, where 𝛼, 𝛽, 𝛾 are weighting parameters for different novelty
types and 𝐶𝑇 is task specific constant. E 𝑖

train , Ftrain , and Ptrain denote the bit-wise element set, relation
set and the order of relation set used during training.

We establish a critical threshold beyond which CoT reasoning fails exponentially:
Theorem 5.1 (Task Generalization Failure Threshold). There exists a threshold 𝜏 such that when
TGC(𝐶) > 𝜏, the probability of correct CoT reasoning drops exponentially:

𝑃(correct|𝐶) ≤ 𝑒−𝛿(TGC(𝐶)−𝜏) (12)

The proof is provided in Appendix A.2.
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5.1. Transformation Generalization

Transformation generalization evaluates the ability of CoT reasoning to effectively transfer when
models encounter novel transformations during testing, which is an especially prevalent scenario in
real-world applications.
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Figure 3 | Performance of CoT reasoning on trans-
formation generalization. Efficacy of CoT reasoning
declines as the degree of distributional discrepancy
increases.

Experimental Setup. To systematically eval-
uate the impact of transformations, we con-
duct experiments by varying transformations
between training and testing sets while keeping
other factors constant (e.g., elements, length,
and format). Guided by the intuition formal-
ized in Proposition 5.1, we define four incre-
mental levels of distribution shift in transforma-
tions as shown in Figure 2: (i) In-Distribution
(ID): The transformations in the test set are
identical to those observed during training, e.g.,
𝑓1 ◦ 𝑓1 → 𝑓1 ◦ 𝑓1. (ii) Composition (CMP): Test
samples comprise novel compositions of pre-
viously encountered transformations, though
each individual transformation remains famil-
iar, e.g., 𝑓1 ◦ 𝑓1, 𝑓1 ◦ 𝑓2, 𝑓2 ◦ 𝑓1 → 𝑓2 ◦ 𝑓2. (iii)
Partial Out-of-Distribution (POOD): Test data in-
clude compositions involving at least one novel
transformation not seen during training, e.g.,
𝑓1 ◦ 𝑓1 → 𝑓1 ◦ 𝑓2. (iv) Out-of-Distribution
(OOD): The test set contains entirely novel transformation types that are unseen in training, e.g.,
𝑓1 ◦ 𝑓1 → 𝑓2 ◦ 𝑓2.

Table 1 | Full chain evaluation under different scenarios for transformation generalization.

Transformation (Train → Test) Scenario Exact Match Edit Distance BLEU Score

𝑓1 ◦ 𝑓1 → 𝑓1 ◦ 𝑓1 ID 100.00% 0 1
{ 𝑓2 ◦ 𝑓2, 𝑓1 ◦ 𝑓2, 𝑓2 ◦ 𝑓1} → 𝑓1 ◦ 𝑓1 CMP 0.01% 0.1326 0.6867
𝑓1 ◦ 𝑓2 → 𝑓1 ◦ 𝑓1 POOD 0.00% 0.1671 0.4538
𝑓2 ◦ 𝑓2 → 𝑓1 ◦ 𝑓1 OOD 0.00% 0.2997 0.2947

