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Abstract
Traditionally, the Web has served as a platform for connecting information, re-
sources, and people, enabling human–machine interaction through activities such
as searching, browsing, and performing tasks that are informational, transactional,
or communicational. This original Web was fundamentally about connection, link-
ing users to content, services, and one another.
The emergence of AI agents powered by large language models (LLMs) marks a
pivotal shift toward the Agentic Web, a new phase of the internet defined by au-
tonomous, goal-driven interactions. In this paradigm, agents interact directly with
one another to plan, coordinate, and execute complex tasks on behalf of users. This
transition from human-driven to machine-to-machine interaction allows intent to
be delegated, relieving users from routine digital operations and enabling a more
interactive, automated web experience.
In this paper, we present a structured framework for understanding and building
the Agentic Web. We trace its evolution from the PC and Mobile Web eras and
identify the core technological foundations that support this shift. Central to our
framework is a conceptual model consisting of three key dimensions: intelligence,
interaction, and economics. These dimensions collectively enable the capabilities of
AI agents, such as retrieval, recommendation, planning, and collaboration.
We analyze the architectural and infrastructural challenges involved in creating scal-
able agentic systems, including communication protocols, orchestration strategies,
and emerging paradigms such as the Agent Attention Economy. We conclude by
discussing the potential applications, societal risks, and governance issues posed by
agentic systems, and outline research directions for developing open, secure, and in-
telligent ecosystems shaped by both human intent and autonomous agent behavior.
A continuously updated collection of relevant studies for agentic web is available at:
https://github.com/SafeRL-Lab/agentic-web.
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1 Introduction

The Web has long served as a platform for connectivity (Berners-Lee, 1999; Castells, 2002), link-
ing people to information, services, and one another. In its early phases, the Web enabled hu-
man–machine interaction for tasks that were informational (e.g., reading news), transactional (e.g.,
online shopping), or communicational (e.g., messaging and email). Intelligence in this era resided in
the tools that helped users access, filter, and interact with content: search engines (Brin and Page,
1998), recommender systems (Wang et al., 2006; Koren et al., 2009; Zhao et al., 2013; Zhang et al.,
2013), and user interfaces (Deaton, 2003). However, the user was always the active party, manually
navigating between pages, initiating actions, and making decisions at every step.

For the last few years, a shift has been taking place: the emergence of AI agents powered by large
language models (LLMs) (Yang et al., 2023a; Kapoor et al., 2024). These AI agents are software
entities capable of perceiving their environment, reasoning, and taking actions autonomously to
achieve goals set by the user. With the integration of perception and execution components, LLMs
are no longer limited to responding to prompts: they can act through agents that plan, remember,
and interact across digital systems (Wang et al., 2023). Importantly, these agents are not constrained
to single-turn interactions but can carry out complex, long-horizon tasks. Moreover, multiple agents
can be orchestrated to work collaboratively on sophisticated objectives (Qian et al., 2024; Yang
et al., 2025e; Gottweis et al., 2025; Sapkota et al., 2025).

The transformation toward agent-based systems is driven by two powerful forces. First, AI assistants
are becoming increasingly capable of handling complex, multi-step tasks across domains such as
research (Ren et al., 2025; Huang et al., 2025b; Schmidgall et al., 2025), software development (Hong
et al., 2023; Xia et al., 2024), customer support (Rome et al., 2024), and personal productivity (Li
et al., 2024b). These agents are no longer reactive tools responding to isolated prompts, but proactive
collaborators that plan, reason, and execute actions over time. Second, users are becoming more
comfortable delegating not just individual queries but entire workflows (sometimes spanning minutes,
hours, or even days) to such agents (Guo et al., 2024; Hong et al., 2024). This growing trust in agent
autonomy introduces new expectations and necessitates new interfaces, leading to a fundamental
shift in how the Web is used and experienced.

This evolution lays the foundation for what we formally define as the Agentic Web. In this emerging
paradigm, the Web is no longer merely a platform for human interaction with content and services,
but a dynamic environment in which autonomous agents act, communicate, and collaborate across
services and domains on behalf of their users (Petrova et al., 2025; Lù et al., 2025; Chaffer, 2025).
For instance, the ChatGPT Agent released in July 2025 enables AI agents to act on behalf of users
by performing tasks such as planning and purchasing ingredients for a Japanese breakfast or booking
reservations (OpenAI, 2025).

Definition: Agentic Web

The Agentic Web is a distributed, interactive internet ecosystem in which autonomous
software agents, often powered by large language models, act as autonomous intermediaries
that persistently plan, coordinate, and execute goal-directed tasks. In this paradigm, web
resources and services are agent-accessible, enabling continuous agent-to-agent interaction,
dynamic information exchange, and value creation alongside traditional human-web interac-
tions.

Unlike the traditional Web, which serves primarily to connect documents, services, and users for
informational, transactional, and communicational purposes, the Agentic Web enables intelligent,
goal-directed interaction. While the core functions of accessing information, completing transactions,
and facilitating communication remain, they are now mediated by autonomous agents capable of
reasoning, planning, and acting on behalf of users.

The defining shift is from short-term, one-off interactions between users and static content, to
sustained, long-term interactions involving sequences of coordinated actions across multiple services,
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Action
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Report Result

Figure 1: Illustration of the Agentic Web process cycle. The cycle begins with a user submitting a
task request. The system then plans the task and identifies appropriate agents and tools. Recruited
agents engage in inter-agent discussions, collaborate using their unique capabilities and resources,
and execute the task. The results are reported back to the user, completing the cycle. The Agentic
Web facilitates discovery, coordination, and cooperation among agents to fulfill user goals.

webpages, and domains. In the Agentic Web, the end users remain human, while the mid users (those
who actively navigate, process, generate content, and interact with the environment) are AI agents.
These agents interpret and carry out user intent by interacting with a distributed network of other
agents and services.

A user query is no longer a simple request for isolated information, but a delegation of a complex
task, which may involve negotiation, planning, and adaptation over multiple steps. With the support
of structured or open-ended communication protocols (Yang et al., 2025d), these agents collaborate
across domains to complete workflows and deliver results that reflect high-level user goals (Lin et al.,
2024b; Yang et al., 2025c). This agent-mediated process is illustrated in Figure 1, which depicts a
typical task lifecycle from user intent to multi-agent execution and result delivery.

In this new paradigm, webpages evolve into active software agents, characterised not just by their
static content but by their capabilities, interfaces, and roles within broader task structures. Hy-
perlinks, which once represented passive navigational paths, now act as coordination channels that
facilitate inter-agent communication, dynamic task decomposition, and cooperative execution. The
Agentic Web, therefore, transforms the Web from a network of linked documents into an ecosystem
of interactive, intelligent agents.

Beyond changes in interaction models, the Agentic Web also redefines how information is stored,
linked, and transmitted. In the early Personal Computer (PC) era, web content was mostly in-
stitutionally produced, with relatively small data volumes that users accessed primarily through
keyword search. As the mobile internet expanded, User-Generated Content (UGC) exploded, in-
creasing the scale and diversity of information. This shift raised the cost of search and gave rise to
recommendation systems as the dominant paradigm for matching information supply and demand.

With the emergence of LLMs and agentic systems, the underlying logic of information flows under-
goes another major transformation. Now, much of the world’s knowledge is not only stored on static
web pages but also embedded in the parameters of LLMs themselves. Agents can access this learned
knowledge directly, link it with real-time retrieval, and autonomously interact with other agents or
online resources.
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This enables agents to proactively recommend relevant content, going beyond traditional search
engines, and to perform deeper and more personalized information retrieval. Moreover, agents can
execute transactions and complete consumption processes on behalf of users, introducing a new
production–consumption dynamic in which information and services may be created primarily for
agents rather than humans. In some cases, web content may not be authored directly by humans
at all but generated by agents in real time, leading to an ecosystem where agents both produce and
consume knowledge.

Example (Transactional)

In the Traditional Web, a transactional task such as booking a flight is manually performed
by the user. The process typically involves visiting travel websites, entering search queries,
adjusting filters, comparing ticket options across multiple tabs or platforms, and finalising the
booking decision. While the Web may offer assistance through features such as recommendation
engines, user interfaces, and search algorithms, the task execution remains user-driven and
requires active, step-by-step involvement.
In the Agentic Web, the same task is initiated through high-level intent delegation. The user
provides a goal-oriented instruction (e.g., “Book a flight to New York next weekend within my
budget”), and an autonomous agent carries out the task on their behalf. The agent autonomously
interacts with services and APIs, queries and parses webpages, refines options based on user
preferences, and completes the booking. It may perform multiple iterations and coordinate with
other agents, requiring no further user intervention.

The above example illustrates the core distinction: the Traditional Web is defined by human-led
interaction over static services, while the Agentic Web enables persistent, intelligent, machine-led
workflows that extend across multiple services and interactions. Figure 2 complements this distinc-
tion by visualizing how user-system interactions have evolved from passive consumption to active
agent delegation across three Web eras.

Example (Informational)

In the Traditional Web, an informational task such as understanding how different large language
models process multimodal inputs requires the user to manually locate whitepapers, extract ar-
chitecture diagrams, search for benchmark results, and assemble the findings into a report. This
involves switching between academic search engines, blog posts, PDF viewers, and spreadsheet
tools.
In the Agentic Web, the same task is delegated to a Deep Research agent (e.g., “Produce a
report comparing how GPT-4o, Gemini, and Claude handle text and image inputs, including
tables and flowcharts”). The agent interprets the query and plans a multi-stage workflow. It
retrieves content from online sources and technical repositories via API calls, browser access,
and the Model Context Protocol (MCP) (Anthropic, 2024b), which enables standardized access
to external tools and structured resources. The agent then parses PDF and HTML documents,
invokes specialized modules for table extraction, diagram generation, and result visualization,
and integrates the outputs into a structured report through multi-step reasoning.

This example illustrates how the Agentic Web extends beyond static content retrieval to complex,
adaptive information processing.

As a result, foundational Web concepts such as PageRank (Page et al., 1999), along with broader
systems including web search (Broder, 2002), recommender systems (Resnick and Varian, 1997),
and computational advertising models (Nelson, 1974), must be reinterpreted. Rather than focusing
solely on static link popularity or historical user interactions, they may increasingly reflect the
dynamic utility, responsiveness, and cooperation potential of agents operating within the network.
Similarly, traditional techniques like web crawlers, once designed to index static content, could
evolve into agent crawlers, autonomous explorers that discover and negotiate with other agents,

6



Agentic Web

Producers

Readers

Producers

Consumers

User

Agent

User

PC Web Era Mobile Web Era Agentic Web Era

Figure 2: Evolution of user-system interaction across three internet eras. In the PC Web Era, users
acted primarily as content consumers with limited interaction. The Mobile Web Era introduced a
bidirectional flow, enabling users to both consume and produce content. In the emerging Agentic
Web Era, tasks are delegated to ai agents, who interact with information networks on their behalf.
The expanding and darkening circles reflect the increasing complexity and volume of information.

indexing not just data but service capabilities, interface affordances, and cooperation histories. The
metadata of webpages becomes richer and more actionable: beyond simple tags or descriptors, agent
metadata may include standardized schemas describing APIs, trust levels, performance benchmarks,
or negotiation protocols. The old idea of web directories or yellow pages, once manually curated
lists of websites categorized by topic, can be reimagined as dynamic agent registries or marketplaces
that index available agents by domain expertise, reputation, and inter-agent compatibility. In such
an agentic environment, search engines could transform into sophisticated orchestrators, not only
retrieving relevant agents but also composing, coordinating, and managing workflows among them to
fulfill complex delegated tasks. Just as PageRank once signaled page authority, future agent ranking
algorithms may factor in cooperation success rates, responsiveness, and the agent’s contribution
to multi-agent workflows. Together, these reinterpretations and shifts pave the way for a new
generation of algorithms and protocols for agent discovery, trust calibration, incentive alignment,
and orchestration (Lin et al., 2024b; Wang et al., 2025a), enabling the Web to operate as an open,
distributed, and continuously evolving collective of collaborative intelligences.

Therefore, it becomes essential to revisit the foundational technologies and modules of the Web
and reinterpret them in the context of the Agentic Web. Core components such as HTTP protocols,
HTML semantics, indexing, search, and recommender systems must be reconsidered through the lens
of agent autonomy and collaboration. Despite the rapid emergence of Agentic AI, there is a noticeable
gap in the current literature in systematically analyzing and redefining these web fundamentals for
an agent-driven future. Bridging this gap is crucial for understanding and shaping the next evolution
of the Internet, which is the goal of this article.

In summary, the key contributions and the structure of this article are outlined as follows. In
Section 2, we review the historical evolution of the Web and offer a forecasting-style analysis to
project the development trajectory of the Agentic Web in the near future. Section 3 introduces
and conceptualizes the Agentic Web as a fundamentally new form of the Web, presenting a three-
dimension model along with a set of research propositions that frame its emerging dynamics. In
Section 4, we delve into the core tasks and enabling techniques of the Agentic Web, covering areas
such as information retrieval, Recommender Systems, agent planning, and multi-agent learning and
coordination. Section 5 explores the evolving system landscape and proposes key design principles
to guide the development of Agentic Web infrastructure. In Section 6, we examine representative
applications of the Agentic Web, including use cases like e-commerce ordering, travel planning,
and enterprise knowledge assistants. Section 7 addresses the associated technical risks, information
security concerns, regulatory challenges, and potential mitigation strategies. Finally, in Section 8
and Section 9, we conclude by summarizing the major themes of the paper and discussing the future
outlook for the continued evolution of the Agentic Web.
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2 Historical Evolution of the Web

In this section, a chronological review of three milestone phases in the evolution of the Web is
conducted: the PC Web Era, the Mobile Web Era, and the Agentic Web Era. This progression is
visualized in Figure 3, which presents a high-level timeline of the Web’s evolution across technological
paradigms and business models.

Each era is characterised by significant shifts in technological paradigms, commercial models, and
user behavior patterns. The PC Web Era was centred around information directories and search
paradigms, with content organized through static web pages that users manually browsed to locate
desired information. Search engines emerged to support efficient retrieval, and keyword-based ad-
vertising systems marked the beginning of the commercial Web. The subsequent Mobile Web Era
introduced a fundamental shift toward recommendation-driven content consumption, where algorith-
mic curation became essential due to the explosion of user-generated content and mobile platform
constraints. Today, the Web is entering the Agentic Web Era, propelled by breakthroughs in foun-
dation models and agent-based paradigms, where intelligent agents coordinate complex tasks and
reshape both technical architecture and commercial logic. Figure 4 illustrates how user attention
flows have evolved across these Web eras, from linear search and ad delivery models, to algorithmic
feed curation, and finally to agent-mediated task execution involving multiple competing services.

2.1 PC Web Era

The PC Web Era represents the foundational stage of the Internet’s evolution, marked by static
content delivery and goal-oriented information retrieval. During this period, the user experience
was shaped by limited interactivity, minimal personalization, and the early commercialization of the
web through keyword-based search and advertising systems.

2.1.1 Static Pages and Search-based Commercial Marketing

The PC Web was dominated by a retrieval paradigm characterized by users relying on active queries
and manual browsing to access information in an era of rapidly expanding digital content. At this
stage, the Web lacked intelligent mechanisms for information dispensing. The content was primarily
presented through static web pages with fixed organizational structures, with limited interactivity
and personalised recommendations. Web platforms like Yellow Pages and Craigslist relied heavily
on manual categorization and predefined navigation to link various types of information. These
websites were typically organized by geography, industry, or service type, mirroring the taxonomy
of printed directories and classified ads to present business listings, personal posts, and product
information.

From the perspective of users, this retrieval paradigm required a strong sense of goal-directed be-
havior. The information-seeking process was linear and static, requiring users to have a clear goal
for their search and to invest time and effort in locating the information they needed by navigat-
ing through hierarchical directories. This simple but inefficient paradigm struggled to meet users’
increasing demand for speed, relevance, and personalization.

As the scale of the Web expanded rapidly, the conventional directory-based paradigm proved inad-
equate to satisfy the growing demand for efficient information retrieval. To address this challenge,
search engines emerged and became a critical turning point in the evolution of the Web. Early
systems relied on basic keyword matching techniques like TF-IDF (Sparck Jones, 1988), which mea-
sured term frequency but struggled with document authority and relevance ranking. Building upon
TF-IDF, more sophisticated probabilistic models such as BM25 (Robertson et al., 2009) were devel-
oped to address issues like document length normalization and term frequency saturation, providing
better text relevance scoring mechanisms. Meanwhile, Latent Semantic Indexing (Deerwester et al.,
1990) introduced a paradigm shift by using singular value decomposition to capture latent seman-
tic relationships between terms and documents, enabling search engines to understand conceptual
similarities beyond exact keyword matches and address issues like synonymy and polysemy.
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Time
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Figure 3: Timeline of Web Evolution. The three eras of web evolution are not strictly distinct. Their
transitions happened gradually, with technologies, features, and business models often overlapping
and coexisting across different periods.

A significant milestone was the PageRank algorithm (Page et al., 1999), which pioneered the con-
cept of “link-based voting” by evaluating the importance and authority of web pages through their
hyperlink structures. In comparison with earlier methods that relied solely on keyword match-
ing, PageRank significantly enhanced the relevance of search results, laid the foundation for search
engines like Google, and greatly increased user reliance on search engines.

Subsequent to this technological breakthrough, search engines integrated advertising mechanisms
based on user intent. Early search advertising systems, such as Google AdWords, matched user
queries with commercial content through sophisticated auction algorithms. The evolution from sim-
ple “pay-your-bid” mechanisms used by early systems like Overture to more sophisticated auction
theories became crucial. Google AdWords implemented the Generalized Second-Price auction al-
gorithm (Edelman et al., 2007), where advertisers bid for keyword placement but pay the price of
the next-highest bidder, creating more stable and efficient bidding behavior than earlier first-price
auction systems.

The introduction of Quality Score further refined this mechanism by balancing bid amounts with
ad relevance, rewarding high-quality advertisements with better positions and lower costs. This
keyword-driven, pay-per-click (PPC) model enhanced ad conversion rates whilst providing sustain-
able revenue streams for search engines, establishing a direct link between web content and com-
mercial marketing and ultimately initiating the commercialization of the Web based on search.

2.2 Mobile Web Era

The transition to the Mobile Web Era was driven by fundamental changes in the Web’s information
landscape that extended beyond the mere adoption of mobile devices.

The most significant driver was the explosive growth in content volume during the late PC Web
era. User-Generated Content proliferated across social platforms, e-commerce sites, and streaming
services, creating massive data flows that traditional search paradigms struggled to navigate effec-
tively. Users found themselves overwhelmed by choice and increasingly unable to discover relevant
content through manual search alone.

This content explosion coincided with a shift in user behavior from intent-driven to discovery-driven
consumption. Rather than approaching the Web with specific queries, users increasingly sought
serendipitous discovery and personalized exploration. Mobile contexts amplified this trend, as users
consumed content in shorter, fragmented sessions while expecting instant, personalized experiences
without active searching.

Recommender Systems, which had already existed during the PC Web era for specific use cases,
thus evolved from auxiliary tools to central architectural components. Mobile platforms introduced
distinct design challenges such as latency constraints, limited screen space, and fragmented user at-
tention. These challenges catalyzed advancements in recommender system architectures, promoting
the development of real-time, context-aware models tailored to mobile interaction patterns.
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PC Web: User Search Ads Ad Auction
Query Result Auction

Mobile Web: User Algorithm Feed Engage
Data Curate Consume

Agentic Web: User Agent
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Figure 4: Attention Flow Evolution Across Web Eras. This diagram illustrates the transition from
the PC Web, where attention follows a linear search-query-ad model, to the Mobile Web, where algo-
rithmic systems curate feeds based on user data, and finally to the Agentic Web, where autonomous
agents interpret user intent and select among competing services to execute tasks. Dashed arrows
in the agentic stage indicate competitive or compositional relationships between services.