Findings. Figure 3 illustrates the performance of the full chain under different distribution discrepan-
cies computed by task generalize complexities (normalized between 0 and 1) in Definition 5.1. We can
observe that, in general, the effectiveness of CoT reasoning decreases when distribution discrepancy
increases. For the instance shown in Table 1, from in-distribution to composition, POOD, and OOD, the
exact match decreases from 1 to 0.01, 0, and 0, and the edit distance increases from 0 to 0.13, 0.17
when tested on data with transformation 𝑓1 ◦ 𝑓1. Apart from ID, LLMs cannot produce a correct full
chain in most cases, while they can produce correct CoT reasoning when exposed to some composition
and POOD conditions by accident. As shown in Table 2, from 𝑓1 ◦ 𝑓2 to 𝑓2 ◦ 𝑓2, the LLMs can correctly
answer 0.1% of questions. A close examination reveals that it is a coincidence, e.g., the query element
is A, N, A, N, which happened to produce the same result for the two operations detailed in the
Appendix D.1. When further analysis is performed by breaking the full chain into reasoning steps
and answers, we observe strong consistency between the reasoning steps and answers. For example,
under the composition generalization setting, the reasoning steps are entirely correct on test data
distribution 𝑓1 ◦ 𝑓1 and 𝑓2 ◦ 𝑓2, but with wrong answers. Probe these insistent cases in Appendix D.1,
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we can find that when a novel transformation (say 𝑓1 ◦ 𝑓1) is present, LLMs try to generalize the
reasoning paths based on the most similar ones (i.e., 𝑓1 ◦ 𝑓2) seen during training, which leads to
correct reasoning paths, yet incorrect answer, which echo the example in the introduction. Similarly,
generalization from 𝑓1 ◦ 𝑓2 to 𝑓2 ◦ 𝑓1 or vice versa allows LLMs to produce correct answers that are
attributed to the commutative property between the two orthogonal transformations with unfaithful
reasoning paths. Collectively, the above results indicate that the CoT reasoning fails to generalize to
novel transformations, not even to novel composition transforms. Rather than demonstrating a true
understanding of text, CoT reasoning under task transformations appears to reflect a replication of
patterns learned during training.

Table 2 | Evaluation on different components in CoT reasoning on transformation generalization. CoT
reasoning shows inconsistency with the reasoning steps and answers.

Transformation (Train → Test) Exact Match Edit Distance

Reason Answer Full Chain Reason Answer Full Chain

{ 𝑓1 ◦ 𝑓1, 𝑓1 ◦ 𝑓2, 𝑓2 ◦ 𝑓1} → 𝑓2 ◦ 𝑓2 100.00% 0.01% 0.01% 0.000 0.481 0.133
{ 𝑓1 ◦ 𝑓2, 𝑓2 ◦ 𝑓1, 𝑓2 ◦ 𝑓2} → 𝑓1 ◦ 𝑓1 100.00% 0.01% 0.01% 0.000 0.481 0.133
𝑓1 ◦ 𝑓2 → 𝑓2 ◦ 𝑓1 0.00% 100.00% 0.00% 0.373 0.000 0.167
𝑓2 ◦ 𝑓1 → 𝑓1 ◦ 𝑓2 0.00% 100.00% 0.00% 0.373 0.000 0.167
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Figure 4 | Performance on unseen transformation
using SFT in various levels of distribution shift. In-
troducing a small amount of unseen data helps CoT
reasoning to generalize across different scenarios.

Experiment settings. To further probe when
CoT reasoning can generalize to unseen trans-
formations, we conduct supervised fine-tuning
(SFT) on a small portion 𝜆 of unseen data. In
this way, we can decrease the distribution dis-
crepancy between the training and test sets,
which might help LLMs to generalize to test
queries.

Findings. As shown in Figure 4, we can find
that generally a very small portion (𝜆 = 1.5𝑒−4)
of data can make the model quickly generalize
to unseen transformations. The less discrep-
ancy between the training and testing data, the
quicker the model can generalize. This indicates
that a similar pattern appears in the training
data, helping LLMs to generalize to the test
dataset.

5.2. Element Generalization

Element generalization is another critical factor
to consider when LLMs try to generalize to new
tasks.

Experiment settings. Similar to transformation generalization, we fix other factors and consider
three progressive distribution shifts for elements: ID, CMP, and OOD, as shown in Figure 2. It is
noted that in composition, we test if CoT reasoning can be generalized to novel combinations when
seeing all the basic atoms in the elements, e.g., (A,B,C,D) → (B,C,D,A). Based on the atom order
in combination (can be measured by edit distance 𝑛), the CMP can be further developed. While for
OOD, atoms that constitute the elements are totally unseen during the training.
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Figure 5 | Element generalization results on various
scenarios and relations.

Findings. Similar to transformation generaliza-
tion, the performances degrade sharply when
facing the distribution shift consistently across
all transformations, as shown in Figure 5. From
ID to CMP and OOD, the exact match decreases
from 1.0 to 0 and 0, for all cases. Most strik-
ingly, the BLEU score is 0 when transferred to
𝑓1 and 𝑓2 transformations. A failure case in
Appendix D.1 shows that the models cannot re-
spond to any words when novel elements are
present. We further explore when CoT reason-
ing can generalize to novel elements by conduct-
ing SFT. The results are summarized in Figure 6.
We evaluate the performance under three exact
matches for the full chain under three scenarios,
CMP based on the edit distance n. The result
is similar to SFT on transformation. The per-
formance increases rapidly when presented with similar (a small 𝑛) examples in the training data.
Interestingly, the exact match rate for CoT reasoning aligns with the lower bound of performance
when 𝑛 = 3, which might suggest the generalization of CoT reasoning on novel elements is very
limited, even SFT on the downstream task. When we further analyze the exact match of reasoning,
answer, and token during the training for 𝑛 = 3, as summarized in Figure 6b. We find that there is a
mismatch of accuracy between the answer and the reasoning step during the training process, which
somehow might provide an explanation regarding why CoT reasoning is inconsistent in some cases.
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(a) Performance on unseen element via SFT in various CMP
scenarios.
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(b) Evaluation of CoT reasoning in SFT.

Figure 6 | SFT performances for element generalization. SFT helps to generalize to novel elements.

6. Length Generalization

Length generalization examines how CoT reasoning degrades when models encounter test cases that
differ in length from their training distribution. The difference in length could be introduced from the
text space or the reasoning space of the problem. Therefore, we decompose length generalization into
two complementary aspects: text length generalization and reasoning step generalization. Guided by

10



Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens

instinct, we first propose to measure the length discrepancy.

Length Extrapolation Bound. We establish a power-law relationship for length extrapolation:

Proposition 6.1 (Length Extrapolation Gaussian Degradation). For a model trained on chain-of-thought
sequences of fixed length 𝐿train, the generalization error at test length 𝐿 follows a Gaussian distribution:

E(𝐿) = E0 + (1 − E0) ·
(
1 − exp

(
− (𝐿 − 𝐿train )2

2𝜎2

))
(13)

where E0 is the in-distribution error at 𝐿 = 𝐿train, 𝜎 is the length generalization width parameter, and 𝐿
is the test sequence length

The proof is provided in Appendix A.3.

Table 3 | Evaluation for text length generalization.

Length
Exact Match (%) Edit Distance BLEU Score

Full Chain Reason Answer Full Chain Reason Answer Full Chain Reason Answer

2 0.00% 0.00% 0.00% 0.3772 0.4969 0.5000 0.4214 0.1186 0.0000
3 0.00% 0.00% 0.00% 0.2221 0.3203 0.2540 0.5471 0.1519 0.0000
4 100.00% 100.00% 100.00% 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
5 0.00% 0.00% 0.00% 0.1818 0.2667 0.2000 0.6220 0.1958 0.2688
6 0.00% 0.00% 0.00% 0.3294 0.4816 0.3337 0.4763 0.1174 0.2077

6.1. Text Length Generalization

Text length generalization evaluates how CoT performance varies when the input text length (i.e.,
the element length 𝑙) differs from training examples. Considering the way LLMs process long text,
this aspect is crucial because real-world problems often involve varying degrees of complexity that
manifest as differences in problem statement length, context size, or information density.
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Figure 7 | Performance of text length generalization
across various padding strategies. Group strategies
contribute to length generalization.

Experiment settings. We pre-train LLMs on
the dataset with text length merely on 𝑙 = 4
while fixing other factors and evaluate the per-
formance on a variety of lengths. We consider
three different padding strategies during the
pre-training: (i) None: LLMs do not use any
padding. (ii) Padding: We pad LLM to the max
length of the context window. (iii) Group: We
group the text and truncate it into segments
with a maximum length.