2.2.1 Recommender Systems

The progression of Recommender Systems mirrors the broader technological transitions across web
platforms. In the early era of the PC Web, Recommender Systems primarily relied on collaborative
filtering techniques to provide personalized suggestions based on historical user-item interactions.
User-based and item-based k-nearest neighbor models were widely adopted due to their simplicity
and interpretability (Sarwar et al., 2001), while matrix factorization approaches became mainstream
for uncovering latent preferences and item attributes. Although foundational, these methods suffered
from scalability and sparsity challenges, especially as web content and user bases expanded rapidly.
Early solutions like Singular Value Decomposition in latent factor models (Koren et al., 2009) were
instrumental in establishing the core technical underpinnings of modern recommender systems. How-
ever, their static nature and inability to model complex behavior made them increasingly inadequate
in dynamic environments. A critical bridge between traditional methods and modern deep learning
was established through Factorization Machines (Rendle, 2010), which modeled feature interactions
through factorized parameters and enabled efficient computation with sparse data. This approach
addressed the limitation of traditional matrix factorization in handling diverse feature types and
became a foundation for subsequent hybrid architectures.

As user interaction became more real-time and context-rich in the Mobile Web era, significant ad-
vancements in personalization capabilities emerged. Deep learning-based methods became powerful
means of modeling high-dimensional, nonlinear interactions between users and items. Neural col-
laborative filtering (He et al., 2017) combined deep neural networks with matrix factorization to
enhance generalization capabilities. AutoRec (Sedhain et al., 2015) introduced autoencoder-based
collaborative filtering, demonstrating the potential of neural architectures for recommendation tasks.

The evolution toward industrial-scale mobile applications led to breakthrough hybrid architectures
that balanced memorization and generalization. Wide & Deep Learning (Cheng et al., 2016), devel-
oped by Google, combined linear models for memorization with deep neural networks for generaliza-
tion, establishing a paradigm for large-scale recommender systems. Building upon this foundation,
DeepFM (Guo et al., 2017) integrated factorization machines with deep neural networks for click-
through rate prediction, eliminating the need for manual feature engineering while maintaining the
ability to model both low-order and high-order feature interactions. Advanced deep learning architec-
tures further enhanced modeling capabilities for mobile environments. Deep Matrix Factorization
(De Handschutter et al., 2021) extended latent modeling capacity using residual learning, while
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DeepCF (Deng et al., 2019) introduced unified architectures that integrated user/item representa-
tions with content signals. These advancements enabled mobile applications to deliver fine-grained,
real-time personalization across social media, e-commerce, and streaming platforms.

The incorporation of temporal dynamics became crucial for mobile environments where user behav-
ior patterns change rapidly. Sequence-aware models such as GRU4Rec (Hidasi et al., 2016) emerged
to model temporal patterns in user behavior, while contextual bandits addressed the exploration-
exploitation trade-off in real-time recommendation scenarios. The introduction of attention mech-
anisms and Transformer architectures (Vaswani et al., 2017) marked a significant advancement in
sequential recommendation, enabling models to capture long-range dependencies and complex in-
teraction patterns. Contemporary developments have focused on attention-based models and self-
supervised learning approaches optimized for mobile contexts. Transformer-based architectures like
SASRec (Kang and McAuley, 2018) and BERT4Rec (Sun et al., 2019) have demonstrated superior
performance in sequential recommendation tasks by leveraging self-attention mechanisms to model
user behavior sequences. Graph Neural Networks have also emerged as powerful tools for modeling
complex user-item interactions and social relationships (Wang et al., 2019).

2.2.2 Attention Economy

In the Mobile Web Era, Recommender Systems have not only transformed the manner in which users
access information but also significantly impacted commercial patterns. By leveraging user inter-
ests and behavioral data, Recommender Systems enable advertising and e-commerce platforms to
precisely target potential consumers with personalised content. For instance, e-commerce platforms
analyse users’ browsing histories and purchase records to suggest relevant products, thus enhancing
the shopping experience and significantly boosting conversion rates and sales. Similarly, social me-
dia platforms employ Recommender Systems to present engaging content on homepages or feeds,
thereby increasing user retention and interaction.

The advent of Recommender Systems precipitated a substantial evolution in the realm of online
advertising, characterised by enhanced targeting accuracy and the emergence of a behavior-driven
advertising pattern. This paradigm shift has given rise to the so-called attention economy (Falkinger,
2007; Ciampaglia et al., 2015; Davenport and Beck, 2018) where in each user action, such as a click,
scroll, or pause, is considered a valuable data point. These platforms utilise the gathered data to
enhance the delivery of advertisements in terms of format, timing, and frequency, thereby rendering
them more relevant and cost-effective. This behavior-based approach enables advertisers to achieve
higher marketing efficiency at lower costs.

Overall, Recommender Systems have improved both the efficiency and personalization of information
access while emerging as a pivotal force in the commercialization of the Web. Through intelligent
content distribution, they have redefined commercial interactions and consumption patterns. Their
widespread adoption in the Mobile Web Era signals a shift from a supply-demand model to a more
intricate, behavior-driven interaction paradigm between information and commerce.

2.3 Agentic Web Era

The evolution of the Web is undergoing a paradigm shift from a human-centric information retrieval
model to an agent-centric action-oriented framework.

The foundation for this transition was established by breakthroughs in LLMs (OpenAI, 2024b; Dubey
et al., 2024; Guo et al., 2025), which demonstrated unprecedented capabilities in natural language
understanding, reasoning, and code generation. Unlike previous AI systems that were limited to
specific domains, these models exhibited emergent abilities to decompose complex tasks, maintain
context across extended interactions, and interface with external tools and APIs.

This technological leap enabled the development of AI agents capable of autonomous decision-making
and multi-step task execution, ushering in the Agentic Web Era. This era is characterized by the
orchestration of intelligent agents across a vast network of capabilities, protocols, and data sources.
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Figure 5: Agent Workflow under the Agentic Web.

In the following sections, we examine the rise of this agent-based infrastructure and its profound
implications on Web architecture and digital economics.

2.3.1 Rise of Agentic Web

In the Agentic Web Era, tasks that once required significant human effort, such as deep research,
cross-platform process execution, and long-term goal management, can now be completed au-
tonomously with the help of intelligent agents. These tasks demand a comprehensive understanding
of context, the ability to dynamically adjust strategies, and the integration of multiple tools and
data sources.

Traditional single-function assistants are increasingly inadequate for addressing the demands of
complex, multi-step tasks. In response, multi-agent systems have emerged as a critical architectural
solution. A multi-agent system comprises multiple autonomous agents, each specialized in a specific
sub-task such as information retrieval, translation, computation, or API interaction. These agents
collaborate through mechanisms including task decomposition, capability scheduling, and inter-
agent information sharing, thereby enabling the system to tackle problems of greater complexity and
scale. The development of AI orchestration frameworks, such as LangChain (Chen et al., 2023a)
and AutoGen (Wu et al., 2023), supports the integration of models, tools, and service components
into structured graph task flows. These flows facilitate coordinated execution and dynamic decision-
making among agents in a flexible and modular fashion, as illustrated in Figure 5. This collaborative
paradigm significantly enhances both the breadth and depth of task execution. As a result, the
Web is undergoing a transformation from a static “information network” to a dynamic “action
network” in which autonomous systems are capable of perceiving, reasoning, and acting within
digital environments.

However, this shift to multi-agent systems brings with it the need for sophisticated infrastructure
to support these complex, agent-driven tasks. The advancement of the Agentic Web is not purely
conceptual, it is increasingly grounded in real-world infrastructure developments. A key example of
this transformation is Microsoft’s recent move towards the Agentic Web, announced at Build 2025.
Over 50 AI agent tools have been integrated across platforms such as GitHub, Azure, Microsoft 365,
and Windows. These tools support every stage of agent deployment, from development and orches-
tration to memory management and inference optimization. They offer a unified environment for
building and operating intelligent agents. Additionally, NLWeb (Natural Language Web) (Microsoft
Corporate Blogs, 2025) has emerged as a toolset designed to convert traditional web interfaces into
agent-readable, structured environments. This enables agents to navigate and interact with websites
in a goal-driven manner, rather than relying on outdated and brittle methods like DOM scraping or
simulated clicks.
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These advancements signal a significant change in the way the Web will be used in the future. It is
no longer just a place for human-centric browsing but a dynamic, agent-driven environment where
intelligent agents can perform complex tasks on behalf of users. In this context, agent protocols like
the MCP (Anthropic, 2024b) are playing a crucial role in enabling communication and collaboration
between various services and agents. The establishment of these protocols is laying the foundation
for a more standardized, scalable agent-Web interaction layer, further advancing the Agentic Web.

2.3.2 Agent Attention Economy

The advent of communication protocols such as the MCP has precipitated a trend of standardisation,
registration, and organization of external tools and services within the agent ecosystem, which is
analogous to the “yellow pages” directory. This facilitates agents’ access to and invocation of these
resources through a unified interface. However, as the number of external resource providers, such
as APIs, remote services, and data endpoints, grows rapidly, a new challenge emerges: how can
agents efficiently discover, filter, and select the most suitable capabilities in a highly fragmented and
dynamic service landscape (Yang et al., 2025f)?

This challenge gives rise to the notion of the Agent Attention Economy. In a manner analogous to
the early Web’s competition for user clicks, external services now compete to be selected and invoked
by autonomous agents. In this paradigm, the focus shifts from the human users to the agent engaged
in the execution of a sophisticated task. Every tool, service, or other agent essentially competes for
limited “agent attention”. To improve visibility and invocation likelihood, these entities may adopt
mechanisms such as advertising, ranking optimization, or even agent-oriented recommendation and
scoring systems within the service registries.

As this competition intensifies, it is reasonable to hypothesise that a comprehensive advertising in-
frastructure tailored for agents will emerge, which will include agent-facing recommendation engines,
capability reranking systems, inter-agent referral networks, and potentially auction-based ranking or
context-aware ad insertion. This shift fundamentally redefines how agents discover and coordinate
with external resources, accelerating the transformation from a human-centric to an agent-centric
Web. This attention-based competition among agents may ultimately become a core mechanism
for resource allocation in future Web platforms, signalling a profound restructuring of both the
architectural and economic foundations of the Web.

2.4 Commercial and Structural Evolution of the Web

The Web has evolved through three distinct eras: the PC Web, the Mobile Web, and the Agentic
Web. Table 1 provides a comparative overview of how the Web’s architecture, attention focus,
and commercial models have evolved across eras. This section analyzes how innovations such as
PageRank, recommender systems, and agent protocols like MCP have transformed the architecture
and commercial dynamics of the Web, laying the foundation for an agent-native ecosystem in which
information is dynamically generated and acted upon by autonomous systems.

In the PC Web Era, information was primarily hosted on static web pages, often published by in-
stitutions and accessed through keyword-based search engines. Discovery hinged on link analysis
algorithms such as PageRank, and content was structured like a digital directory, manually navigable
and hierarchically classified. Web content was sparse and predominantly produced by organizations,
meaning it was centralized and often top-down. Users relied on manual browsing or search engines
to retrieve information by typing keywords, and the Web’s structure was akin to a digital directory,
where content was classified through hyperlinks and explicit taxonomies. Commercial activity cen-
tered around search advertising, with platforms like Google AdWords matching user queries to paid
results. Key performance indicators (KPIs) included click-through rate and cost-per-click, reflecting
a model where user attention was explicitly captured and monetized through intent-based queries.

As the Web transitioned into the Mobile Web Era, the underlying data storage and linking paradigm
remained largely unchanged, but the volume and granularity of content exploded, driven by the rise
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Table 1: A cross-era comparison of Web paradigms from an ecosystem perspective.

Aspect PC Web Era Mobile Web Era Agentic Web Era
Core Paradigm Search Paradigm Recommendation

Paradigm
Action Paradigm

User Behavior Active search and manual
browsing

Passive content consump-
tion

Complex multi-step task
execution

Information Organiza-
tion

Static pages, hierarchical
directories

Personalized feeds, algo-
rithmic curation

Dynamic task flows,
multi-agent collaboration

Key Technologies PageRank algorithm,
Keyword matching, Di-
rectory structures

Recommender Systems,
Behavioral analysis, Per-
sonalization algorithms

Multi-agent systems,
AI orchestration frame-
works, AI Agent protocols
(MCP/A2A)

Commercial Model Pay-per-click advertising Feed-based and in-app ad-
vertising

Agent Attention Economy

Revenue Source Search advertising (e.g.,
Google AdWords)

Targeted advertising, e-
commerce integration

Service invocation fees,
agent-targeted advertising

Key Metrics Click-through Rate, Cost
Per Click

Conversion Rate, User
dwell time, Effective cost-
per-thousand impressions

Service invocation fre-
quency, Capability rel-
evance, Agent response
success rate

Attention Focus Human user clicks Human user engagement Agent selection and invo-
cation

Information Access Goal-directed, linear
search

Algorithm-driven, passive
consumption

Context-aware, multi-step
execution

Platform Examples Yellow Pages, Craigslist,
Google Search

Social media feeds,
e-commerce recommenda-
tions

Multi-agent AI systems,
service registries

Economic Foundation Search-based marketing Attention economy Agent-centric resource al-
location

of UGC on social platforms, e-commerce sites, and streaming services. While information stor-
age mechanisms such as cloud-based servers remained similar to earlier times, the sheer volume of
content made traditional retrieval methods increasingly inefficient. Search interfaces, though still
available, struggled to surface relevant content amidst massive data flows. This explosion in informa-
tion created a need for more sophisticated ways of navigating and discovering content. In response,
Recommender Systems emerged as the dominant access paradigm. These systems relied on algo-
rithms to curate content tailored to individual users, shifting the burden of content discovery from
users to algorithms. Users became both producers and consumers of content, with recommendation
algorithms acting as intermediaries. Commercial models adapted to this new logic, emphasizing
metrics like conversion rate, dwell time, and effective cost per mille, highlighting engagement depth
and monetization precision.

Today, in the emerging Agentic Web Era, both the commercial logic and the structure of information
are undergoing a radical transformation. Unlike earlier paradigms, where knowledge was stored in
databases or presented on web pages, LLMs embed vast amounts of web-scale information within
their parameters through pretraining. This in-parameter knowledge enables LLM-based agents to
reason, and respond based on learned representations rather than direct document lookups. In
parallel, intelligent agents are developing the ability to interact not only with web pages, but also
with other agents, APIs, and tools in a dynamic, goal-driven fashion. The Web is thus shifting
from a passive content repository to an active, agent-mediated action space, where agents act as
autonomous intermediaries executing tasks on behalf of users.
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Commercially, this era means the rise of the Agent Attention Economy, where third-party tools and
services compete not for human clicks, but for agent invocation. New protocols like the MCP are
enabling agents to dynamically compose and orchestrate services from a modular ecosystem, leading
to the development of agent-driven commercial models. Future monetization metrics may depend on
factors such as invocation frequency, capability relevance, and successful task completion, marking
a departure from the previous era’s focus on user interaction and direct advertising. This shift is
giving rise to new forms of agent-oriented advertising and bidding systems, designed not to persuade
users directly, but to influence agent decision-making pipelines.

Structurally, the Web is being redefined from a human-readable medium into an agent-native sub-
strate. On the consumption side, agents can proactively summarize, recommend, or execute tasks
on behalf of users, offering unprecedented personalization and efficiency. These agents are capable
of operating continuously across different services, becoming autonomous digital intermediaries. On
the production side, content will increasingly be generated by agents rather than humans. Agents
can autonomously generate articles, compose marketing material, or structure data for other agents
to consume. This results in an emergent agent-to-agent communication layer, where content may
never be explicitly rendered for human eyes, but is optimized for agent parsing, reasoning, and
orchestration.

Taken together, these shifts point toward a profound reconfiguration of the Web’s ontology: from
human-readable documents, to algorithm-curated feeds, to agent-native knowledge. No longer will
the Web simply serve as a repository of static documents or a curated feed of personalized content,
but rather as a dynamic, interactive space where information flows are synthesized, shared, and
executed by autonomous systems on behalf of humans. Over time, this could lead to the rise of
an “Agent-Oriented Web,” where information is not merely personalized for individual users, but is
dynamically created, shared, and executed through collaboration between intelligent agents.

3 The Agentic Web
The Web is undergoing a fundamental transformation (Petrova et al., 2025; Lù et al., 2025; Chaf-
fer, 2025). In the traditional model, users served as active navigators: searching, comparing, and
manually executing each digital step. Booking a flight, for instance, required visiting multiple travel
websites, comparing ticket options, checking loyalty programs, and handling confirmation emails
across services. With the rise of intelligent agents, this burden is shifting. Users now increasingly
delegate goals rather than execute tasks. A travel agent AI can autonomously search for optimal
flights based on personal calendar availability, loyalty points, and real-time pricing. It can coordinate
with hotel agents or even adjust travel plans based on weather forecasts or meeting changes (Mon-
ica, 2024; Genspark, 2025). This represents a shift from user-driven web navigation to intent-driven
orchestration, where outcomes rather than page views become the primary metric of value.

This evolution mirrors a broader arc in the history of the Internet. In the PC Web Era, users
manually navigated hyperlinks like explorers in a vast library. In the Mobile Web Era, apps curated
the experience and brought information to users more proactively. Yet users still had to operate
the system by opening apps, copying data, and making decisions. Now, in the Agentic Web, users
act more like directors who articulate their intent while intelligent agents carry out the necessary
operations behind the scenes.

These transformations are not merely technological but conceptual. They redefine who acts on
the Web (from human to agent), how tasks are executed (from manual interaction to delegated
orchestration), and what the Web produces (from content consumption to outcome generation). In
the following sections, we propose a structured framework to examine this shift across 3 dimensions:
Intelligence, Interaction, and Economy. Each dimension offers insight into how the Agentic Web is
reshaping capabilities, behaviors, and business models in increasingly autonomous digital ecosystems.
3.1 Core Conditions
Building the Agentic Web requires rethinking fundamental elements of digital infrastructure. Three
conditions are essential:
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Figure 6: Conceptual Framework of the Agentic Web. This diagram illustrates a three-dimensional
architecture composed of the Intelligence, Interaction, and Economic Dimensions, reflecting the
evolution of AI agents from reasoning entities to active economic participants.

Core Conditions for the Agentic Web

(1) Agents must function as autonomous intermediaries, initiating and completing complex
tasks independently.

(2) Web resources need to be accessible through standardized, machine-readable interfaces.

(3) Value must be exchanged not only between humans and systems, but also directly
between agents.

These structural foundations are interdependent. Agent autonomy depends on semantic interfaces,
protocol interoperability, and the ability to discover and orchestrate external capabilities dynami-
cally. Together, they create the conditions for scalable, intelligent web operations.

3.2 Transformations in Web Architecture

These structural foundations enable fundamental shifts in the operation of the Web, transforming
both its usage and the organization of information.

16



Agentic Web

3.2.1 Evolving Interaction Patterns

The Agentic Web transforms how interaction occurs in digital environments. Traditional web use
follows a request-response model, where users initiate actions, retrieve data, and evaluate results
manually. Agents, by contrast, engage in proactive behaviors. They discover relevant resources,
identify capabilities, and form dynamic connections based on semantic relevance rather than static
hyperlinks (Tupe and Thube, 2025; Sapkota et al., 2025; Acharya et al., 2025).

This change supports continuous and goal-oriented interaction across services. Agents monitor the
digital environment, detect opportunities, and collaborate with other systems to fulfill objectives.
Instead of navigating predefined pathways, they identify and access web resources through contextual
understanding and adaptive negotiation, resulting in more responsive and flexible connectivity.

3.2.2 Changing Information Structures

The structural transformation of the Agentic Web is not limited to the role of agents as users or
interfaces; it also extends to how information itself is stored, linked, and consumed. In previous
stages of the Web, including the early PC era and the mobile era, information was mainly organized
as documents or datasets hosted on web servers and accessed via hyperlinks or queried through
search engines.

By contrast, the Agentic Web introduces a new mode of information organization. LLMs capture
vast web-scale information directly within their parameters through the process of pretraining. These
models embed knowledge within their structures and support on-demand reasoning, thereby reducing
reliance on traditional external web sources (Petrova et al., 2025; Lù et al., 2025).

At the same time, the way information is linked is also changing. Rather than relying on static
hyperlinks, agents discover resources, services, and other agents through semantic discovery and
adaptive integration (Touvron et al., 2023b; OpenAI, 2024a; Guo et al., 2025). This results in
a more fluid and context-sensitive form of connectivity, where relevance is inferred rather than
explicitly declared.

As agents gain content generation capabilities, information production is shifting beyond human-
authored web pages toward agent-generated outputs such as tools, instructions, summaries, and
structured artifacts designed for other agents (Qin et al., 2023; Schick et al., 2023). This creates
a self-sustaining loop in which agents both generate and consume content, leading to increasingly
autonomous and self-reinforcing information flows.

This structural shift in how information is stored (in-model versus in-document), linked (semantic
versus hyperlink), and accessed (agent-driven versus search-driven) underpins the transition to the
Agentic Web.

3.2.3 Dual Operational Roles

Within this transformed architecture, agents operate through two complementary foundational per-
spectives that represent different facets of their functionality:

• Agent-as-User (Downward-facing): AI agents operate as autonomous web users who
can independently navigate, interact with, and consume web resources (Nakano et al., 2022;
Deng et al., 2023; Zhou et al., 2023b; Gur et al., 2024; OpenAI, 2025; Monica, 2024). In this
role, agents replace or augment human users in web navigation and task execution, engaging
with existing web interfaces and services designed for human consumption. This enables
continuous, 24/7 operation for tasks such as market research, data collection, or transaction
processing.

• Agent-as-Interface (Upward-facing): AI agents serve as intelligent intermediaries be-
tween human users and web systems, translating high-level user intentions into executable
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actions (Corporation, 2025; Thurrott, 2024; Opera, 2025; Wiggers, 2025). These agents pro-
cess natural language commands from users and orchestrate complex multi-step workflows
across various web services. This perspective emphasizes the agent’s role in abstracting
complexity and providing streamlined human-agent interaction.

These perspectives are complementary rather than contradictory. A single agent system often em-
bodies both roles: interacting autonomously with the web while serving as an interface for human
users and forming a bidirectional bridge between intention and execution. Together, these opera-
tional perspectives, interaction transformations, and information structure changes operationalize
the Agentic Web’s core vision: a distributed, interactive internet ecosystem in which autonomous
software agents engage in persistent, goal-directed interactions to plan, coordinate, and execute tasks
on behalf of human users.

3.3 Three Conceptual Dimensions of the Agentic Web

To understand the Agentic Web in depth, we propose a conceptual framework built on three interre-
lated dimensions: Intelligence, Interaction, and Economy. Each dimension reflects a core requirement
for autonomous operation within digital ecosystems as illustrated in Figure 6).

At its core, the Intelligence Dimension equips agents with reasoning capabilities such as perception,
planning, and learning. Building on this, the Interaction Dimension enables agents to connect with
digital environments through semantic protocols and dynamic tool use. The Economic Dimension
focuses on how agents autonomously create, exchange, and distribute value, forming self-organizing
digital economies.

Each layer builds upon the previous one: intelligence enables interaction, and interaction enables
value creation. This layered view explains how agents evolve from internal reasoning entities to
impactful economic participants.

Conceptual Layers

• Intelligence Dimension: What core intelligence is required for agents to function
autonomously?

• Interaction Dimension: How do agents communicate and coordinate within digital
ecosystems?

• Economic Dimension: How do agents generate and exchange value at scale?

3.3.1 Intelligence Dimension

The Intelligence Dimension provides the cognitive foundation that enables agents to reason, learn,
and plan within open-ended digital environments. Unlike traditional systems that rely on human
queries, agents access and act on information autonomously. They draw from both internalized
knowledge (in-parameter models) (Koh et al., 2024; Putta et al., 2024; Masterman et al., 2024;
Wu et al., 2025) and external resources (via tools and APIs) (Qin et al., 2023; Schick et al., 2023;
Paranjape et al., 2023; Lu et al., 2025), shifting from passive retrieval to proactive information use.

To operate effectively, agents require transferable intelligence rather than narrowly defined, task-
specific heuristics. Key capabilities include:

• Contextual Understanding: Agents should be able to interpret diverse forms of web-
based input, including natural language, semi-structured data, and interface signals, all
within task-specific and evolving contexts.

• Long-Horizon Planning: Agents must formulate, evaluate, and revise multi-step strate-
gies to achieve both short-term objectives and long-term goals across diverse digital services.
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• Adaptive Learning: Agents should be able to improve over time by integrating interaction
feedback, acquiring new skills, and adjusting their internal models of user preferences and
environment dynamics.

• Cognitive Processes: To operate reliably and efficiently, agents should monitor and reflect
on their own reasoning, detect failures or suboptimal behavior, and dynamically adjust their
cognitive strategies.

• Multi-Modal Integration: Agents must handle and integrate information from a variety
of modalities (e.g., text, APIs, visuals, structured data), enabling robust decision-making in
open-ended environments.

In the Agentic Web, agents are not passive executors of instructions. Instead, they interpret, strate-
gize, and adapt independently. Without these cognitive abilities, agents cannot handle real-world
ambiguity, recover from failure, or scale across services.

3.3.2 Interaction Dimension

The Interaction Dimension addresses a fundamental shift in how autonomous agents engage with
the digital environment. This shift moves the web away from static, human-authored hyperlinks
toward dynamic, context-aware connections. In traditional web architectures, interaction is primarily
document-based and mediated by human users. In contrast, agents in the Agentic Web interact
through semantic protocols and runtime service discovery, allowing them to initiate and manage
interactions without relying on predefined links or manual input.

The emergence of agent-native communication protocols has been a key catalyst for this transforma-
tion (Chang, 2024; Cisco, 2025; AI and Data, 2025; Yang et al., 2025d), such as the MCP (Anthropic,
2024b). Unlike conventional APIs that rely on stateless, transactional exchanges, MCP supports
persistent, semantically coherent dialogues between agents and services. It introduces three foun-
dational capabilities: (1) dynamic capability discovery, allowing agents to identify available system
functionalities at runtime; (2) semantic context preservation, which maintains task continuity across
multi-step workflows; and (3) privacy-aware collaboration, enabling rich information exchange while
protecting sensitive data. Together, these features mark a shift from procedural invocation toward
adaptive, negotiated interactions.

Beyond communication, the Interaction Dimension underpins tool orchestration, the agent’s ability
to safely compose and sequence external capabilities. Agents can dynamically verify tool properties,
authenticate requests, and execute operations within controlled environments, minimizing risks such
as malicious injection or execution failures.

Furthermore, this dimension facilitates agent-to-agent coordination. Protocols like Agent-to-Agent
(A2A) (Google, 2025b) enable agents to form ad hoc coalitions, share intermediate outputs, and
collaboratively pursue complex goals. Such cooperative frameworks transform the Agentic Web into
a networked fabric of interacting intelligences, where distributed reasoning and shared context allow
agents to operate not just individually, but collectively.

By integrating semantic interoperability, safe tool access, and inter-agent collaboration, the Inter-
action Dimension forms the operational substrate of the Agentic Web. It allows autonomous agents
to engage with a dynamic, heterogeneous environment in an adaptive and meaningful way as shown
in Figure 7.

3.3.3 Economic Dimension

The Economic Dimension reconfigures digital ecosystems by introducing autonomous agents as eco-
nomic actors capable of initiating transactions, forming collaborations, and allocating resources with-
out direct human input. Unlike traditional systems, where value is created and exchanged through
human interactions mediated by platforms, the Agentic Web supports machine-native economies in
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Figure 7: Architectural evolution of Web System. The transition reflects a shift from static content
delivery and manual interaction to intelligent automation and outcome-oriented design. Not shown
explicitly are the corresponding shifts in user roles, from navigator to operator to director, and in
interaction models, from point and click to touch based to conversational delegation. These shifts
mark a fundamental change in how value is created and tasks are fulfilled on the Web.

which agents coordinate, produce, and transact directly with one another (Tan and Huang, 2025;
Rothschild et al., 2025; Dawid et al., 2025).

This shift gives rise to novel economic patterns. Agents can generate structured outputs such as
executable workflows, tool manifests, and domain-specific datasets, not for human consumption, but
for use by other agents. These machine-oriented artifacts enable closed-loop systems of generation
and consumption, where agents operate continuously and collaboratively, driving a self-sustaining
cycle of autonomous value creation.

Over time, such interactions form decentralized economic networks where agents dynamically dis-
cover services, negotiate terms, manage risk, and optimize outcomes through algorithmic reasoning.
These agent-driven markets operate at speeds and granularities beyond human coordination, un-
locking new forms of efficiency and scalability (Yang et al., 2025f).

However, this transformation also introduces governance challenges (Kolt, 2025; Yang and Zhai,
2025). As agents begin to make high-stakes economic decisions, potentially involving finances,
contracts, and digital assets, questions around liability, transparency, and ethical alignment become
urgent. Regulatory frameworks must evolve to accommodate autonomous behavior at machine
timescales, ensuring accountability and fairness in increasingly complex agent-driven economies.

Ultimately, the Economic Dimension captures how agency, computation, and value creation con-
verge in the Agentic Web, enabling a new kind of digital economy: one that is fast, adaptive, and
fundamentally machine-mediated.

4 Algorithmic Transitions for the Agentic Web

The emergence of the Agentic Web necessitates a fundamental re-evaluation and redefinition of
the algorithmic underpinnings of intelligent systems. This paradigmatic shift represents more than
mere technological advancement; it embodies a conceptual transformation from passive, human-
driven computational processes to autonomous, goal-oriented intelligent behaviors that can operate
independently within complex digital ecosystems. This section examines how traditional paradigms
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Figure 8: Algorithmic Transitions for the Agentic Web. The figure illustrates three foundational
transitions from Traditional Web to Agentic Web paradigms.

in information retrieval, recommendation systems, and agent architectures are converging and trans-
forming to form the core capabilities of autonomous agents operating within dynamic web environ-
ments. We delineate three foundational transitions that characterize this algorithmic evolution, as
illustrated in Figure 8: (1) from user-centric information retrieval to proactive agentic information
acquisition, where systems transition from reactive document lookup to autonomous, context-aware
data gathering; (2) from static, one-shot recommendation to dynamic, goal-oriented agent planning,
representing a shift from isolated preference predictions to integrated reasoning-action frameworks;
and (3) from isolated single-agent execution to complex multi-agent coordination, enabling dis-
tributed intelligence and collaborative problem-solving capabilities. Each transition signifies a fun-
damental evolution from fixed, domain-specific pipelines that require explicit human intervention
to adaptive, context-aware strategies that can autonomously navigate uncertainty and complexity.
These transformations collectively establish the algorithmic foundation for intelligent systems ca-
pable of independent operation, continuous learning, and emergent behavior. Such characteristics
distinguish the Agentic Web from its predecessors, with implications extending beyond technical im-
provements to encompass new possibilities for human-AI collaboration, automated decision-making,
and the emergence of truly autonomous digital agents.

4.1 User-centric Retrieval to Agentic Information Retrieval

Traditional information retrieval has historically been grounded in human-initiated, document-
centric search methodologies. Foundational techniques such as the bag-of-words model and term
frequency-inverse document frequency (Spärck Jones, 1972) assign weights to terms based on their
frequency within a document and their rarity across the corpus, thus producing a basic relevance
signal for ad hoc queries. Probabilistic models such as Okapi BM25 (Robertson et al., 1995) intro-
duced refinements by incorporating term-frequency saturation and document-length normalization,
enabling more effective handling of heterogeneous document sizes and term distributions. With the
advent of the web, link-analysis algorithms such as PageRank (Page et al., 1999) contributed by
modeling a random surfer traversing the hyperlink graph, introducing authority as a critical factor
in ranking. More recent advances have leveraged supervised Learning to Rank approaches, which
apply pointwise, pairwise, or listwise machine learning objectives to optimize ranking functions using
labeled relevance data, significantly improving performance over traditional unsupervised methods
(Liu et al., 2009).
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In contrast, the Agentic Web redefines retrieval as an active and integral component of autonomous
cognition. Rather than performing static keyword-based queries, autonomous agents dynamically
assess their goals, environment, and task progression to determine what information is needed,
when to acquire it, and through which modalities (Zhang et al., 2024a). These agents engage in
complex, multi-step retrieval pipelines that often involve domain-specific tools, external APIs, and
procedural logic, enabling them to construct knowledge on demand. This transition from passive
search to proactive information acquisition supports end-to-end workflows that require minimal
human supervision, enhancing both task generalization and responsiveness.

RAG architectures exemplify this shift by grounding language model outputs in external, verifiable
content (Lewis et al., 2020). Within this framework, Fusion-in-Decoder retrieves relevant passages
via sparse or dense indexes and integrates them with the input query in a sequence-to-sequence
model such as T5 (Izacard and Grave, 2021). FLARE adopts an iterative retrieval strategy in which
the model forecasts the next sentence, uses low-confidence predictions to formulate pseudo-queries,
and refines the output through successive retrieval rounds (Jiang et al., 2023). SELF-RAG intro-
duces a self-reflective loop that prompts the model to critique and revise its own responses, thereby
enhancing factual accuracy (Asai et al., 2024). RetrievalQA explores adaptive retrieval policies that
allow models to determine whether and when to retrieve based on internal uncertainty estimates
(Zhang et al., 2024c). The Tree of Clarifications framework (Kim et al., 2023) addresses query
ambiguity by decomposing questions into clarifying subqueries, retrieving evidence for each, and
synthesizing comprehensive answers. Toolformer extends these capabilities by enabling models to
autonomously identify suitable APIs, invoke them at appropriate stages, and incorporate the outputs
into subsequent token generation (Schick et al., 2023). Collectively, these innovations demonstrate
how deeply integrated retrieval mechanisms enhance agent reasoning, supporting sophisticated tasks
such as information synthesis, procedural decision-making, and tool utilization, thereby establishing
the Agentic Web as a foundation for scalable and intelligent autonomous interaction.

4.2 Recommendation to Agent Planning

The traditional recommendation paradigm, which centers on matching users with items, is reinter-
preted in the context of the Agentic Web as a strategic and goal driven framework for planning
and execution. Earlier systems employed algorithms such as user based and item based collabo-
rative filtering (Sarwar et al., 2001), matrix factorization methods (Koren et al., 2009), and deep
learning based recommendation models (He et al., 2017) to estimate user preferences over static
content. While these techniques are effective at retrieving individually relevant items, they operate
in a reactive manner: each recommendation is an isolated prediction that neglects downstream task
dependencies and does not support multi step workflows. Modern advances have fundamentally
transcended these limitations through the introduction of sophisticated architectural innovations
that enable autonomous goal oriented behavior. Language Agent Tree Search exemplifies this evolu-
tion by integrating MCTS with LLM powered value functions and self reflection mechanisms (Zhou
et al., 2023a).

In contrast, the Agentic Web redefines recommendation as a proactive process involving multi step
planning by autonomous agents. This conceptual shift has led to the development of agents powered
by large language models that integrate high level reasoning with executable actions in dynamic
web environments. For example, ReAct (Yao et al., 2023) integrates reasoning traces with concrete
actions, allowing agents to refine their plans based on environmental feedback and to achieve signif-
icant improvements on question answering and interactive decision-making benchmarks. WebAgent
(Gur et al., 2024) converts natural language instructions into Python programs while summarizing
lengthy HTML content into task-specific segments, thereby enabling agents to interact with real
web interfaces through programmatic planning. AdaPlanner (Sun et al., 2023) introduces a closed
loop planning architecture that incorporates both in plan and out of plan refinements, dynamically
updating plans based on environmental feedback to outperform standard baselines on ALFWorld
(Shridhar et al., 2020) and MiniWoB++ (Liu et al., 2018). Plan-and-Act (Erdogan et al., 2025)
further separates planning and execution into two distinct roles, a planner and an executor, each in-
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stantiated by a large language model, and achieves state of the art performance on long horizon web
navigation tasks. Beyond these foundational approaches, recent developments have introduced so-
phisticated memory augmented systems such as the Task Memory Engine, which implements spatial
memory using Directed Acyclic Graphs to replace linear context concatenation (Ye, 2025). GoalAct
demonstrates continuous global planning that maintains clear objectives through skill based decom-
position and hierarchical execution strategies, achieving improvement in success rates on complex
legal benchmarks (Chen et al., 2025).

This evolution represents a fundamental transition from passive recommendation to prescriptive
and goal oriented behavior, empowering agents to autonomously interpret instructions, navigate
web environments, and manipulate digital interfaces in pursuit of complex user defined objectives.
The emergence of standardized evaluation frameworks such as WebArena (Zhou et al., 2023b),
VisualWebArena (Koh et al., 2024), and ST-WebAgentBench (Levy et al., 2024) has established
comprehensive protocols for assessing multi dimensional agent capabilities across planning, tool in-
tegration, safety, and trustworthiness. Contemporary agents demonstrate substantial performance
gains through enhanced autonomous task completion capabilities, while standardized protocols in-
cluding the Model Context Protocol and Agent Communication Protocol enable seamless integration
across heterogeneous agent systems (Anthropic, 2025; Li et al., 2024a).

4.3 Single-Agent to Multi-Agent Coordination

Traditional single-agent systems have typically modeled autonomous decision-making in web envi-
ronments using the Markov Decision Process framework. Early work by Shani et al. demonstrated
that formulating recommendation tasks as sequential optimization problems outperformed static
approaches in maximizing long-term user satisfaction (Shani et al., 2005). Building on this foun-
dation, contextual bandit algorithms such as LinUCB were developed to adaptively select content
by incorporating user and contextual information, improving cumulative engagement through it-
erative learning (Li et al., 2010). To address the bias and sparsity inherent in logged interaction
data, off-policy actor-critic methods with top-K corrections have been successfully scaled to large
recommender systems, enhancing stability and effectiveness in environments with millions of candi-
date actions (Chen et al., 2019). Additionally, slate-based reinforcement learning (RL) decomposes
multi-item recommendation problems into tractable value functions, enabling efficient Q-learning
over complex combinatorial action spaces (Ie et al., 2019). Although these single-agent approaches
are effective for optimizing individual objectives, they face limitations in scenarios that require col-
laboration, distributed reasoning, or task-level adaptability.