Findings. As illustrated in the Table 3, the CoT
reasoning failed to directly generate two test
cases even though those lengths present a mild
distribution shift. Further, the performance de-
clines as the length discrepancy increases shown
in Figure 7. For instance, from data with 𝑙 = 4
to those with 𝑙 = 3 or 𝑙 = 5, the BLEU score
decreases from 1 to 0.55 and 0.62. Examples
in Appendix D.1 indicate that LLMs attempt to
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produce CoT reasoning with the same length as the training data by adding or removing tokens
in the reasoning chains. The efficacy of CoT reasoning length generalization deteriorates as the
discrepancy increases. Moreover, we consider using a different padding strategy to decrease the
divergence between the training data and test cases. We found that padding to the max length doesn’t
contribute to length generalization. However, the performance increases when we replace the padding
with text by using the group strategy, which indicates its effectiveness.

6.2. Reasoning Step Generalization

The reasoning step generalization investigates whether models can extrapolate to reasoning chains
requiring different steps 𝑘 from those observed during training. which is a popular setting in multi-step
reasoning tasks.

Experiment settings. Similar to text length generalization, we first pre-train the LLM with reasoning
step 𝑘 = 2, and evaluate on data with reasoning step 𝑘 = 1 or 𝑘 = 3.
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(b) Reasoning step. From k=2 to k=3

Figure 8 | Test performance for reasoning-step generalization across varying training data compositions.
Performance varies systematically with changes in the distribution of training data components.

Findings. As showcased in Figure 8, CoT reasoning cannot generalize across data requiring different
reasoning steps, indicating the failure of generalization. Then, we try to decrease the distribution
discrepancy introduced by gradually increasing the ratio of unseen data while keeping the dataset
size the same when pre-training the model. And then, we evaluate the performance on two datasets.
As we can observe, the performance on the target dataset increases along with the ratio. At the
same time, the LLMs can not generalize to the original training dataset because of the small amount
of training data. The trend is similar when testing different-step generalization, which follows the
intuition and validates our hypothesis directly.

7. Format Generalization

Format generalization assesses the robustness of CoT reasoning to surface-level variations in test
queries. This dimension is especially crucial for determining whether models have internalized
flexible, transferable reasoning strategies or remain reliant on the specific templates and phrasings
encountered during training.
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Format Alignment Score. We introduce a metric for measuring prompt similarity:

Definition 7.1 (Format Alignment Score). For training prompt distribution 𝑃𝑡𝑟𝑎𝑖𝑛 and test prompt 𝑝𝑡𝑒𝑠𝑡:

PAS(𝑝𝑡𝑒𝑠𝑡) = max
𝑝∈𝑃𝑡𝑟𝑎𝑖𝑛

cos(𝜙(𝑝), 𝜙(𝑝𝑡𝑒𝑠𝑡)) (14)

where 𝜙 is a prompt embedding function.
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Figure 9 | Performance of format generalization. Testing performance varies with different noise
levels and areas where the noise is applied.

Experiment settings. To systematically probe this, we introduce four distinct perturbation modes to
simulate scenario in real-world: (i) insertion, where a noise token is inserted before each original
token; (ii) deletion: it deletes the original token; (iii) modification: it replaces the original token with
a noise token; and (iv) hybrid mode: it combines multiple perturbations. Each mode is applied for
tokens with probabilities 𝑝, enabling us to quantify the model’s resilience to increasing degrees of
prompt distribution shift.

Findings. As shown in Figure 9a, we found that generally CoT reasoning can be easily affected by
the format changes. No matter insertion, deletion, modifications, or hybrid mode, it creates a format
discrepancy that affects the correctness. Among them, the deletion slightly affects the performance.
While the insertions are relatively highly influential on the results. We further divide the query into
several sections: elements, transformations, and prompt tokens. As shown in Figure 9b, we found
that the elements and transformation play an important role in the format, whereas the changes to
other tokens rarely affect the results.

8. Temperature and Model Size

Temperature and model size generalization explores how variations in sampling temperature and
model capacity can influence the stability and robustness of CoT reasoning. For the sake of rigorous
evaluation, we further investigate whether different choices of temperatures and model sizes may
significantly affect our results.