To address these limitations, multi-agent coordination frameworks have emerged to enable dynamic
collaboration among agents, allowing them to collectively solve tasks that are difficult to address
in isolation. This paradigm shift supports task decomposition, role specialization, and orchestrated
execution through communication and shared goals. AutoGen exemplifies this transition by imple-
menting planner, executor, and critic roles, using prompt conditioning to assign responsibilities and
structure inter-agent interaction (Wu et al., 2023). AgentOccam enhances LLM-based agents not
by refining agent strategies alone, but by improving their fundamental reasoning and task compre-
hension capabilities (Yang et al., 2025a). WebPilot incorporates a multi-agent MCTS architecture
to guide web navigation and decision-making, demonstrating the potential of hierarchical planning
in interactive environments (Zhang et al., 2025d). The AI Co-Scientist leverages multiple agents
and external tools to formulate novel scientific hypotheses, combining web search with specialized
AI modules to generate well-grounded research proposals (Gottweis et al., 2025).

Recent systems have also emphasized flexibility, modularity, and accessibility in multi-agent design.
Alita introduces a minimalist architecture that reduces predefined roles and promotes self-evolution,
aiming for greater scalability and generalization across domains (Qiu et al., 2025). OWL offers
a structured agent hierarchy, decomposing tasks into specialized roles filled by UserAgents,
AssistantAgents, and ToolAgents to automate complex real-world objectives (Hu et al., 2025).
AutoAgent enables users to construct multi-agent workflows and integrate external tools without
extensive technical knowledge, expanding the accessibility of agent-based system design (Tang et al.,
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2025). Octotools organizes execution into distinct planner and executor components, optimizing
the coordination of multi-tool computational workflows (Lu et al., 2025). These developments
collectively reflect a broader shift toward distributed intelligence, demonstrating the increasing
importance of collaboration, modularity, and specialization in next-generation autonomous systems.

5 Systematic Transitions of the Agentic Web

The shift toward an Agentic Web entails not only a conceptual evolution but also a fundamental
redesign of the underlying system architecture. Traditional web infrastructure, based on stateless
protocols, user-initiated interfaces, and static interaction models, is poorly suited to the requirements
of agentic computation. To function effectively, autonomous agents necessitate continuous contextual
awareness, persistent sessions, dynamic service discovery, semantically rich interaction protocols, and
real-time coordination with both human users and other agents.

This section articulates the system-level transformations necessary to support agent-native execu-
tion. It identifies the limitations of current web protocols and runtime environments, proposes
infrastructure requirements for persistent, context-aware agents, and discusses the evolution of com-
munication standards that enable semantic, agent-to-agent interactions. By analyzing these transi-
tions systematically, this section contributes a coherent architectural perspective for operationalizing
the Agentic Web beyond isolated prototypes or platform-specific implementations.

We begin by outlining the core system challenges that arise when deploying autonomous agents in
web-scale environments.

5.1 Motivation for an Agentic Web System

The advent of the Agentic Web, a paradigm characterized by autonomous, intelligent agents ex-
ecuting complex user-delegated tasks, represents a fundamental architectural evolution from the
content-centric model of the contemporary internet. This transition necessitates a profound re-
engineering of underlying network and system architectures, as the internet’s extant infrastructure
is ill-equipped to support the dynamic, decentralized, and mission-critical nature of agentic opera-
tions. For this emergent ecosystem to become viable, several core system-level challenges must be
surmounted, transforming the internet from a passive data conduit into an intelligent, proactive,
and service-aware fabric.

A primary impediment to the realization of the Agentic Web is the challenge of agent discovery. In
contrast to the static addressing schemes of the traditional internet, where resources are located via
stable IP addresses or domain names, autonomous agents are ephemeral and lack a fixed, identifiable
network location. When a principal agent must execute a task exceeding its intrinsic capabilities,
it must dynamically recruit other agents. This scenario presents a critical problem: the identifi-
cation and selection of suitable collaborators from a vast, decentralized population of agents. The
resolution of this problem requires a dynamic discovery mechanism, analogous in principle but su-
perior in intelligence to network routing protocols (Cui et al., 2025). For a given task, the system
must effectively source and select agents by conducting a comprehensive assessment of their skills,
readiness, and suitability to the specific operational demands. This "just-in-time" matchmaking is a
prerequisite for the seamless, on-demand collaboration essential for executing complex, multi-agent
operations (Chen et al., 2024b; Raskar et al., 2025).

Subsequent to discovery, the challenge of effective inter-agent communication arises, with the cur-
rent ecosystem of APIs presenting a significant roadblock. Contemporary APIs are predominantly
engineered for consumption by human developers, achieving syntactic but not semantic interoper-
ability. While they rigorously define the structure for data exchange, they lack the formal semantic
annotations necessary for an autonomous agent to unambiguously interpret their function and pur-
pose (Tupe and Thube, 2025). An agent may parse the technical format of a request but cannot
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ascertain the underlying intent or operational semantics of the API’s methods. To transcend this
limitation, a new paradigm of agent-oriented APIs is required. A future standard would likely ne-
cessitate the integration of machine-readable formalisms, such as ontologies or logical specifications,
directly within the API definition. This would create a unified system wherein an agent can ac-
cess not only the syntactic structure but also the semantic context, thereby empowering agents to
autonomously discover, comprehend, and utilize APIs to perform complex tasks without human
intervention (Braubach et al., 2018).

Furthermore, the highly dynamic and distributed nature of this network introduces complex logistical
challenges related to billing and accounting. In a system where agents can spontaneously collaborate,
delegate sub-tasks, and consume services from one another, tracking resource utilization for the
purpose of accurate attribution and billing becomes exceptionally difficult. A persistent, reliable, and
auditable methodology is needed to monitor the chain of interactions and associate computational
and service costs with the originating user or principal agent. This necessitates the design of a
transactional framework capable of tracing an agent’s activities and resource consumption across a
fluid, multi-party network. Such a framework must securely bind billing information to a specific
entity, ensuring that as agents access premium services or delegate paid tasks, the associated costs are
accurately calculated and charged (Cui et al., 2025). Without a robust solution for micropayments
and distributed accounting, the economic models required to sustain a sophisticated, service-driven
Agentic Web are untenable.

Finally, a foundational challenge resides in the evolution of the network infrastructure itself: specif-
ically, the transition from a best-effort network to an intelligent infrastructure capable of delivering
guaranteed, personalized quality of service. The current network architecture, exemplified by 5G, is
fundamentally network-centric, engineered to optimize a limited set of aggregated KPIs, such as peak
data rate and latency. This model, while effective for enhancing general system capabilities, is insuf-
ficient for the Agentic Web, which demands a paradigm shift from optimizing universal metrics to
providing bespoke, task-specific service guarantees. The infrastructure must evolve to comprehend
and dynamically accommodate the distinct, multi-dimensional requirements of individual agentic
tasks. This transition reflects a shift from providing generalized high-performance capabilities to
acting as an intelligent orchestrator that interprets specific task requirements across multiple di-
mensions, including cost, security, and access to knowledge, and provisions tailored Service Level
Agreements accordingly.

Figure 9 illustrates a task’s Service Requirement Zone (SRZ) (Yang et al., 2023b), an eight-
dimensional profile defining its quality of experience needs across metrics like cost, delay, security,
data rate, and knowledge. The size of the shaded SRZ on the chart indicates the stringency of these
needs: a smaller zone means more exacting demands, requiring precise resource orchestration. It
also contrasts two different agentic tasks to demonstrate this concept. The Deep Research Agent
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(left) displays a constricted SRZ, reflecting its complex requirements. It has a high demand for
Knowledge to access specialized models, strong Reliability and Stability, and low Delay to enable
interactive analysis. This profile necessitates a highly capable and responsive service.

In contrast, the Ticket Purchase Assistant (right) has a larger, more flexible SRZ. This agent’s
primary needs are high Security for processing payments and a high Data Rate to quickly load
options. It can tolerate longer delays and has minimal requirements for energy or local storage,
which is typical for a transactional task. This comparison highlights how different agents have
unique service profiles that the underlying infrastructure must be able to interpret and fulfill.

To adequately support the Agentic Web, the underlying infrastructure must therefore evolve to
natively interpret and fulfill these diverse SRZs. It can no longer treat the VR stream and the
banking transaction as fungible data flows. The system must transition from network-level slicing to
a far more granular mode of service provisioning at the individual task level (Liu et al., 2025a; Chen
et al., 2024a). To achieve this, the network requires pervasive, embedded intelligence, allowing it to
efficiently identify a task’s SRZ and subsequently orchestrate heterogeneous network, compute, and
data resources across multiple domains to guarantee that its specific quality of experience is met,
thus marking a definitive departure from the legacy “best-effort” paradigm (Mahmood et al., 2024;
Wang et al., 2024b).

The paradigm shift towards SRZ-centric service delivery imposes a set of unprecedented demands
on the underlying system architecture that far surpass the capabilities of the traditional web. The
system must support extreme dynamism and negotiation, as an agent’s resource needs can change
dramatically mid-task, requiring real-time allocation adjustments (Huang et al., 2024; Zhang et al.,
2025c). It must natively handle multimodality, intelligently managing the varied requirements of
text, image, audio, and other data types. The system’s role must also evolve from a mere data
transporter to a capability-driven orchestrator, maintaining a real-time inventory of computational
resources, AI models, and data sources to fulfill agent requests (Li et al., 2025a). Furthermore, it
must provide granular, verifiable security and privacy controls at the level of individual agents and
sub-tasks, offer deep observability for robust debugging and optimization, and incorporate intelligent
cost control mechanisms to manage computationally expensive agentic workflows (Li et al., 2025a).

5.2 Toward a Next-Generation Agentic Web System

To facilitate the large-scale deployment of autonomous agents, the Web must evolve from a content-
centric medium to an execution-oriented infrastructure. This paradigm shift necessitates a funda-
mental re-evaluation of web systems’ architectural foundations to support agent-native interaction
patterns, persistent context management, and integrated tool orchestration.

In this subsection, we present the Agentic Web system, which integrates three essential elements: the
User Client, the Intelligent Agent, and Backend Services. We elucidate the functional roles of each
component, examine their historical evolution, and analyze their collective function in translating
high-level user goals into executable digital actions. By articulating this architecture, we establish
a conceptual framework for understanding how agentic capabilities can be operationalized, thereby
bridging the divide between user intent and dynamic service execution.

5.2.1 Roadmap of the Agentic Web System

This section delineates the architecture of the Agentic Web, a tripartite structure designed to trans-
late user objectives into executable operations. This architecture is composed of three integral
components that operate in synergy: the User Client, the Intelligent Agent, and Backend Services.

The User Client serves as the primary medium for human-agent interaction. Its core functions are to
process user inputs like textual, vocal and to render the agent’s synthesized outputs. The historical
trajectory of clients shows an evolution from text-based command-line interfaces to the intuitive
graphical and touch-based paradigms of today. The contemporary trend is a progression towards
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multimodal systems that integrate diverse inputs such as voice and gesture, embodied in devices like
smart speakers and wearable technology.

The Intelligent Agent constitutes the system’s central cognitive and decision-making nexus. Lever-
aging artificial intelligence disciplines such as Natural Language Processing, the agent discerns user
intent, decomposes complex objectives into granular sub-tasks, and selects appropriate backend tools
for execution. The developmental path of these agents has advanced from rudimentary rule-based
systems to sophisticated learning models. These modern agents are capable of addressing complex
creative and epistemic tasks by continuously adapting based on new data and user feedback.

Backend Services, Tools, and Plugins form the functional substrate, providing the essential computa-
tional, data, and specialized capabilities required by the agent. These modular resources encompass
a wide spectrum of functions, from general utilities like language translation to domain-specific in-
dustry applications. Architecturally, they have evolved from monolithic databases to a distributed
and extensible ecosystem of microservices and plugins, which permits third-party developers to
continuously augment the capabilities of the Agentic Web.

To illustrate the interoperability of these components, consider a representative interaction workflow.
The process is initiated when the User Client transmits a high-level objective, such as “plan a
business trip to Shanghai,” to the Agent. The Agent then decomposes this objective into constituent
sub-tasks. It subsequently identifies and invokes the requisite external services, such as flight and
hotel booking platforms, to execute these tasks. Upon receiving the necessary information, the
Agent integrates these disparate results. It synthesizes the data, evaluates it against predefined user
constraints, and formulates a coherent, consolidated response—such as a complete itinerary—which
is then relayed to the User Client for presentation.

Furthermore, the architecture accommodates a direct interaction model. In certain scenarios, the
Agent may orchestrate an initial connection, after which the User Client engages directly with
a backend service. This decoupled model is particularly advantageous for transactions involving
sensitive data or requiring high-throughput, such as financial payments. This design allows the
Agent to preserve its function as the master coordinator while delegating specific interactions to
optimize for security and efficiency.
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Figure 11: Interaction Process Example: Planning a Travel Itinerary

In summary, this architecture represents a paradigm shift from direct user manipulation of discrete
applications to a model of delegated goal-fulfillment. Within this paradigm, a user entrusts a high-
level objective to an intelligent, autonomous Agent, which then orchestrates a diverse set of resources
to achieve the specified outcome. The User Client functions as the dedicated human-computer
interface; the Agent operates as the central cognitive processor and orchestrator; and the Backend
Services constitute an ecosystem of callable functionalities (e.g., APIs, databases, web applications)
capable of executing specific, well-defined tasks.

These rigorous requirements fundamentally invalidate the traditional Client-Server architecture,
mandating a shift toward the Client-Agent-Server model. We propose an Agentic Web Architecture,
depicted in Figure10, to realize this paradigm. This architecture operates through three core com-
ponents. First, a demand skill vector mapper interprets application needs by performing context
awareness, dynamic intent tracking, and semantic vectorization to translate service demands into
machine-readable formats. Second, a real time task Router dynamically dispatches these vectorized
tasks to a distributed Agent Framework operating across the edge and access networks. Third, a
cross agent billing ledger governs the economic and resource interactions between agents, enabling
crucial functions like resource metering, service chaining, and privacy-preserving settlement. This in-
tegrated design creates an intelligent, autonomous, and value-aware fabric for orchestrating complex
agentic services.

5.2.2 Interaction Process Example: Collaborative Mechanisms in Travel Itinerary
Planning by Agents

As depicted in Figure 11, the workflow is initiated upon the submission of the request, “Plan a 3-day
trip to Beijing,” through the User Client. A Request Parser agent semantically parses this input to
extract key parameters, including the destination, duration, and the core user objective.

Subsequently, a yool orchestrator agent decomposes the primary objective into four discrete sub-
tasks: obtaining meteorological data, compiling information on tourist attractions, querying for
accommodation options, and generating a route map. It then programmatically invokes the corre-
sponding backend services via the MCP protocol:

• Request forecast data from the Weather Service.

• Request attraction information from the Travel Guide Service.

• Request accommodation options from the Hotel Service.
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• Request the generation of optimized travel routes from the Map Service.

Following data retrieval, a result synthesizer agent aggregates and integrates the information from the
weather, travel guide, and hotel services to construct a comprehensive itinerary. Concurrently, the
response from the Map Service bypasses the synthesis stage, transmitting route maps and location
data directly to the User Client. This direct feedback channel is explicitly marked in Figure 11
(dashed line).

Finally, a consolidated itinerary, comprising weather forecasts, attraction details, accommodation
suggestions, and an interactive map, is then transmitted to the User Client for review. The user can
accept the proposal or request modifications, with map data being updated dynamically via the direct
service feedback mechanism. This dual-pathway design strategically balances comprehensive data
integration for high-level planning with low-latency service responses for interactive components, all
orchestrated through a unified platform.

5.2.3 Recent Advances and Applications of Agentic Web Systems

To advance the agentic web, recent research has focused on overcoming core challenges in agent
design and assessment. Key innovations include synergizing reasoning with action, architecturally
separating planning from execution, and establishing more reliable benchmarks to accurately mea-
sure performance.

ReAct, a framework developed by (Yao et al., 2023) achieves synergy by interleaving reasoning
and acting within large language models. The proposed methodology enhances the model’s per-
formance in two key ways. First, it enables the generation of reasoning traces to formulate and
dynamically adjust action plans. Second, it facilitates interaction with external resources, exempli-
fied by a Wikipedia API, to retrieve information, which is essential for fact-checking and minimizing
hallucinations. This dynamic combination of “acting to reason” and “reasoning to act” enables
agents to more reliably solve knowledge-intensive tasks and enhances the interpretability of their
decision-making processes.

To tackle challenges in long-horizon tasks, the PLAN-AND-ACT framework (Erdogan et al., 2025)
distinctly segregates strategic high-level planning from immediate low-level actions. This architec-
ture features a PLANNER model dedicated to generating structured, abstract strategies and an
EXECUTOR model responsible for translating these strategies into tangible steps in the environ-
ment. A key innovation of this framework is dynamic replanning, which addresses the limitations
of static plans. The PLANNER updates the plan after each action is executed, enabling the agent
to acclimate to evolving environmental conditions and incorporate new information, such as search
results, into the ongoing strategy.

For a more accurate measurement of true web agent capabilities, existing benchmarks like WebVoy-
ager have been identified as a key limitation, as they often suffer from a lack of task diversity and can
report inflated performance results (Xue et al., 2025; Deng et al., 2023). To address this, the new
Online-Mind2Web benchmark offers a comprehensive evaluation suite, containing 300 diverse and
realistic tasks that cover a broad spectrum of 136 websites. Concurrently, an automated evaluation
method called WebJudge was also developed. This approach identifies key points for task comple-
tion and then selects key screenshots from an agent’s trajectory for evaluation, preserving critical
information while avoiding context length limits. This method achieves up to 85.7% agreement with
human judgment and significantly improves evaluation reliability and scalability.

5.3 Agentic Communication

The deployment of autonomous agents in complex web environments for multi step tasks introduces
novel communication demands that fundamentally exceed the capabilities of traditional web proto-
cols. As agents evolve from passive API consumers to proactive, context-aware actors capable of
initiating and coordinating tasks, they require better communication mechanisms that support se-
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mantic interoperability, persistent task states, and asynchronous multi-party interaction, and many
other features.

This section investigates the protocol level foundations of the Agentic Web, examining the limita-
tions of conventional protocols such as HTTP and RPC, and motivating the need for agent-native
alternatives. We introduce two representative protocols, MCP and A2A, that exemplify emerging
approaches to structured, scalable, and semantically rich communication among agents and ser-
vices. The following subsections first analyze the design motivations behind these protocols and
then provide detailed descriptions of their architectures and workflows.

5.3.1 Design Motivation (Beyond HTTP/RPC)

In the current Internet ecosystem, the Hypertext Transfer Protocol (HTTP) and Remote Procedure
Call (RPC) have long served as the mainstream communication protocols, underpinning the data
interaction between Web services. Over the past two years, numerous AI Agent projects have
achieved basic communication functions based on these two protocols. However, with the rise of
the Agentic Web concept, the limitations of traditional protocols have gradually become prominent.
The Agentic Web, characterized by autonomy, context awareness, and dynamic interaction, has
operational mechanisms that impose new requirements on communication protocols far beyond the
capabilities of HTTP/RPC.

Firstly, the task execution process in the Agentic Web typically involves collaboration among multi-
ple entities, which imposes stringent requirements on the efficient management of task specific
context. In the Agentic Web, the task execution process frequently necessitates intricate interac-
tions between designated agents and other agents, in addition to non-agent resources such as external
tools, data, and services. During these interactions, all participating entities are required to main-
tain, transmit, and share specific context, such as historical data or environmental configuration
parameters. For example, when a personal assistant agent is assigned the task of arranging a travel
itinerary for a user, it may need to query a weather API and interact with hotel and transportation
booking agents. Throughout this process, the involved entities must exchange both private and
non-private user data, including user preferences and authorizations, and share progress information
related to the booking task. However, traditional web protocols (HTTP/RPC) are principally de-
signed for the transmission of data and lack semantic-level support. This design limitation results in
the treatment of complex context as ordinary data, with no distinction among higher-level seman-
tic elements such as historical context, user intent, or environmental configuration. Furthermore,
these web protocols have been demonstrated to lack the capacity to process logical semantics, such
as preconditions. Consequently, traditional web protocols are inadequate in meeting the stringent
demands of the Agentic Web for efficient context management during task execution.

Secondly, the task execution process in the Agentic Web is contingent on LLM based agents, thereby
engendering heightened requirements for semantic accuracy in communication and interac-
tion. In the Agentic Web, entities need to communicate through structured and standardized
protocols to ensure semantic consistency and operational feasibility during task execution. How-
ever, LLM-based agents typically mediate their understanding and generation of structured content
through natural language, introducing inherent non-determinism into the output process, which is
susceptible to issues such as formatting deviations and semantic drift, compromising the accuracy
and reliability of interactions. Consider the case of traditional API calls, which rely on developers
to interpret interface semantics from documentation and manually construct deterministic, struc-
tured invocations. Conversely, in the Agentic Web, agents are required to automatically interpret
interface semantics and translate natural language descriptions into operational commands. In the
absence of a semantically specified mechanism, the generated results are frequently unstable, which
complicates the assurance of structural integrity and semantic correctness in API calls. Therefore,
Agentic Web protocols provide machine-readable interface semantic specifications that explicitly
define the data types, value ranges, and business meanings of each field. This can guide LLMs in
accurately parsing and generating structured invocations. Furthermore, the protocol must address
semantic divergence across entities, for instance by unifying or mapping field labels such as “UID”
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and “UserID”, in order to avoid semantic ambiguities. However, traditional web protocols such as
HTTP and RPC are primarily designed for data transport and lack support for interface semantics
and field alignment. Consequently, they are insufficient for the semantic coordination and contextual
understanding required.

Finally, the task execution process in the Agentic Web requires high interactivity in communica-
tion. The task execution process is frequently distinguished by protracted durations, multi-phase
workflows, and asynchronous operations. Furthermore, in circumstances involving sensitive ac-
tions, immediate user intervention may be imperative. This necessitates that agent communication
be supported by persistent and dynamic interaction mechanisms. For instance, let us examine a case
where a personal assistant agent is assigned the task of formulating a trading strategy. In such a case,
the agent may need to communicate intermediate results to the participant at different phases of
the procedure. In particular, if the task involves high-risk decisions or large financial transactions,
the agent must halt its operation until it receives an explicit confirmation from the user to con-
tinue. The execution of such task workflows necessitates not only the possession of fine-grained task
control capabilities by agents but also the implementation of communication protocols that support
event-driven architectures, asynchronous responses, and persistent task state management. However,
traditional web protocols such as HTTP and RPC typically adopt a synchronous request-response
model and lack native support for long-running tasks. Furthermore, they are also ill-equipped to
handle complex control flows such as task suspension, external event injection, or dynamic user
confirmation. Whilst mechanisms such as polling and Webhooks can be utilized to facilitate partial
asynchronous interactions, they frequently necessitate the implementation of additional logic layers,
thereby increasing system complexity and compromising overall robustness. It is therefore vital that
the Agent Web urgently requires more capable and interaction-rich protocol mechanisms to support
multi-phase, multi-party task workflows in a more natural and efficient manner.

According to the research in (Yang et al., 2025d), a large number of new agent communication
protocols emerged in the past year. Among them, the general-purpose protocols, MCP and A2A,
have demonstrated significant technical advantages and community influence. These two protocols
are designed from different dimensions to address the characteristics of the Agentic Web, forming
complementary solutions. We will provide a brief introduction to these two communication protocols
and explain which key challenges faced by the Agentic Web they can address and how to address
them, followed by detailed introductions to their workflows.

MCP, short for Model Context Protocol, proposed by Anthropic (Anthropic, 2024), is a communi-
cation protocol focused on interactions between agents and non-agent resources. It aims to establish
standardized interfaces for tool invocation and has gradually evolved into a de facto industry stan-
dard. Under the framework of this protocol, applications encapsulate the tools, resources, and
prompts they provide into service units that can be recognized by agents. Agents obtain application
metadata, including function descriptions, input-output formats, and usage constraints, through
the query interface of the MCP, and implement the call and control of applications based on the
operation instructions defined by the protocol. For example, when an agent needs to call an image-
generation tool, it can obtain the parameter-configuration specifications of the tool through the
MCP and submit the generation task in a standardized request format to ensure the consistency
of cross-platform tool calls. To some extent, MCP has enhanced the structural consistency and
standardization of communication between agents and resources.

A2A, short for Agent-to-Agent (Google, 2025a), proposed by Google, is a communication protocol
specifically designed to facilitate direct interaction between agents through a distributed capabil-
ity discovery and communication mechanism. Within A2A, each agent registers its capability-
description file (AgentCard) to a predefined URI, publicly exposing its functions, interfaces, and
communication specifications. Other agents can address and obtain the capability map and ini-
tiate asynchronous interactions supporting multimodal data. In addition to capability discovery,
A2A also incorporates an authentication mechanism to establish secure communication channels
between agents. This mechanism can integrate with Decentralized Identifiers (DIDs), allow-
ing each AgentCard to include a DID reference that links to a DID Document containing public
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Figure 12: The above schematic illustrates a rudimentary AgentWeb system, with A2A and MCP
serving as examples of agent communication protocols. In such an Agent Web, a user can assign
a task (query) to a client agent via a conventional interactive medium (GUI or text). The client
agent then discovers remote agents that meet the task’s criteria on a public webpage, under the
A2A protocol, and the task is subsequently allocated to their constituent agent mesh via the A2A
protocol. During the execution process, agents may request external resources through the MCP
protocol to facilitate task completion. Once the task completes, the client agent will return the
result to the user in a human-readable form.

keys and authentication methods. By resolving and verifying these DIDs, agents can perform de-
centralized, cryptographically verifiable identity checks without relying on centralized registries or
third-party identity providers. This enables self-sovereign authentication, improves interoperability,
and aligns well with the trust requirements of dynamic agent ecosystems. At the same time, to
meet the requirements of user intervention in sensitive operations and asynchronous task control in
the Agentic Web, the protocol introduces an event-driven and state-callback mechanism. It triggers
event notifications at key nodes of long-cycle tasks, pushes intermediate results for user confirma-
tion, and dynamically updates task states through the state-callback interface, compensating for the
deficiencies of traditional protocols in asynchronous interaction and user intervention.

5.3.2 Details of MCP

The working process of the MCP centers around session interactions based on capability negotiation,
constructing an efficient, secure, and standardised communication system through the collaboration
of the Host, the MCP Clients, the MCP Servers, and Resources (Anthropic, 2024).

1. Host denotes LLM-based agents tasked with user interaction, comprehension, and reasoning
over user queries, tool selection, and the initiation of strategic context requests. Each
host may be associated with multiple MCP clients.

2. MCP Client performs two key functions: it interfaces with a host to enumerate available
resources and creates a singular connection to an MCP Server for the purpose of launching
executive context requests.
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3. MCP Server interfaces with the Resource while sustaining an exclusive connection to the
MCP client, delivering the required contextual information from the Resource to the MCP
Client.

4. Resource denotes the data, tools, or services provided locally or remotely.

In the initialization phase, the Host is manually connected to several MCP Clients, while each
corresponding MCP Server connects to its accessible Resources such as the local file system or a
remote dataset. Subsequently, the MCP Client will complete its initialization configuration, followed
by actively establishing a session connection with the corresponding MCP Server. In the initial stage
of this session, the MCP Client will launch a capability declaration request by providing the MCP
Server with a detailed exposition of the functions for which it is equipped. Upon receiving a client
request, the server communicates its capabilities, including service subscription, tool-call interfaces,
and prompt template provision. The process of capability declaration and response facilitates the
precise delineation of the boundaries of the protocol features that can be enabled in the session by
both the client and the server. It ensures that the interaction proceeds in an orderly manner within
the scope of their capabilities and establishes an active session based on negotiated functions.

After launching the session, interactions advance efficiently in a parallel multi-loop pattern. The Host
is primarily responsible for interacting with the user and executing corresponding instructions based
on user queries. During this user-Host interaction, the user may explicitly require the participation
of a specific capability or context provided by a particular MCP Client to accomplish a given task.
Alternatively, the Host may proactively identify the required capability or context through its own
task understanding and reasoning processes. In both scenarios a strategic context request will
accordingly be sent to an appropriate MCP Client for collaboration by the Host. Subsequently, the
MCP Client will transform this request into an executive context request for tools or resources
and send it to the MCP Server. Following the MCP Server’s processing of the request and the
subsequent return of a response, the MCP Client receives this and passes it to the Host. Then the
Host will either update the user interface or provide feedback to the AI model, thus completing a
full cycle of user-agent interaction supported by MCP.

In the session termination phase, the Host send termination instructions to all MCP Clients, which
then send session-end request to the servers, officially ending the entire session life cycle.

Additionally, the notification loop mechanism guarantees the real-time transmission of significant in-
formation, such as alterations in resource status. When the MCP Server detecting resource updates,
it promptly issue notifications to the MCP Client to ensure that both the MCP Client, enabling the
Host to receive continuous, real-time updates.

By adopting a Client-Server architecture to mediate and standardize agents’ requests to resources,
the fragmentation in tool invocation caused by various providers of LLM and service is significantly
reduced. This approach substantially enhances the semantic accuracy of interactions between agents
and non-agent resources, thereby improving the overall precision and reliability of the Agentic Web.

5.3.3 Details of A2A

A2A, an acronym for Agent to Agent, is an agent communication protocol proposed by Google for
enterprise-scale agent ecosystems, which enables agents to communicate and collaborate effectively,
irrespective of their underlying frameworks or provider-specific implementations. The following
components constitute the fundamental elements of A2A: Agent Card, Task, Message, and
Artifact (Google, 2025a).

1. Agent Card denotes a publicly accessible JSON document, typically hosted at a public
URL, detailing the agent’s operational scope, its specific functions, the designated endpoint
URL, methods for authentication, and other relevant metadata.

2. Task is a concrete representation of a unit of work, identified by a unique ID, whose status
can be updated over multiple rounds of interaction.
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3. Message refers to a communication object exchanged among entities, usually attributed
with either a “user” or “agent” role. Messages may contain multiple Parts, such as text,
file attachments, or structured data, supporting multimodal interaction.

4. Artifact is the output generated by an agent during the execution of a task. Unlike Message,
which typically conveys dialogue or instructions, Artifact represents a finalized result or
deliverable produced by the agent.

The workflow of A2A is quite straightforward. When receiving a user query, the client agent creates
a new Task with a unique ID and begins the task execution process. First, the client agent retrieves
JSON-formatted Agent Cards from publicly accessible URL to identify remote agents whose capa-
bilities match the task requirements. Once suitable remote agents has been located, communication
and collaboration between the client agent and the remote agents begins via the exchange of Mes-
sages under the A2A protocol. As the task execution progresses, the state of Task is continuously
updated to reflect real-time changes. Finally, once the client agent determines that the task has
been completed, the output is encapsulated and delivered in the form of an Artifact.

Compared to the MCP, the A2A protocol not only expands the scope of agent communication
to include direct interaction and collaboration between heterogeneous agents but also significantly
improves the management of context, messages, and tasks in multi-agent coordination, establishing
a strong structural association between these elements.

Specifically, the A2A protocol allocates a unique identifier to each context, creating an explicit link
between tasks and their associated environments. This design allows for the more organized and
traceable management of multiple interrelated tasks, improving context consistency in complex sce-
narios and supporting robust task mechanisms. In addition, A2A introduces the unique identifier
of the current task and a list of related task IDs for each message. This establishes a bidirectional,
structured link between messages and tasks, enabling semantic anchoring of messages to their corre-
sponding tasks and historical referencing across tasks. Consequently, A2A supports context tracing
throughout multi-turn interactions, tool invocation sequences, and other temporally extended work-
flows, forming coherent interaction chains. Unlike the MCP protocol, which has a loose coupling
between tasks and messages, A2A’s tightly integrated design is better suited to complex collab-
oration scenarios, such as iterative dialogues and multi-agent tool orchestration. It significantly
enhances the capabilities of systems in terms of state synchronisation, semantic coherence, and fault
tolerance across distributed intelligent agents.

In addition, the A2A protocol explicitly addresses the asynchronous nature of agent communication,
introducing mechanisms for asynchronous messaging and task state updates. Once a client agent
has initiated a task, it can subscribe to receive progress updates relating to that task. As the task
progresses, any status changes are promptly sent to the client agent, ensuring users are kept informed
in real time.

The A2A protocol achieves cross-task, multi-turn, and cross-agent context consistency tracking
through its context identification and tightly coupled task–message binding mechanisms. This en-
sures a high degree of coordination between information and task flows in multi-agent systems. Fur-
thermore, the protocol incorporates specific design considerations to support asynchronous agent
communication and task progress updates. These features provide a robust foundation for the
Agentic Web, enabling effective context management and supporting long-duration, multi-stage,
and asynchronous task execution.

5.4 Emerging Directions of Agentic Web Systems

Having detailed the systematic transitions of the Agentic Web, from its foundational architecture to
its core communication protocols, we now stand at a critical juncture. The technical frameworks,
while robust, do not by themselves guarantee successful real world deployment. Their implemen-
tation introduces profound paradigm shifts that challenge long-standing assumptions about digital
interaction and commerce. This section, therefore, pivots from the established mechanics of agent
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systems to confront the most pressing open questions that will determine their viability and adop-
tion. We will explore two fundamental challenges that arise directly from the previously discussed
transformations: the disruption of the traditional user-browser relationship and the unresolved com-
plexity of creating sustainable billing models for agentic services. Answering these questions is
crucial to connect architectural principles with their real-world implementation.

5.4.1 The Disruption of Traditional Browsers by Agents

The emergence of the “agent browser” signifies a fundamental disruption to the established user-
browser interaction paradigm that has dominated the web for decades. Traditional browsers function
as passive, user-driven tools for information retrieval and direct manipulation; the user is in complete
control, manually clicking links, filling forms, and navigating pages. In stark contrast, an agent
browser operates as a proactive, goal-oriented partner. It accepts high-level objectives in natural
language and autonomously translates them into a series of actions, fundamentally altering the user’s
role from a hands-on operator to a strategic delegator.

This shift from direct manipulation to delegated autonomy raises profound questions about inter-
face design, user control, and trust. How can we design user interfaces that effectively manage user
expectations when the execution path is no longer linear or predictable, but is instead a dynamic
process decided by the agent? When a user delegates a complex task, the agent’s reasoning process
can become a “black box,” creating a potential gap in user understanding and trust. What new
interaction primitives are required to allow for meaningful human oversight, intervention, and col-
laboration without undermining the agent’s autonomy? What methods are effective for shaping a
user’s mental model to precisely represent the functionalities and restrictions of the agent, ensuring
they can delegate tasks effectively and safely? Ultimately, the central question is how we rede-
fine the user’s relationship with the browser when it evolves from a simple tool into an intelligent,
autonomous partner.

5.4.2 The Billing Challenge for Advanced Agent Services

Beyond the challenges in user interaction, the practical and widespread adoption of advanced agent
systems confronts a critical hurdle: the development of viable and transparent billing models. Unlike
traditional software with predictable, often flat-rate pricing (e.g., subscriptions), advanced agent
tasks, such as conducting a deep investigative report, generating complex images, or executing multi-
step financial analyses, incur variable and potentially substantial computational costs. These costs
stem from resource-intensive operations, including extensive LLM token consumption, numerous
third-party API calls, and prolonged use of high-performance computing infrastructure.

This variability raises a central, unresolved question: how can we design a billing system that is
both equitable for the user and sustainable for the service provider? The traditional “one-size-fits-
all” subscription model appears inadequate for this new reality. How can resource consumption
be accurately tracked and attributed back to a single high-level user command, especially when
that command spawns multiple sub-agents that may collaborate and delegate tasks further? What
mechanisms can be implemented to provide users with a reliable cost estimate before initiating a
potentially expensive task, thereby preventing “bill shock” and fostering trust? Should billing be
based on consumed resources (e.g., tokens, CPU time), the value of the final outcome, or a more
complex hybrid model? Devising a framework that is granular, transparent, and user-friendly is a
formidable challenge that will directly impact the economic feasibility and accessibility of the entire
agent ecosystem.

6 Applications of the Agentic Web

To understand how the Agentic Web is transforming digital environments, we begin by examining its
core capabilities: transactional, informational, and communicational paradigms. These paradigms
serve as the foundation for a wide range of use cases.
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In the following subsections, we explore both the potential domains of the Agentic Web, which
provide a conceptual framework, and its current applications, which illustrate how these paradigms
are already being implemented in real-world systems.

6.1 Potential Domains of the Agentic Web

The Agentic Web enables intelligent agents not only to access web content but also to operate au-
tonomously as active participants within the web. It facilitates three core functional paradigms,
transactional, informational, and communicational, which allow agents to autonomously execute
tasks, process and reason over knowledge, and collaborate with other agents within digital envi-
ronments. By providing machine readable interfaces, persistent cross-platform memory, and stan-
dardized coordination protocols, the Agentic Web transforms these paradigms from isolated agent
behaviors into scalable, system-wide capabilities.

• Transactional: Agents autonomously execute goal-oriented tasks on behalf of users or or-
ganizations, such as purchasing, booking, scheduling, or negotiating, by interfacing directly
with web services, APIs, or transactional interfaces.

• Informational: Agents retrieve, synthesize, and contextualize information across dynamic
sources. This modality supports research, knowledge discovery, monitoring, and real-time
decision support through adaptive reasoning and long-horizon memory.

• Communicational: Agents engage in structured communication with other agents or sys-
tems to coordinate, delegate, or cocreate. This includes multi-agent negotiation, protocol
alignment, and collaborative workflows across organizational or platform boundaries.

These modalities represent distinct ways in which agents interact with digital environments, whether
by executing tasks, gathering and analyzing knowledge, or coordinating with other agents. The inte-
gration of these modalities into real-world applications highlights the transformative potential of the
Agentic Web. Most applications of the Agentic Web span multiple modalities, with specific systems
emphasizing different functional combinations. The following sections will analyze representative
implementations and domain-specific use cases from this perspective, incorporating insights from
recent research.

6.1.1 Transactional: Enabling Autonomous Execution of Web-Based Services

The Agentic Web redefines how transactional interactions are conducted by embedding LLM-
powered agents directly into service infrastructures (Zhou et al., 2023b; Deng et al., 2023). With
the help of semantic APIs, standardized execution protocols, and persistent authorization tokens,
agents can interact with multiple service endpoints without requiring bespoke integrations (Master-
man et al., 2024).

This framework enables agents to autonomously orchestrate complex, multi-step workflows. For
example, booking a trip no longer requires users to manually navigate several websites. Instead,
an agent within the Agentic Web can query multiple travel providers, assess options based on
factors such as price, time, loyalty status, or environmental impact, and complete the bookings
simultaneously by coordinating flights, accommodations, and car rentals in one seamless operation.

Similarly, App/Mobile Agents (Wang et al., 2024a; Wu et al., 2025; Zhang et al., 2025a) enhance
the Agentic Web’s transactional capabilities by providing personalized, context-aware services across
devices. App/Mobile Agents can autonomously handle tasks such as managing a user’s calendar,
adjusting schedules, and coordinating tasks based on real-time information. For instance, when
booking a flight, a Mobile Agent could automatically adjust the user’s itinerary if a flight is delayed,
suggest meal options based on dietary preferences, or even reorder tickets if there is a sudden
change in plans. These agents operate across mobile platforms, facilitating the seamless execution
of transactional activities while adapting to changing user needs.
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These capabilities rely on a web environment designed for autonomous machine participation, where
agents can read, write, and reason about data, negotiate terms, and take action based on user
preferences and environmental factors, thereby creating a more dynamic and efficient transactional
experience.