Experiment settings. We explore the impact of different temperatures on the validity of the presented
results. We adopt the same setting in the transformation generalization.
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Findings. As illustrated in Figure 10a, LLMs tend to generate consistent and reliable CoT reasoning
across a broad range of temperature settings (e.g., from 1e-5 up to 1), provided the values remain
within a suitable range. This stability is maintained even when the models are evaluated under a
variety of distribution shifts.
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Figure 10 | Temperature and model size. The findings hold under different temperatures and model
sizes.

Experiment settings. We further examine the influence of model size by employing the same
experimental configuration as used in the novel relation SFT study. In particular, we first pretrain
models of different sizes using the transformation 𝑓1 ◦ 𝑓1, and subsequently perform SFT on 𝑓2 ◦ 𝑓2
while varying the SFT ratios.

Finding. Fig. 10b shows the accuracy of models with different sizes using different SFT ratios, which
closely matches the result of our default model size across all evaluated settings and configurations.

9. Discussion and Implication

Our investigation, conducted through the controlled environment of DataAlchemy, reveals that
the apparent reasoning prowess of Chain-of-Thought (CoT) is largely a brittle mirage. The findings
across task, length, and format generalization experiments converge on a conclusion: CoT is not
a mechanism for genuine logical inference but rather a sophisticated form of structured pattern
matching, fundamentally bounded by the data distribution seen during training. When pushed
even slightly beyond this distribution, its performance degrades significantly, exposing the superficial
nature of the “reasoning” it produces.

While our experiments utilized models trained from scratch in a controlled environment, the
principles uncovered are extensible to large-scale pre-trained models. We summarize the implications
for practitioners as follows.

Guard Against Over-reliance and False Confidence. CoT should not be treated as a “plug-and-
play” module for robust reasoning, especially in high-stakes domains like medicine, finance, or legal
analysis. The ability of LLMs to produce “fluent nonsense”—plausible but logically flawed reasoning
chains—can be more deceptive and damaging than an outright incorrect answer, as it projects a false
aura of dependability. Sufficient auditing from domain experts is indispensable.
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Prioritize Out-of-Distribution (OOD) Testing. Standard validation practices, where the test set
closely mirrors the training set, are insufficient to gauge the true robustness of a CoT-enabled system.
Practitioners must implement rigorous adversarial and OOD testing that systematically probes for
vulnerabilities across task, length, and format variations.

Recognize Fine-Tuning as a Patch, Not a Panacea. Our results show that Supervised Fine-
Tuning (SFT) can quickly “patch” a model’s performance on a new, specific data distribution. However,
this should not be mistaken for achieving true generalization. It simply expands the model’s “in-
distribution” bubble slightly. Relying on SFT to fix every OOD failure is an unsustainable and reactive
strategy that fails to address the core issue: the model’s lack of abstract reasoning capability.

10. Conclusion

In this paper, we critically examine the COT reasoning of LLMs through the lens of data distribution,
revealing that the perceived structured reasoning capability largely arises from inductive biases shaped
by in-distribution training data. We propose a controlled environment, DataAlchemy, allowing
systematic probing of CoT reasoning along three crucial dimensions: task structure, reasoning length,
and query format. Empirical findings consistently demonstrate that CoT reasoning effectively repro-
duces reasoning patterns closely aligned with training distributions but suffers significant degradation
when faced with distributional deviations. Such observations reveal the inherent brittleness and
superficiality of current CoT reasoning capabilities. We provide insights that emphasize real-world
implications for both practitioners and researchers.
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A. Proof of Theorems

A.1. Proof of CoT Generalization Bound

Proof. Let 𝑓𝜃 be a model trained on samples from the distributionDtrain using a loss function ℓ( 𝑓𝜃(𝑥), 𝑦)
that is Λ-Lipschitz and bounded. The expected test risk is given by

𝑅test( 𝑓𝜃) = 𝔼(𝑥,𝑦)∼Dtest [ℓ( 𝑓𝜃(𝑥), 𝑦)] . (15)

We can decompose the test risk as

𝑅test( 𝑓𝜃) = 𝑅train( 𝑓𝜃) + (𝑅test( 𝑓𝜃) − 𝑅train( 𝑓𝜃)) . (16)