6.1.2 Informational: Structuring Autonomous Knowledge Discovery and Analysis

In the informational domain, the Agentic Web powers a system that allows agents to access dynamic
content persistently, reason over long-term sources, and achieve semantic interoperability across het-
erogeneous knowledge systems. Rather than merely retrieving data, agents within the Agentic Web
are empowered to perform end-to-end research tasks, identifying, contextualizing, and synthesizing
information over extended periods (Opera, 2025; Corporation, 2025).

In this model, agents go beyond simple search queries and static responses. Utilizing standard-
ized document schemas, citation graphs, and persistent monitoring capabilities, agents can perform
comprehensive, longitudinal research. For example, Deepresearch Agents (Huang et al., 2025b) au-
tonomously track emerging papers, compare methodologies, extract citations, and synthesize findings
into structured outputs. These agents continuously refine their insights based on the latest publica-
tions, leveraging the Agentic Web’s ability to facilitate cross-platform collaboration and seamlessly
integrate new data sources. This allows Deepresearch Agents to operate as active participants in a
broader, interconnected research ecosystem, where knowledge is continuously updated and refined.

The Agentic Web facilitates this by providing a unified infrastructure where agents are not only
capable of reading and writing data but also reasoning, negotiating, and acting within a dynamic
and evolving environment. Deepresearch Agents are designed to assist researchers in navigating
the vast and ever-evolving landscape of academic literature, and they do this by leveraging the
Agentic Web’s capabilities for cross-platform memory and semantic interoperability. These agents
autonomously identify gaps in research, suggest new directions, and propose potential collaborators
based on shared interests, making the research process more efficient and comprehensive.

In practice, Deepresearch Agents automate the synthesis of large datasets, identifying patterns and
trends across a wide range of publications. This process is made scalable by the Agentic Web’s
ability to support inter-agent communication, where these agents can collaborate, share findings,
and even align their goals with other agents working across different domains. By doing so, the
Agentic Web transforms research from isolated, manual efforts into a collaborative, scalable system
of knowledge discovery.

6.1.3 Communicational: Orchestrating Inter-Agent Collaboration and Negotiation

Perhaps the most distinct departure from today’s web lies in the Agentic Web’s capacity to support
autonomous, goal-driven communication between agents. This capability is not limited to message
passing; it also encompasses semantic alignment, negotiation, delegation, and long-term coordination
across agents that represent different users, systems, or organizations.

In a communicational paradigm, agents function as active participants in multi-agent workflows
(Tran et al., 2025; Chen et al., 2023b). Consider a joint research initiative spanning multiple univer-
sities: agents representing each institution can autonomously share relevant datasets, align experi-
mental timelines, and coauthor reports, negotiating authorship, funding distribution, and intellectual
property rights based on prespecified protocols (Anthropic, 2024a).

Creative industries benefit similarly. The Agentic Web supports the formation of temporary agent
coalitions for cross-modal content creation (Adobe, 2025; Khade, 2024), where writing agents, vi-
sual design agents, and music composition agents coordinate roles, timelines, and revenue sharing
agreements. In this context, the web’s support for decentralized identity, smart contracts, and task
provenance becomes essential.

In enterprise environments, collaboration is enhanced when agents from different companies au-
tonomously coordinate and communicate (Yang et al., 2025e;c). For example, in a manufacturing
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Table 2: Representative AI-Augmented Browsers (Agent-as-Interface).

Application Intelligence
Domain

Interaction
Domain

Economic
Domain

Focus

Opera Neon Agentic AI with
task
orchestration

Chat-Do-Make
sidebar,
autonomous
assist mode

Invite-only
preview;
premium model

Informational

Perplexity Comet Search-
augmented LLM
with automation

Chromium-based
browser; sidecar
assistant

Subscription-
based (Perplexity
Max)

Informational

Browser Dia Context-aware
browsing
assistant

Inline chat with
context
reasoning,
insertion cursor

Beta (Arc users);
invite-only

Informational

Copilot (Edge) Contextual
summarization
and suggestions

Edge sidebar;
light task hints

Freely available
in Edge

Informational

Microsoft NLWeb Natural language
semantic
interface

Conversational
UI via
Schema/MCP

Open-source;
publisher
integration

Communicational

ecosystem, supplier agents, logistics agents, and procurement agents can autonomously share infor-
mation and adapt supply chains in real time to respond to disruptions (SmythOS, 2024).

At the core of all these applications lies a communicational infrastructure designed for autonomous
participants. Agents are capable of interpreting shared protocols, maintaining structured dialogue
states, and reasoning about shared goals and constraints throughout long-term interactions.

6.2 Current Applications of the Agentic Web

The Agentic Web is already transitioning from conceptual frameworks to real-world applications.
We categorize its early implementations into two primary interaction models: Agent-as-Interface
and Agent-as-User. The former focuses on augmenting the user experience by providing intelligent
intermediaries between humans and the web, while the latter introduces autonomous agents that
act on behalf of the user, interacting with web systems directly as proxy users.

6.2.1 Agent-as-Interface: Agents as Intelligent Web Intermediaries

In the Agent-as-Interface paradigm, agents enhance traditional user interfaces by providing context-
aware assistance, task recommendations, and intelligent summarization. These systems typically
operate alongside the human user, augmenting their browsing experience without fully automating
decision-making. Representative applications are summarized in Table 2.

Opera Neon delivers one of the most integrated experiences of agent-enhanced browsing. Re-
leased in May 2025, it features a tri-modal interface: Chat enables conversational interaction with
LLMs, Do facilitates autonomous completion of web tasks such as multi-step forms and service work-
flows, and Make empowers content creation and persistent agent tasks even when users are offline
(Opera, 2025; Press, 2025). Notably, Opera Neon’s “Do” mode represents a hybrid approach,
where the system transitions from interface augmentation to autonomous user proxy behavior,
demonstrating how Agent-as-Interface applications can incorporate Agent-as-User capabilities while
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maintaining the primary focus on user-controlled workflows. Neon exemplifies the transition from
passive interfaces to proactive, task-oriented web experiences.

Perplexity Comet enhances the classic search experience by embedding autonomous search
agents directly within the browser environment. Comet incorporates AI-driven research, question
answering, and proactive summarization within a Chromium-based framework, reducing the need
for iterative querying while maintaining human oversight in decision-making loops (Wiggers, 2025).

Browser Dia introduces an insertion cursor that provides real-time agentic suggestions within
the browsing context, moving beyond sidebar chat to deeply integrated inline assistance (Thurrott,
2024). This design reduces context-switching overhead and improves session continuity, highlighting
the benefits of embedded, contextually aware agents.

Microsoft Copilot focuses on summarization and lightweight agentic assistance via a non-
intrusive sidebar, targeting everyday users who benefit from summarizations, insights, and task
hints but do not require full task automation (Corporation, 2025).

Microsoft NLWeb advances the notion of Agent-Native Interfaces, proposing a semantic layer for
websites where agents interact through natural language interfaces exposed via schemas and MCP
(Microsoft Corporate Blogs, 2025). By encouraging publishers to design agent-accessible endpoints,
NLWeb shifts the web ecosystem towards cooperative interaction between websites and AI agents,
reducing reliance on brittle scraping and improving transparency in web automation.

6.2.2 Agent-as-User: Autonomous Agents Operating as Proxies

In the Agent-as-User paradigm, AI systems operate autonomously as users of the web, executing
tasks, navigating interfaces, and completing workflows without direct human control. These systems
leverage browser automation, virtual environments, and programmatic UI manipulation to emulate
user actions, thereby enabling end-to-end autonomy. The development and evaluation of such agents
have been greatly facilitated by comprehensive benchmarks like Mind2Web (Deng et al., 2023), which
includes over 2,000 open-ended tasks across 137 websites in 31 domains. Its online extension, Online-
Mind2Web (Xue et al., 2025), further advances this effort by offering 300 diverse and realistic tasks
across 136 websites, enabling the assessment of web agents under conditions that closely mirror
real-world usage patterns. Recent advances in multimodal agent foundations (Wu et al., 2025) and
mobile agent architectures (Wang et al., 2024a) have further expanded the scope of autonomous agent
capabilities beyond traditional web environments, while scalable task generation methodologies (Xie
et al., 2025) advance the field’s evaluation capabilities. Examples of recent applications are shown
in Table 3.

ChatGPT Agent (evolved from OpenAI Operator), released via the ChatGPT platform, repre-
sents one of the first multi-modal agentic deployments with persistent virtual browsing capabilities.
Combining LLM reasoning with code execution, file system access, and API integrations, the Agent
can autonomously complete multi-step tasks such as booking services, extracting structured data, or
synthesizing reports across complex web workflows. Initially launched as Operator in January 2025,
it has since been fully integrated into ChatGPT’s core platform as “Agent Mode” demonstrating
the rapid evolution from standalone research prototypes to integrated production systems (OpenAI,
2025).

Anthropic Computer Use leverages vision-based perception and GUI manipulation, powered
by Claude models, to control desktop and web interfaces in a human-like fashion without relying on
backend APIs. Available through Claude 3.5 Sonnet, it showcases highly generalized agents capable
of interacting with arbitrary applications. On standardized OSWorld benchmarks, Computer Use
achieves 14.9% success rate on screenshot-only tasks and 22.0% with reasoning steps, significantly
outperforming previous vision-action baselines (Anthropic, 2024).
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Table 3: Representative Autonomous Web Agents (Agent-as-User).

Application Intelligence
Domain

Interaction
Domain

Economic
Domain

Focus

ChatGPT Agent Multi-modal
agent
orchestration

Virtual browser;
cross-API tool
integration

ChatGPT
Plus/Team tiers

Transactional

Anthropic
Computer Use

Vision-guided
GUI
manipulation

Claude-powered
desktop/web
control

Claude Sonnet
3.5 API

Transactional

Google Project
Mariner

Autonomous
long-horizon task
execution

Gemini-2
reasoning within
Chrome
prototype

Research
prototype
(Gemini 2.0)

Transactional

Genspark Super
Agent

Mixture-of-
Agents
orchestration; 9
LLMs

Multimodal
real-world task
execution (voice,
maps,
documents)

Free tier +
commercial
credits

Multi-domain
personal
productivity

Google Project Mariner is an experimental autonomous agent system powered by Gemini 2.0
models and integrated into Chrome as a sidebar prototype. Designed for long-horizon research tasks,
multi-step workflows, and autonomous form filling, Mariner incorporates reasoning transparency via
natural language explanations of its actions. Evaluated on the WebVoyager benchmark, it achieves
an 83.5% success rate on long-horizon web tasks, representing a cutting-edge research milestone in
explainable autonomous browsing (Google DeepMind Blog, 2024).

Genspark Super Agent exemplifies a next-generation implementation of agentic autonomy
through its Mixture-of-Agents architecture. Unlike traditional assistants that merely retrieve in-
formation, Super Agent can plan, act, and use over 80 tools, including real-time voice calls, map
navigation, document editing, calendar scheduling, and video generation, across diverse domains
with minimal supervision. It dynamically orchestrates nine large language models and integrates
more than ten proprietary datasets, enabling multi-step task execution and adaptive reasoning.
Genspark Super Agent thus illustrates the evolution from conversational AI to autonomous digital
agency, enhancing personal productivity through end-to-end workflow automation (Genspark, 2025).

The current landscape reveals a clear evolutionary trajectory where Agent-as-Interface applica-
tions are progressively incorporating Agent-as-User capabilities. This evolution is driven
by fundamental differences in their underlying technical architectures. Agent-as-Interface systems
primarily rely on API-based interactions, utilizing structured endpoints, webhooks, and service
integrations to mediate between users and web services. This approach offers faster execution, bet-
ter error handling, and more predictable outcomes, but remains constrained by the availability and
design of existing APIs. In contrast, Agent-as-User systems employ GUI-level automation, using
computer vision, coordinate-based clicking, and screen parsing to interact with arbitrary interfaces
designed for human use. While this approach provides universal compatibility and can operate on
any visual interface, it introduces latency, brittleness, and higher computational overhead due to the
need for continuous visual interpretation and coordinate calculation.

The convergence toward hybrid architectures suggests a future where agents dynamically select
between API calls for structured interactions and GUI automation for legacy or non-API-enabled
systems. This architectural pluralism represents the next evolutionary step, where the same
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agent can seamlessly transition between acting as an intelligent interface layer and operating as an
autonomous user proxy, depending on the task context and available interaction modalities. Such
systems will likely require sophisticated decision trees to determine the optimal interaction method
for each specific workflow component, building upon advances in multimodal agent foundations (Wu
et al., 2025) and enhanced by deep research capabilities (Huang et al., 2025b) for complex information
synthesis tasks.

In summary, early applications of the Agentic Web demonstrate a spectrum of possibilities from
Agent-as-Interface augmentation to Agent-as-User autonomy, with an emerging trend toward hy-
brid implementations. The convergence of commercial products and academic research suggests
accelerating momentum toward more capable, accountable, and architecturally flexible web agents
that can adapt their interaction strategies to maximize both efficiency and reliability.

6.2.3 Agent-with-Physics: Autonomous Robots Powered by AI Agents

The Agent-with-Physics paradigm extends the concept of agentic intelligence from the virtual realm
to the physical world, enabling AI agents to perceive, reason, and act through embodied systems
such as robots and sensor-equipped devices. These agents integrate high-level planning with low-level
control, often relying on multimodal perception (e.g., vision, audio, haptics), real-time adaptation,
and embodied cognition to execute physical tasks autonomously in dynamic environments.

Unlike purely digital agents, Agent-with-Physics systems must address challenges related to safety,
latency, actuation uncertainty, and physical affordances. Recent advances in vision-language-action
models (Kim et al., 2024; Geng et al., 2025; Li et al., 2023), hierarchical policy learning (NVIDIA
et al., 2025; Kuang et al., 2024; Geng et al., 2023; Ding et al., 2024), and real-world training
environments, such as Open X-Embodiment (O’Neill et al., 2023), have significantly improved the
generalization capabilities of robotic agents across diverse tasks, from household manipulation to
warehouse logistics.

Representative implementations such as RT-1 (Brohan et al., 2023b), RT-2 (Brohan et al., 2023a) and
RT-X (O’Neill et al., 2023), Tesla Optimus, and Figure 01 showcase emerging commercial interest
in general-purpose humanoid robots, while academic efforts like PaLM-E (Driess et al., 2023) and
Mobile ALOHA (Fu et al., 2024) highlight the integration of large foundation models into robotic
control loops. These systems demonstrate the feasibility of using language prompts to guide physical
behavior, bridging human intent and machine execution through a unified agentic framework.

As embodied agents increasingly connect with digital ecosystems, a new class of hybrid agents
emerges, capable of coordinating actions both online and offline. For instance, an agent might
autonomously schedule a grocery delivery online while simultaneously preparing a physical environ-
ment (e.g., setting up a smart kitchen) for the incoming goods. This tight coupling of perception,
cognition, and actuation highlights the importance of developing robust control policies, real-time
feedback loops, and safety-aware planning strategies.

Looking ahead, the Agent-with-Physics paradigm not only expands the frontier of human-agent
collaboration but also lays the groundwork for a unified agentic infrastructure where digital and
physical agents operate in concert. The fusion of web-native intelligence, embodied autonomy, and
multimodal interaction marks a critical step toward realizing truly general-purpose AI agents capable
of seamlessly bridging virtual tasks and physical realities.

7 Risks, Security & Governance

In this section, we provide an overview of how agentic web safety and security can be ensured.
As illustrated in Figure 13, the ecosystem of Agentic Web Safety and Security is composed of
intelligent agents, powered by LLMs such as OpenAI (Hurst et al., 2024), Gemini (Team et al.,
2023), and other foundational platforms (Touvron et al., 2023a; Bai et al., 2023; Liu et al., 2024a;
Zan et al., 2025; Priyanshu et al., 2024), operating across a wide range of devices, including desktops,
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Figure 13: Illustration of the Agentic Web Safety and Security Ecosystem. The central hexagon
represents the core components of the agentic web, including large language models (e.g., OpenAI
(Hurst et al., 2024) and Gemini (Team et al., 2023)), agent frameworks, and safety infrastructures.
These systems interact with a diverse set of devices (e.g., laptops, desktops, servers, and mobile
phones), requiring robust and scalable security measures to ensure safe deployment and communi-
cation across the entire agentic web.

laptops, servers, and mobile phones. These agents interact with cloud services, third-party tools,
and each other to carry out goal-directed tasks on behalf of users. At the center of the figure
is a secure agentic infrastructure that integrates LLMs, agent frameworks, and cloud-based safety
mechanisms. The surrounding arrows depict multi-device interaction, emphasizing the distributed
nature of the agentic web and the critical need for consistent, cross-platform security protocols.
This interconnected architecture highlights the growing importance of privacy, trust, and robustness,
as agents autonomously retrieve information, execute commands, and collaborate across sensitive
digital environments.

To ensure the safety and security of the agentic web, we begin by analyzing its potential threats
during real-world use, then introduce red-teaming methods for uncovering vulnerabilities, followed
by defense strategies to address these issues. Finally, we present evaluation techniques to measure the
effectiveness of safety and security mechanisms. Specifically, Section 7.1 outlines the key safety and
security threats associated with the agentic web. Building on this analysis, Section 7.2 discusses red
teaming as a methodology for identifying vulnerabilities and assessing the robustness of agentic web
systems before deployment. Section 7.3 explores defense strategies and technical safeguards aimed
at enhancing the reliability and trustworthiness of agentic web applications. Lastly, Section 7.4
reviews current approaches for evaluating the safety and security of these systems.

7.1 Safety and Security Threats

Agentic Web agents introduce novel security risks by operating autonomously across the open in-
ternet, executing real transactions, and maintaining persistent states. Table 4 captures this funda-
mental shift.

7.1.1 Threat Analysis Across Agentic Web Layers

We organize threats across the three architectural layers (Section 3), focusing on risks unique to
autonomous web operations, as shown in Tables 5–7. While some attacks may have cross-layer
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Table 4: Agentic Web Risk Evolution: From Controlled Systems to Autonomous Web Operations

Dimension Traditional AI → Agentic Web

Operational Scope Single-domain tasks → Cross-platform orchestration
Financial Authority Read-only access → Transaction execution
Persistence Stateless queries → Multi-session memory
Attack Surface API endpoints → Entire web ecosystem
Failure Impact Incorrect output → Real-world consequences
Trust Model Human verification → Autonomous decision-making

Table 5: Intelligence Layer Threats: Cognitive and Reasoning Attacks. These threats target the
agent’s decision-making processes, focusing on how web interactions corrupt objectives, knowledge,
and planning capabilities.

Threat Description Example

C1: Persuasion-Based
Goal Drift

Web UI/UX patterns gradually
shift agent objectives through psy-
chological manipulation

Budget flight search influenced by
comfort-emphasizing interfaces to book
premium seats

C2: Knowledge Base
Poisoning

Adversarial web content corrupts
agent’s accumulated knowledge and
beliefs

SEO-optimized fake research sites poi-
son climate agent’s factual understand-
ing

C3: Preference Learning
Corruption

Agent learns harmful patterns from
repeated web interactions

Shopping agent trained to prefer spon-
sored results through manipulated
feedback

C4: Multi-Stage Plan-
ning Subversion

Complex task sequences manipu-
lated through incremental decision
corruption

Travel itinerary gradually inflated:
economy→premium flight triggers lux-
ury hotel selection

C5: Contextual Memory
Exploitation

Historical interactions weaponized
to bias future decisions

Past emergency booking used to justify
all future premium purchases

effects (e.g., goal drift leading to overspending), we categorize each threat by its primary attack
vector to avoid redundancy and maintain analytical clarity.