To bound the discrepancy between 𝑅test and 𝑅train, we invoke a standard result from statistical
learning theory. Given that ℓ is Λ-Lipschitz and the discrepancy measure Δ(Dtrain,Dtest) is an integral
probability metric (e.g., Wasserstein-1 distance), we have

|𝑅test( 𝑓𝜃) − 𝑅train( 𝑓𝜃) | ≤ Λ · Δ(Dtrain,Dtest). (17)

Therefore, the test risk satisfies

𝑅test( 𝑓𝜃) ≤ 𝑅train( 𝑓𝜃) + Λ · Δ(Dtrain,Dtest). (18)

We next account for the generalization gap between the empirical training risk 𝑅train( 𝑓𝜃) and the
expected training risk 𝑅train( 𝑓𝜃). By applying a concentration inequality (e.g., Hoeffding’s inequality),
with probability at least 1 − 𝛿, we have

𝑅train( 𝑓𝜃) ≤ 𝑅train( 𝑓𝜃) + O
(√︂

log(1/𝛿)
𝑛

)
, (19)

where 𝑛 is the number of training samples.

Combining the above, we obtain that with high probability,

𝑅test( 𝑓𝜃) ≤ 𝑅train( 𝑓𝜃) + Λ · Δ(Dtrain,Dtest) + O
(√︂

log(1/𝛿)
𝑛

)
. (20)

This concludes the proof. □
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A.2. Proof of Task Generalization Failure Threshold

We establish the exponential decay bound through a probabilistic analysis of reasoning failure modes
in the presence of task generalization complexity.

Let Ω denote the sample space of all possible reasoning configurations, and let 𝐶 ∈ Ω represent a
specific configuration. We define the following events: 𝐴𝑖 as the event that element 𝑎𝑖 is novel, i.e.,
𝑎𝑖 ∉ E 𝑖

train; 𝐹 𝑗 as the event that transformation 𝑓 𝑗 is novel, i.e., 𝑓 𝑗 ∉ Ftrain; and Q as the event that the
transformation sequence ( 𝑓1, 𝑓2, . . . , 𝑓𝑘) is novel, i.e., ( 𝑓1, 𝑓2, . . . , 𝑓𝑘) ∉ Ptrain.

Here we make the assumption that the reasoning failures induced by novel arguments, functions,
and patterns contribute independently to the overall failure probability and hence we model the
success probability as a product of component-wise success rates:

𝑃(correct|𝐶) = 𝑃0

𝑚∏
𝑖=1

𝜌
𝕀[𝐴𝑖 ]
𝑎

𝑛∏
𝑗=1

𝜌
𝕀[𝐹 𝑗 ]
𝑓

𝜌
𝕀[Q]
𝑝 𝜌

𝐶𝑇
𝑐

where 𝑃0 ∈ (0, 1] represents the baseline success probability when all components are within the
training distribution, and 𝜌𝑎, 𝜌 𝑓 , 𝜌𝑝, 𝜌𝑐 ∈ (0, 1) are the degradation factors associated with novel
arguments, functions, patterns, and task-specific complexity, respectively.

ln 𝑃(correct | 𝐶) = ln 𝑃0 +
𝑚∑︁
𝑖=1

𝕀[𝐴𝑖] ln 𝜌𝑎 +
𝑛∑︁
𝑗=1

𝕀[𝐹 𝑗] ln 𝜌 𝑓 + 𝕀[Q] ln 𝜌𝑝 + 𝐶𝑇 ln 𝜌𝑐 (21)

For notational convenience, we define the positive constants:

𝜉𝑎 := − ln 𝜌𝑎 > 0, 𝜉 𝑓 := − ln 𝜌 𝑓 > 0, 𝜉𝑝 := − ln 𝜌𝑝 > 0, 𝜉𝑐 := − ln 𝜌𝑐 > 0

hence we have:

ln 𝑃(correct|𝐶) = ln 𝑃0 − 𝜉𝑎

𝑚∑︁
𝑖=1

𝕀[𝐴𝑖] − 𝜉 𝑓

𝑛∑︁
𝑗=1

𝕀[𝐹 𝑗] − 𝜉𝑝𝕀[Q] − 𝜉𝑐𝐶𝑇 (22)

Lemma: Relationship to TGC. The expression in equation above can be bounded in terms of TGC(𝐶)
as follows:

ln 𝑃(correct|𝐶) ≤ ln 𝑃0 − 𝛿 · TGC(𝐶) (23)

where 𝛿 = min( 𝜉𝑎
𝛼
,
𝜉 𝑓
𝛽
,
𝜉𝑝
𝛾
, 𝜉𝑐) > 0.