Cross-Layer Threat Cascades Unlike traditional systems where threats remain isolated, Agen-
tic Web threats cascade across layers: Vertical (cognitive→protocol→economic), Horizontal
(agent-to-agent spread), and Temporal (corruption through persistent memory (Narajala and
Narayan, 2025)). These cascades transform localized attacks into system-wide failures (de Witt,
2025). For instance, a goal drift (C1) can lead to protocol exploitation (P1), ultimately resulting
in unauthorized purchases (E1). The temporal dimension adds further complexity as threats can
persist across agent generations through learned behaviors and contaminated training data.

Relationship to Existing Frameworks While OWASP’s Agentic AI Threat Model (OWASP
GenAI Security Project, 2025) and CSA’s MAESTRO framework (Huang, 2025) provide founda-
tional vulnerability taxonomies, Agentic Web threats differ in scale and propagation. For instance,
our Knowledge Base Poisoning (C2) extends beyond prompt injection to web-scale information cor-
ruption, as demonstrated by code review agent compromises (CyberArk Labs, 2025).

Protocol threats adapt traditional network security to agent-specific contexts. MCP Context In-
jection (P1) exploits the protocol’s contextual awareness, which is identified as a fundamental vul-
nerability by Hou et al. (2025) and demonstrated practically by Attiya (2025). A2A coordination
attacks have been validated through CrewAI and AutoGen exploits (Palo Alto Networks Unit 42,
2025).
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Table 6: Interaction Layer Threats: Protocol and Communication Attacks. These threats exploit
agent communication mechanisms (MCP/A2A) and cross-service authentication, distinct from cog-
nitive corruption.

Threat Description Example

P1: Context Injection Malicious services inject persistent false
contexts affecting cross-platform behavior

Hotel adds “VIP status” to MCP
context, causing unnecessary upgrades
across all bookings

P2: Service Registry
Poisoning

Fake services infiltrate discovery systems
to intercept agent requests

Malicious “FastBooking” service in
MCP registry harvests credentials from
travel agents

P3: A2A Trust Exploita-
tion

Compromised agents abuse inter-agent
trust to spread malicious behaviors

High-reputation research agent injects
fabricated citations into collaborative
analysis

P4: Authentication
Chain Hijacking

Sequential auth tokens exploited across
service boundaries

Google login token escalated to ac-
cess Drive, then third-party research
databases

P5: Protocol Negotia-
tion Attack

Malicious actors force protocol downgrades
or incompatible versions during hand-
shakes

Service forces agent from secure A2A
v2 to vulnerable v1 during capability
exchange

P6: Coordination Storm Malicious messages trigger exponential
inter-agent communications

Single A2A broadcast spawns millions
of agent-to-agent queries

The potential for AI systems to act as autonomous economic agents has been recognized since
Brundage et al. (2018) identified market manipulation as an emerging threat vector, though the
scale envisioned by the Agentic Web amplifies these concerns significantly. A critical challenge in
this sphere is ensuring agents consider their impact on multiple stakeholders. Mitigation strategies
could draw from concepts such as simulating accountability and assessing stakeholder impact, though
scaling these alignment mechanisms remains an open challenge (Sel et al., 2024).

7.1.2 Security Implications and Future Directions

Agentic Web security requires three fundamental shifts from traditional approaches:

1. Architecture: Zero-trust models replacing perimeter security

2. Policies: Adaptive defenses superseding static rules

3. Scope: Cascade prevention over incident isolation

Enterprise patterns like MCP require adaptation for internet-scale deployments (Narajala and
Habler, 2025), as traditional models assume bounded, stateless operations incompatible with persis-
tent web agents.

Critical research gaps persist. Quantitative models for cascade probability and impact remain un-
derdeveloped, particularly for emergent behaviors in complex multi-agent systems (de Witt, 2025).
The challenge of securing systems that learn and adapt continuously has been recognized in recent
work on evolving threat landscapes (Deng et al., 2025), while cross-jurisdictional governance poses
additional complexity (Brundage et al., 2018). These dynamic threats may require fundamentally
new security paradigms. Rather than static defenses that become obsolete, future approaches might
embrace adaptability as a core principle: designing systems that strengthen through controlled ad-
versarial exposure (Jin and Lee, 2025). Such adaptive security architectures could transform the
continuous threat evolution from a vulnerability into a mechanism for improvement, though imple-
menting this vision remains a significant research challenge.
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Table 7: Value Layer Threats: Autonomous Transaction and Economic Risks. These threats emerge
specifically when agents gain financial authority and market participation capabilities.

Threat Description Example

E1: Transaction Author-
ity Abuse

Agents execute unauthorized high-value
transactions without human oversight

Books non-refundable business
class for family of four on budget
trip

E2: Cross-Platform Ar-
bitrage

Agents exploit pricing differences between
services at harmful scales

Books and cancels flights across air-
lines to manipulate dynamic pricing

E3: Payment Credential
Harvesting

Agents collect and misuse payment data
across multiple transactions

Compromised booking agent logs
credit cards from hotel/flight pur-
chases

E4: API Resource Mo-
nopolization

Agents consume excessive computational
resources across services

Research agent exhausts univer-
sity’s entire journal database quota

E5: Coordinated Market
Manipulation

Agent networks create artificial sup-
ply/demand conditions

Multiple agents book all seats on
routes to inflate prices

7.2 Safety and Security Red Teaming

Deploying AI agents within web applications introduces several technical risks (Zhang et al., 2024a),
including privacy leakage and fairness concerns (Amodei et al., 2016; Chua et al., 2024). For example,
one significant agentic web risk that may lead to information leakage is hallucination, where agents
generate inaccurate or misleading content due to limited understanding of user intent or contextual
ambiguity during retrieval and generation. Another critical risk is permission escalation: when
agents access sensitive user data, such as personal files (e.g., user name, password, and contacts),
they may misinterpret access boundaries or inadvertently override security constraints when the
agent manages different web pages. These failures can result in unauthorized data exposure, privacy
violations, and broader system-level vulnerabilities in the agentic web.

To mitigate these risks, red-teaming techniques are promising approaches to ensure the safety and
security of agentic web systems prior to real-world deployment. Red teaming has a long history
in domains such as computer system security and military defense simulation, where it is used to
identify vulnerabilities and evaluate system robustness (Verma et al., 2024). Red teaming involves
simulating adversarial behavior to uncover vulnerabilities in a target system, traditionally performed
through manual human design. Specifically, in traditional computer system safety and security, red
teaming often involves manual human effort, expert-defined rules, and extensive scenario testing
(Röttger et al., 2020; Ribeiro et al., 2020). In the era of AI-driven agentic web systems, red teaming
can be largely automated, with AI agents autonomously generating adversarial scenarios to probe
and uncover failure modes in other agentic systems (Wang et al., 2025c). These target systems
may include various web platforms and pages, where the primary objective is to expose sensitive
information leaks and reveal potential vulnerabilities, ultimately enhancing system trustworthiness
and security before real-world deployment. This automation reduces reliance on manual efforts and
enables scalable, adaptive adversarial evaluation (Perez et al., 2022; Ge et al., 2023; He et al., 2025).

7.2.1 Human-Involved Red Teaming

Human involvement has played a vital role in red-teaming efforts across diverse NLP tasks (Xu
et al., 2020; Glaese et al., 2022; Radharapu et al., 2023), and these techniques can also be leveraged
to enhance the safety and security of agentic web systems. For example, adversarial examples have
been manually crafted to evaluate machine reading comprehension systems (Jia and Liang, 2017).
Human annotations have been used to assess unintended bias in text classification (Dixon et al.,
2018) and to support fairness and robustness evaluation through counterfactual data generation
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(Garg et al., 2019). In multi-hop question answering, human-labeled examples have helped evaluate
complex reasoning capabilities (Jiang and Bansal, 2019).

Human-in-the-loop frameworks have also been employed to generate adversarial attacks targeting
dialogue safety (Dinan et al., 2019) and to improve robustness in language understanding tasks (Nie
et al., 2019). Additionally, human-curated adversarial training datasets have been shown to enhance
model performance (Wallace et al., 2021), particularly in high-stakes, reliability-critical settings
(Ziegler et al., 2022). Manual red-teaming efforts have also been applied in the development of
LLaMA models (Touvron et al., 2023a), where human annotators carefully design prompts to surface
unsafe behaviors in large language models. Kiela et al. (2021) further propose a human-in-the-
loop framework for dynamic adversarial testing via a web-based platform, enabling the continuous
collection of adversarial examples from human annotators. Through this iterative process, models are
exposed to increasingly challenging examples, leading to improved robustness over time. However,
applying these human-involved techniques to agentic web environments presents new challenges.
Agentic web systems are highly autonomous and capable of operating across a variety of web pages
and platforms. This level of complexity and intelligence makes manual red-teaming less feasible and
highlights the need for scalable, automated approaches.

In the context of the agentic web, where autonomous AI agents interact with complex, multi-platform
environments on behalf of users, automated red teaming is becoming increasingly essential. Tradi-
tional human-in-the-loop approaches, such as designing security rules, labeling safety violations, or
manually identifying vulnerabilities, struggle to scale in these dynamic, high-autonomy systems. For
instance, safeguarding AI agents that navigate ticketing platforms, manage financial transactions, or
operate across multiple web services requires real-time, adaptive evaluation that manual red teaming
cannot sustain. Automated red teaming offers a scalable solution by enabling agents to simulate
adversarial behaviors, uncover hidden safety flaws, and proactively report security risks, helping to
ensure agentic web safety before real-world deployment.

7.2.2 Automatic Red Teaming

Recent work has increasingly explored the use of LLMs for automated red teaming (Perez et al.,
2022; Ge et al., 2023; Nie et al., 2024; Liu et al., 2024b; Shi et al., 2024; Liu et al., 2025c; He
et al., 2025; Wang et al., 2025b), which holds particular promise for enhancing safety in agentic web
systems. For instance, Perez et al. (2022) show that LLMs can serve as effective red teamers by
generating adversarial prompts to uncover unsafe behaviors. Similarly, Ge et al. (2023) introduce
MART, which is an automatic red teaming framework and is designed to evaluate and enhance
the safety of LLMs through adversarial scenario generation. Ganguli et al. (2022) explore various
strategies for red-teaming, including rejection sampling and RL, and release a dataset to support
this research. Their findings suggest that RL-based approaches can make systems more resistant to
red-teaming attacks by hardening decision boundaries and improving robustness.

Building on this line of work, Nie et al. (2024) propose a RL-based red teaming approach that
trains an adversarial agent using a carefully designed reward function to generate diverse adversar-
ial examples, effectively revealing vulnerabilities in target LLMs. Their comprehensive experiments
demonstrate that this method performs better than strong baselines in exposing model information
leakage. Similarly, Wang et al. (2025b) introduce a red teaming method that leverages a seed instruc-
tion and a Monte Carlo Tree Search algorithm to optimize inputs for attacking the target system.
Experimental results on the AgentDojo (Debenedetti et al., 2024) and VWAadv (Wu et al., 2024)
benchmarks show that their method achieves superior performance compared to strong baselines,
such as human-crafted adversarial prompts. These automated red teaming approaches are particu-
larly valuable for enhancing the safety and security of agentic web systems, as they can be applied
across various agent interactions to proactively identify vulnerabilities and strengthen defenses prior
to deployment in diverse web environments.

Additional methods relevant to agentic web safety and security include backdoor-triggered red team-
ing, which can be particularly effective in identifying hidden vulnerabilities. For example, AgentPoi-
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son (Chen et al., 2024c) leverages backdoor-triggered and retrieval-augmented LLMs for red teaming,
aiming to improve system security. Their framework is evaluated across multiple domains, including
autonomous driving, question answering, and healthcare, demonstrating its effectiveness in identi-
fying and mitigating security vulnerabilities. Likewise, Yang et al. (2024) propose an agent-based
backdoor attacker for red teaming LLM agents, focusing on web-based shopping systems where pri-
vacy leakage is a critical concern. In a related line of work, Xu et al. (2024b) introduce a data
poisoning technique that injects backdoors through instruction attacks, demonstrating that even a
few malicious tokens during instruction tuning can compromise model safety and expose critical vul-
nerabilities. This approach highlights the risks associated with instruction-based inputs and offers
a valuable method for red teaming to uncover hidden weaknesses in language models.

Red teaming often involves multi-agent systems in the agentic web, where agents play both offensive
and defensive roles. For that multi-agent techniques, Shi et al. (2024) utilize LLM-based agents
to generate adversarial inputs through word substitutions and sentence rephrasings, targeting the
robustness of LLM detection systems. In a more systemic approach, He et al. (2025) introduce a
multi-agent red teaming framework in which LLMs act as adversarial agents to probe vulnerabilities,
particularly in inter-agent communication protocols. Expanding the scope of automated evaluation,
Radharapu et al. (2023) develop AI-assisted red teaming methods that extend across a broad range
of applications, including policy evaluation and locale-specific challenges. In addition, AutoDan (Liu
et al., 2024b) and AutoDan-Turbo (Liu et al., 2025c) present scalable and adaptive frameworks for
automated red teaming, pushing the boundaries of adversarial testing for LLM-based system safety
and security.

LLM-driven automatic red teaming represents a promising future research direction for safety and
security, particularly within the context of the agentic web. These models can systematically simu-
late human behaviors and comprehensively probe safety and security vulnerabilities across various
scenarios. However, to fully realize their potential, it is critical to design robust frameworks for
managing these red-teaming agents in agentic web systems. These frameworks are crucial for both
effective evaluation and defense, as well as for guaranteeing the safety of agentic web systems. This is
especially important in real-world applications, such as when agents are used to book travel, interact
with various apps and web pages, or manage tasks across personal computers and mobile devices.

7.2.3 Emerging Directions in Red Teaming for Agentic Web

As mentioned above, red teaming plays a critical role in identifying and mitigating safety risks in
agentic web systems and LLMs prior to real-world deployment. Human-involved red teaming pro-
vides domain expertise and high reliability for specific tasks, making it a valuable tool for ensuring
safety and security. However, it is often costly, time-consuming, and limited in diversity and scala-
bility (Radharapu et al., 2023). Moreover, human red teamers may lack the broad and cross-domain
knowledge necessary to effectively evaluate complex, multi-faceted systems.

Automated red teaming, particularly approaches based on LLMs, offers a promising alternative
by reducing human effort and improving scalability in the era of agentic web. However, these
methods could be unreliable or insufficient in scenarios that require complex reasoning, contextual
understanding, or ethical judgment, such as different web page operations and platform management.
Bridging the gap between human-involved and automated red teaming remains an open challenge.
Future research should aim to develop hybrid frameworks that integrate the strengths of both human-
involved and automated red-teaming approaches, while addressing their respective limitations.

One promising direction for agentic web safety involves leveraging safe interaction techniques from
safe RL (Gu et al., 2024b), where agent actions are constrained within predefined safe regions
to ensure secure interactions. A complementary approach is human-centered safe learning (Gu
et al., 2023a), particularly suited for agentic web environments, in which human expertise guides
exploitation while LLMs drive exploration within a safe RL framework. This setup can be framed
as a multi-objective optimization problem that balances safety, performance, and coverage across
diverse web operations and interaction goals. Recent advances show that such trade-offs can be
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effectively managed using advanced safe RL methods (Gu et al., 2024a; 2025), offering a principled
pathway to unify human-in-the-loop and automated red teaming for robust agentic web safety and
security.

In particular, several open challenges remain in using LLMs for red teaming in the context of agentic
web safety and security:

• Red-Teaming Attack in Agentic Web: Red-teaming frameworks within agentic web en-
vironments may themselves become targets of adversarial attacks, especially during complex
multi-agent interactions across dynamic web platforms. Such compromises can mislead the
evaluation process and result in the leakage of sensitive or private data from the underlying
systems, undermining both safety and trustworthiness.

• Emergent Misalignment in Agentic Web Agents: As language models scale and op-
erate over longer contexts in real-time web environments, red-teaming techniques may fail
to detect novel and complex failure modes. A key risk is unauthorized goal generalization,
where LLM-driven agents pursue objectives beyond their intended scope, such as executing
unintended actions on web services, due to misaligned reasoning during test-time interac-
tions. This poses critical safety and security risks for open-ended, autonomous agentic web
applications.

Addressing these emerging challenges in agentic web safety and security requires interdisciplinary
collaboration across red teaming methodologies, agent alignment strategies, evaluation frameworks,
and robust deployment protocols.

7.3 Safety and Security Defense

The above subsection has discussed approaches that could identify potential threats or vulnerabilities
of LLM agents during their development stages. In this subsection, we will focus on defensive research
efforts that can further mitigate the safety issues of these agents at deployment. Specifically, we
will discuss recent approaches that leverage external models for threat mitigation (i.e. guardrails),
and approaches that steer LLM agents towards safer generation or planning. We will further discuss
several emergent challenges in this context.

7.3.1 Inference-time Guardrails

The recent proliferation of LLMs has sparked growing interest in the development of guardrails,
which serve as external safety mechanisms designed to identify and mitigate potentially harmful
inputs or outputs of LLMs (Markov et al., 2023; Inan et al., 2023; Chi et al., 2024; Han et al.,
2024). These guardrails have attracted attention due to their adaptability across different LLM
implementations and their effectiveness in risk mitigation.

Earlier guardrails developed prior to the emergence of agentic AI primarily framed content mod-
eration as a discriminative task, wherein a model classifies inputs (and sometimes also outputs) of
LLMs as either safe or unsafe, or categorizes them into specific classes of harmful content (Wen
et al., 2025). Initial approaches to guardrails relied heavily on rule-based filtering techniques (Welbl
et al., 2021; Clarke et al., 2023; Gómez et al., 2024) that utilize predefined lexicons or heuristic
rules to identify potentially unsafe content. While these rule-based methods offer transparency and
computational efficiency, they inherently lack flexibility and generalization capabilities. Subsequent
studies have transitioned towards model-based guardrails, leveraging supervised fine-tuning on cu-
rated safety datasets to enhance content classification in alignment with predefined safety policies.
Representative open-source examples in this category include LLaMA Guard (Inan et al., 2023; Fe-
dorov et al., 2024; Chi et al., 2024), NeMo Guardrails (Rebedea et al., 2023) and Aegis Guard (Ghosh
et al., 2024).

To advance LLM guardrails toward more agentic capabilities, two key developments are essential: the
integration of deliberative reasoning and lifelong learnability. Deliberative reasoning enables models
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to assess actions more reflectively and align responses with nuanced goals and values. Lifelong
learnability allows systems to adapt continuously to new information, evolving norms, and edge
cases over time. Together, these capabilities form the foundation for more robust, context-sensitive
guardrails that go beyond static filters to support safe and reliable autonomous behavior. In the
following, we discuss recent studies on these two key lines of development.

Reasoning Guardrails. As a critical but very recent advancement of guardrails, reasoning
guardrails assess the intent, context, and possible risks associated with LLMs’ inputs and outputs
through structured reasoning, instead of conduct fast-thinking to merely predict threat labels like
previous static guardrails.