Proof of Lemma: From the definition of TGC(𝐶) in Eq. (11), we have:

TGC(𝐶) = 𝛼

𝑚∑︁
𝑖=1

𝕀[𝐴𝑖] + 𝛽

𝑛∑︁
𝑗=1

𝕀[𝐹 𝑗] + 𝛾𝕀[Q] + 𝐶𝑇 (24)

By the definition of 𝛿, each term in Eq. (22) satisfies:

𝜉𝑎

𝑚∑︁
𝑖=1

𝕀[𝐴𝑖] ≥ 𝛿𝛼

𝑚∑︁
𝑖=1

𝕀[𝐴𝑖] (25)

𝜉 𝑓

𝑛∑︁
𝑗=1

𝕀[𝐹 𝑗] ≥ 𝛿𝛽

𝑛∑︁
𝑗=1

𝕀[𝐹 𝑗] (26)
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𝜉𝑝𝕀[Q] ≥ 𝛿𝛾𝕀[Q] (27)

𝜉𝑐𝐶𝑇 ≥ 𝛿𝐶𝑇 (28)

Summing these inequalities establishes Eq. (23).

We now define the threshold 𝜏 := ln 𝑃0
𝛿

. From Eq. (23), when TGC(𝐶) > 𝜏, we have:

ln 𝑃(correct | 𝐶) ≤ ln 𝑃0 − 𝛿 · TGC(𝐶) (29)
= 𝛿(𝜏 − TGC(𝐶)) (30)
= −𝛿(TGC(𝐶) − 𝜏) (31)

Exponentiating both sides yields the desired bound: 𝑃(correct | 𝐶) ≤ 𝑒−𝛿(TGC(𝐶)−𝜏)

A.3. Proof of Length Extrapolation Bound

Proof. Consider a transformer model 𝑓𝜃 processing sequences of length 𝐿. The model implicitly learns
position-dependent representations through positional encodings PE(𝑖) ∈ ℝ𝑑 for position 𝑖 ∈ {1, . . . , 𝐿}

and attention patterns 𝐴𝑖 𝑗 = softmax
(
𝑄𝑖𝐾

𝑇
𝑗√
𝑑

)
.

During training on fixed length 𝐿train, the model learns a specific distribution:

𝑝train(h) = 𝑝(h | 𝐿 = 𝐿train) (32)

where h = {ℎ1, . . . , ℎ𝐿} represents hidden states.

For sequences of length 𝐿 ≠ 𝐿train, we encounter distribution shift in two forms: (1) positional
encoding mismatch, where the model has never seen positions 𝑖 > 𝐿train if 𝐿 > 𝐿train, and (2) attention
pattern disruption, where the learned attention patterns are calibrated for length 𝐿train.

The KL divergence between training and test distributions can be bounded:

𝐷𝐾𝐿(𝑝test∥𝑝train) ∝ |𝐿 − 𝐿train |2 (33)

This quadratic relationship arises from linear accumulation of positional encoding errors and
quadratic growth in attention pattern misalignment due to pairwise interactions.

Let E(𝐿) be the prediction error at length 𝐿. We decompose it as:

E(𝐿) = Einherent(𝐿) + Eshift(𝐿) (34)

where Einherent(𝐿) = E0 is the inherent model error (constant) and Eshift(𝐿) is the error due to
distribution shift.

The distribution shift error follows from the Central Limit Theorem. As the error accumulates
over sequence positions, the total shift error converges to:

Eshift(𝐿) = (1 − E0) ·
(
1 − exp

(
− (𝐿 − 𝐿train)2

2𝜎2

))
(35)

This form ensures that Eshift(𝐿train) = 0 (no shift at training length) and lim |𝐿−𝐿train |→∞ Eshift(𝐿) =
1 − E0 (maximum error bounded by 1).
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The width parameter 𝜎 depends on:

𝜎 = 𝜎0 ·

√︄
𝑑

𝐿train
(36)

where 𝜎0 is a model-specific constant, 𝑑 is the model dimension, and the
√︁
𝑑/𝐿train factor captures the

concentration of measure in high dimensions.

Therefore, the total error follows:

E(𝐿) = E0 + (1 − E0) ·
(
1 − exp

(
− (𝐿 − 𝐿train)2

2𝜎2

))
(37)

This Gaussian form naturally emerges from the accumulation of position-dependent errors and
matches the experimental observation of near-zero error at 𝐿 = 𝐿train with symmetric increase in both
directions. □

B. Experiment Details

We fine-tune a GPT-2–style decoder-only Transformer with a vocabulary size of 10,000. The model
supports a maximum context length of 256 tokens. The hidden dimension is 32, the number of
Transformer layers is 4, and the number of attention heads is 4. Each block includes a GELU-activated
feed-forward sublayer with width 4 × 𝑑model.

The model is trained using the AdamW optimiser in mixed precision (FP16). The default learning
rate is 3 × 10−3, and the schedule follows a cosine decay with a 10% warm-up ratio. Training is
conducted for 10 epochs, using a batch size of 1024. A weight decay of 0.01 is applied, and gradient
norms are clipped at 1.0.

C. Illustration of Datasets

Below are the examples of transformation 𝑓1 and 𝑓2:

Transformation[F1]: A A F Q [F1] <answer> N N S D
Transformation[F2]: A A L P [F2] <answer> A L P A

aside from single transformation, we can composite transformations arbitrarily:

Transformation[F1F2]: A C I A [F1] [F2] <think>
N P V N [F2] <answer>
P V N N

Transformation[F2F2]: N O V S [F2] [F2] <think>
O V S N [F2] <answer>
V S N O

we use exact match, edit distance and BELU score to measure the discrepancy between generated
tokens and the labels. For more than one transformation examples, we can further measure the
discrepancy for reasoning and answering seperately.
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D. Additional Experimental Results

D.1. Additional Qualitative Analysis

D.1.1. Orthognal Transformation Caused Coincidence

The following case shows that even if the transformation is different, the model that trained on
transformation 𝑓2 ◦ 𝑓1 can still provide correct answer through incorrect reasoning:

Prompt : ’A A A B [F1] [F2] <answer>’
Generated : ’ B A A A [F1] <answer> O N N N’
Expected : ’O N N N’

D.1.2. Correct reasoning but failed in final answer

The following case shows that the model pretrained on the union of three transformation 𝑓1 ◦ 𝑓2, 𝑓2 ◦
𝑓1, 𝑓2 ◦ 𝑓2 and test on 𝑓1 ◦ 𝑓1

Prompt : ’A A A D [R1] [R1] <think >’
Generated : ’N N N Q [R1] <answer> N N Q N’
Expected : ’N N N Q [R1] <answer> A A A D ’

D.1.3. Failure to generalize to novel element

The following case shows that the model trained on element set 𝑎𝑖 ∈ [𝐴, 𝑀] can not generalize to
unseen elements such as N or O

Prompt : ’N N N O [F1] [F1] <think >’
Generated : ’R V Q S [F1] <answer> E I D F ’
Expected : ’A A A B [F1] <answer> N N N O’

D.1.4. LLM reproduces CoT reasoning at seen lengths

The following case shows that model trained under 𝑓1 ◦ 𝑓1 tried to reproduce the length in training
data by adding tokens in the reason chain even prompted with seen transformation 𝑓1

Prompt : ’A A B D [ f1 ] <answer>’
Generated : ’N O A Z N N O Q [ f1 ]

<answer> A A B D ’
Expected : ’N N O Q’
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