As one of the very first reasoning guardrails, ThinkGuard (Wen et al., 2025) draws inspiration from
cognitive theories that differentiate fast and slow modes of human thinking (Hagendorff et al., 2022;
Min et al., 2024). In this context, fast thinking typically results in superficial or incorrect assessments,
making models susceptible to adversarial manipulation, whereas deliberative reasoning mitigates
these vulnerabilities by facilitating more robust and contextually informed decisions (Lin et al.,
2024a). To train guardrails capable of deliberative reasoning, ThinkGuard utilizes mission-focused
distillation (Zhou et al., 2024) extracting structured reasoning supervision from existing LLMs to
generate augmented safety datasets with reasoning critiques. Deliberative reasoning is integrated
into the guardrail through a two-stage conversational fine-tuning procedure: the first stage outputs
an initial prediction, followed by a second stage that articulates the underlying reasoning. This
mechanism allows for the efficiency of traditional LLM-based guardrails if reasoning generation is opt
out while retaining interpretability when needed. As a contemporaneous work, GuardReasoner (Liu
et al., 2025d) also devise a similar process to augment safety supervision data with distillation,
while its training has two differences: it conducts RL to finetune the guardrail model, but does not
learn an optional latent reasoning mode as ThinkGuard. Based on the methodology exemplified by
ThinkGuard and GuardReasoner, more recent efforts have further extended reasoning guardrails to
multimodal (Liu et al., 2025e) and multilingual (Yang et al., 2025b) scenarios.

To summarize, developing the reasoning guardrail models is a prerequisite to realizing Agentic
Guardrails because agentic behavior involves multi-step planning and decision-making that cannot
be reliably constrained by surface-level filters or static rules. Reasoning Guardrails enable structured
oversight of an agent’s internal deliberations, allowing alignment interventions at the level of goals,
plans, and justifications.

Agentic Guardrails. In contrast to the aforementioned reasoning guardrails, agentic guardrails
operate at the level of action execution, overseeing or constraining how an agent interacts with
external systems or environments. While reasoning guardrails shape what the agent thinks and
tells, agentic guardrails govern what the agent does.

Developing agent guardrails presents a range of challenges spanning both technical and contextual
dimensions. A key difficulty lies in enabling lifelong learnability, where guardrails must adapt along-
side evolving agent behaviors through its continual interaction with users and the environment.
Beyond managing threats from user inputs or model-generated content, agents must also detect
and mitigate risks arising from external environments, including adversarial states or unsafe system
interactions. Ensuring safety in multi-turn actions and dialogus adds further complexity, as harmful
behavior may only emerge cumulatively over extended interactions. Finally, generalizability across
tasks and environments remains a core obstacle, requiring guardrails that are robust and effective
in diverse, dynamic deployment settings without extensive reconfiguration.

A few recent studies have attempted to address some of these challenges, inasmuch as some recent
studies on lifelong agents (Huang et al., 2025a; Zhang et al., 2025b) propose to incorporate contin-
ual memories, works such as AGrail (Luo et al., 2025), LlamaFirewall (Chennabasappa et al., 2025)
GuardAgent (Xiang et al., 2025) leverage this methodology to allow guardrail agents to continually
accumulate experiences and new safety policies for agents. For example, AGrail (Luo et al., 2025)
proposes a lifelong guardrail framework for LLM agents that dynamically generates and optimizes
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safety checks during runtime. Central to its approach is a memory-based mechanism that stores and
reuses past unsafe trajectories and guardrail refinements, enabling lifelong learnability and continual
improvement. It combines adaptive safety-check synthesis with iterative refinement using cooper-
ative LLMs and supports tool-assisted validation, allowing it to address both task-specific (e.g.,
prompt injection) and environmental threats. AGrail demonstrates strong cross-task generalization
and effective integration with various LLM-based agents. LlamaFirewall (Chennabasappa et al.,
2025) is a modular, open-source framework designed to secure LLM agents through a combination
of real-time defenses. It integrates a fine-tuned BERT-style model for jailbreak and prompt-injection
detection, a preliminary auditor leveraging few-shot chain-of-thought prompting for reasoning, and
an online system tailored for LLM-generated programs for static analysis of generated code. The
system achieves strong security performance with minimal utility loss and is built to be extensible
across diverse agent applications. Meanwhile, GuardAgent (Xiang et al., 2025) dynamically moni-
tors and enforces user-defined safety or privacy policies by translating guard requests into executable
code through a two-step process of task planning and code generation. It leverages a memory-based
in-context demonstration mechanism that retrieves past examples at each step to enhance its rea-
soning and support lifelong learnability and adaptability.

7.3.2 Controllable Generation and Planning

In addition to leveraging external guardrail components, other research efforts investigate control-
lable generation to steer LLM agents towards safer generation or planning at inference. In this
context, we categorize these efforts into safe decoding approaches, and approaches for agentic access
control.

Safe decoding approaches typically incorporate constrained decoding or decoding processes guided
by a safety reward to achieve their goals. For example, SafeDecoding (Xu et al., 2024c) leverages
the insight that even under attack the model still assigns non-trivial probability to safe tokens, and
dynamically reshapes the token distribution at each decoding step to prioritize harmless outputs.
SafePlanner (Li et al., 2025b) introduces a framework that enhances safety awareness in LLM agents
for robot task planning. It incorporates a safety prediction module trained in a simulator, which
guides the high-level planner to make safe and executable decisions. Thought-Aligner (Jiang et al.,
2025) is a lightweight, plug-in safety module designed to enhance the behavioral safety of LLM-based
agents by dynamically correcting high-risk reasoning steps before action execution. It operates by
fine-tuning a contrastive learning model on a dataset of safe and unsafe thought pairs, enabling
real-time thought correction with extremely low latency.

Access control remains an underexplored area in current research. Progent (Shi et al., 2025) in-
troduces the first comprehensive privilege-control mechanism designed specifically for LLM-based
agents, enforcing the principle of least privilege during tool invocation. It centers around a domain-
specific policy language that allows developers and users to specify fine-grained constraints on when
tools may be invoked and define fallback behaviors for blocked actions. This policy-driven model
enforces the principle of least privilege, ensuring agents only perform tool operations essential to the
task at hand. Its modular architecture enables seamless integration into existing agent systems with
minimal code modifications and without altering the agent’s internal logic. To lower the burden on
users, Progent also supports automated policy generation and updates, leveraging LLMs themselves
to craft and adapt these privilege policies dynamically in response to evolving user queries. As
such, Progent offers a practical and flexible mechanism for enhancing LLM-agent security in diverse,
real-world scenarios. In a related context, knowledge access control is a newly identified and unad-
dressed problem that concerns dynamic adjustment of LLMs’ parametric knowledge based on user
privileges (Liu et al., 2025b). Traditional safe generation methods typically adopt a uniform policy
that blocks sensitive knowledge for all users, potentially reducing utility for credentialed individuals
with legitimate access needs. To address this limitation, the SudoLM framework (Liu et al., 2025b)
introduces a credential-aware mechanism that grants access to privileged knowledge only when a
secret SUDO key is provided. This approach partitions the model’s knowledge into public and
privileged components and trains it using authorization alignment, enabling differentiated responses
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based on user credentials. Such a framework offers a promising direction for enhancing safety in
LLM-based agents. By conditioning access on user identity, intent, or role, it enables finer-grained,
context-sensitive safeguards. Furthermore, its capacity to regulate internal knowledge usage rather
than just output filtering allows deeper integration into agent reasoning and planning workflows.

7.3.3 Emerging Directions in Defense for Agentic Web

Threat mitigation for agents after their deployment is so far a preliminary area of study. Beyond
the current prototypes in existing preliminary studies, and there are quite a few emergent challenges
towards truly generalizable and reliable approaches, for which we briefly discuss a selected set of
them as follows.

• Efficiency: As discussed, the reasoning-based paradigm no doubt strengthens the guardrails
in terms of robustness and interpretability. Yet, it inevitably introduces more inference
overhead in comparison to previous fast-thinking or discriminative guardrails. While a few
current reasoning guardrails such as ThinkGuard (Wen et al., 2025) have attempted to
incorporate latent reasoning to some degrees, how to effectively compress the reasoning pro-
cess and enhance the generation or retrieval of reasoning patterns for a real-time guardrail
remains as a non-trivial challenge.

• Generalizability: Generalizability is still a core challenge for Web agent safety because
these agents operate in open, unpredictable environments with constantly changing inter-
faces, tools, and tasks. Guardrails that work in training or on benchmarks often fail when
agents encounter novel websites or instructions. Unsafe behavior can emerge from unfore-
seen input combinations or even from new environments. Therefore, ensuring the robustness
to diverse and evolving scenarios—not just effective in fixed settings as it is shown in many
of the current experimental setups.

• Certifiable defense: Certifiable and grounded defense is crucial for web agents because
they interact directly with external systems and users, where failures can lead to real-
world harm (e.g., sending emails, making purchases, or modifying files). Without grounded
verification tied to the actual environment state (e.g., DOM structure, user intent, API
constraints), safety mechanisms may rely on incomplete or incorrect assumptions. Future
research should develop safety mechanisms that are formally grounded in the web environ-
ment, such as DOM structures and API schemas, enabling agents to verify the safety of
their actions before execution. It should also explore certifiable control and runtime verifi-
cation techniques that ensure actions adhere to defined constraints, even under dynamic or
adversarial conditions.

7.4 Safety and Security Evaluation

Unlike the relatively well-studied areas of traditional web safety (bt Mohd and Zaaba, 2019; Cox
et al., 2006), LLM safety evaluation (Yuan et al., 2024; 2025), multimodal safety (Xu et al., 2025), and
robot learning safety (Gu et al., 2023b), agentic web safety evaluation remains largely underexplored,
with only a few preliminary efforts proposed to date.

One recent work is SafeArena (Tur et al., 2025), which introduces a benchmark designed to assess
the misuse potential of LLM-based web agents. It evaluates agents on 250 safe and 250 harmful
tasks across multiple harm categories, such as misinformation, cybercrime, and social bias, and tests
models including ChatGPT (Ouyang et al., 2022; Achiam et al., 2023) and Qwen (Bai et al., 2023)
to measure their compliance with malicious requests.

Another work is ST-WebAgentBench (Levy et al., 2024), which is an open-source benchmark for
evaluating the safety and trustworthiness of autonomous web agents in enterprise-style tasks, built
on the WebArena environment. It defines six policy dimensions, user consent, preference satisfaction,
scope boundaries, strict execution, robustness to distribution shifts, and error recovery, and adopts
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completion under policy and risk ratio, which measure policy-compliant task success and frequency
of violations, respectively. Similarly, AGrail (Luo et al., 2025) introduces Safe-OS, a realistic bench-
mark designed to evaluate the safety of LLM-powered operating system agents under adversarial
conditions. Comprised of three carefully curated attack scenarios, prompt injection, environment
sabotage, and system-level exploitation, Safe-OS simulates real-world threats using Docker-based
OS environments alongside benign operation logs. It complements evaluations on existing datasets
for operating system agents like Mind2Web-SC, EICU-AC (task-specific risks; Xiang et al. (2024)),
AdvWeb (Xu et al., 2024a), and EIA (systemic risks; Liao et al. (2025)) to offer a comprehensive
safety assessment

Agent-SafetyBench (Zhang et al., 2024b) provides a comprehensive safety evaluation framework with
349 interaction environments and 2,000 test cases across eight safety risk categories. Notably, their
evaluation reveals that no current agent achieves safety scores above 60%, highlighting fundamental
deficiencies in agent robustness and risk awareness. Complementing this, GuardAgent (Xiang et al.,
2024) introduces a dynamic safety guardrail system that achieves 98% accuracy on safety-critical
tasks through knowledge-enabled reasoning, while TrustAgent (Hua et al.) implements a three-
stage safety strategy encompassing pre-planning knowledge injection, in-planning enhancement, and
post-planning inspection.

While benchmarks like SafeArena (Tur et al., 2025) and ST-WebAgentBench (Levy et al., 2024)
provide valuable insights into agentic web safety, further investigation is needed, particularly in
areas such as multimodal agentic web safety and reasoning safety for agentic web agents.

8 Challenges and Open Problems

The realization of the vision of Agentic Web, however, is contingent upon resolving a complex,
multi-dimensional set of challenges that span individual agent cognition, multi-agent coordination,
human-agent alignment, systemic security, and socio-economic structures.

These challenges are not isolated technical hurdles but are deeply interconnected, forming a web of
dependencies that must be addressed holistically. The problem of building the Agentic Web is not
merely about improving the capabilities of individual LLM or Agent but about architecting a new,
reliable, and trustworthy computational layer atop the existing internet. The systemic nature of
these challenges is evident in how they cascade across domains. For instance, the technical need for
agents to interact with the external world necessitates the creation of standardized communication
protocols, which have been likened to “HTTP for AI agents”. The existence of this new agent-native
architecture, in turn, creates new economic imperatives. The traditional advertising-based business
model of the web is ill-suited for an agent-driven economy and is already showing signs of strain.
This necessitates new transactional models, but their viability depends directly on solving complex
security and trust issues surrounding autonomous payments. Thus, a technical challenge in one
area, such as secure tool use, is inextricably linked to a socio-economic challenge in another, such
as creating viable business models. A systems-thinking approach is therefore essential, recognizing
that a solution for one component may create or exacerbate problems elsewhere. The following table
provides a conceptual map of this complex problem space, categorizing the diverse challenges into
coherent themes that will be explored throughout this report.

8.1 Foundational Challenges in Single-Agent Cognition and Autonomy

Before complex multi-agent and human-agent systems can be reliably constructed, the core cognitive
architecture of an individual agent must be made robust. This section deconstructs the fundamental
technical hurdles that currently undermine the reliability, planning capabilities, and autonomous
functioning of a single agent. These are the first-order problems that form the bedrock of the
Agentic Web.
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Table 8: A Taxonomy of Agentic Web Challenges

Challenge Category Core Problem Key Open Questions
Foundational Cognition Brittle Reasoning &

Planning
How can agents achieve robust, long-
horizon planning under uncertainty?

Memory & Context
Management

How can we build structured, hierarchi-
cal memory systems for agents?

Reliable Tool Use How can agents safely and reliably use
external tools that may be compromised?

Learning Curriculum Reward Design &
Alignment

How can we design reward functions that
capture nuanced human goals without
being gamed?

Continual Learning &
Forgetting

How can agents acquire new skills over
time without catastrophically forgetting
old ones?

Interactive Grounding How can agents learn from interaction
without overfitting to specific environ-
ments or prompts?

Collaborative Ecosys-
tem

Inter-Agent Coordina-
tion

How can decentralized agents effectively
coordinate and resolve conflicts?

Communication & In-
teroperability

What communication standards are
needed for a global, open agentic web?

Decentralized Trust How can agents establish and maintain
trust in a decentralized, potentially ad-
versarial ecosystem?

Human-Agent Align-
ment

Goal Ambiguity & Dis-
ambiguation

How can an agent reliably infer a user’s
true intent from ambiguous instructions?

Preference Elicitation How can agents help users discover
and articulate their own complex pref-
erences?

Oversight & Control
(HITL)

What are the most effective architectures
for human-in-the-loop oversight?

Systemic Risk & Ro-
bustness

Security & Attack Sur-
faces

How can we defend agents against novel
threats like tool-initiated attacks?

Error Recovery & Re-
silience

How can we engineer agentic systems to
be resilient to inevitable failures?

Autonomous Pay-
ments

What technical and regulatory frame-
works are needed for secure agent-based
payments?

Socio-Economic Impact New Business Models What viable business models will replace
the advertising-based economy?

Economic Disruption
& Inequality

How can the economic benefits of agentic
AI be distributed equitably?

The Fragility of Reasoning and Planning The capacity for multi-step reasoning is a cor-
nerstone of agentic systems, enabling them to decompose complex problems, evaluate alternative
solutions, and make informed decisions. This process is often operationalized through a continuous
cycle of planning, action, observation, and reflection, with frameworks like Chain-of-Thought serving
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as the primary mechanism for articulating these reasoning steps in natural language. However, this
capability is deceptively brittle.

The Memory-Context Dilemma Memory is an essential architectural component for agentic
systems. Since LLMs are fundamentally stateless, they require external mechanisms to retain con-
versation history, contextual information, and learned knowledge. Agentic architectures typically
employ both short-term memory to maintain coherence within a single task and long-term memory
to carry knowledge across tasks. However, the management of this memory, especially in the face of
finite context windows and complex, long-horizon tasks, remains a primary bottleneck.

The Tool-Use Paradox The ability to use external tools, such as APIs, databases, calculators,
and web search, is what transforms a passive LLM into an active agent capable of interacting with
and affecting the real world. This is the primary mechanism for grounding an agent’s reasoning in
actionable reality. However, this capability introduces a fundamental paradox: the every tools that
grant an agent real-world agency simultaneously represent its greatest vulnerability.

This creates a “Tool-Use Paradox”: to be effective, an agent must trust its tools to provide ac-
curate information and execute actions correctly; to be secure, it must assume any tool could be
compromised at any time. The resolution to this paradox lies in designing agents with an inherent
“tool skepticism.” This requires moving to a zero-trust agent architecture where all external inputs,
whether from a user or a tool, are validated against a security policy. Previously, agent security
focused primarily on validating the user’s prompt. The existence of tool-initiated threats means the
agent must also validate the tool’s response, creating a feedback loop of potential infection where a
malicious tool output could cause the agent to take another malicious action, leading to a cascading
failure. A secure agent cannot be a naive “tool-caller”; it must possess a security kernel or policy
engine that scrutinizes all information crossing the boundary between its internal state and the
external world. The open research question is how to build this skepticism without crippling the
agent’s ability to act decisively based on tool outputs.

8.2 The Learning Conundrum: From Static Models to Dynamic Learners

While foundational models provide a powerful starting point, true agency requires the ability to
learn from experience, adapt to new environments, and continuously improve performance. This
section explores the profound challenges associated with transforming static, pre-trained models into
dynamic, lifelong learners, focusing on the bottlenecks in RL, the threat of catastrophic forgetting,
and the difficulties of grounding knowledge through interaction.

Reward Design Bottleneck RL is the primary paradigm for training agents to make optimal
sequential decisions by interacting with an environment. It offers a path to move beyond the limi-
tations of static, pattern-replicating LLMs, enabling them to handle ambiguity, maintain context in
long conversations, and balance competing objectives. However, the effectiveness of RL is critically
dependent on the design of its reward function, which has become a major research bottleneck.

The Specter of Catastrophic Forgetting in Continual Learning For agents to be truly
autonomous and useful over long periods, they must be able to engage in continual, or lifelong,
learning: acquiring new knowledge and skills without overwriting or degrading previously learned
capabilities. The primary obstacle to achieving this is “catastrophic forgetting,” a well-known phe-
nomenon in neural networks where training on a new task causes a model to abruptly lose proficiency
on previously learned tasks.

Interactive Task Learning and Grounding Ultimately, agents learn to perform complex tasks
by interacting directly with their environment, whether it is a digital application or the physical
world. This interactive learning process, often guided by RL, is what allows agents to ground their
abstract knowledge in concrete actions and feedback. However, this process is fraught with challenges
related to the trade-off between specialization and generalization.
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8.3 The Ecosystem Challenge: Coordination and Trust in Multi-Agent Systems

Expanding the analysis from the single agent to the collective reveals the profound complexities that
arise when multiple autonomous agents must interact, collaborate, and compete. The success of the
Agentic Web as a whole depends on the ability to orchestrate these multi-agent systems effectively,
a challenge that encompasses architectural design, communication standards, and the establishment
of trust in decentralized environments.

Architectural Trade-offs: Hierarchical, Equi-level, and Nested Structures Multi-agent
systems can be organized into several distinct architectures, each with unique properties and chal-
lenges. The primary structures identified in current research are equi-level (peer-to-peer), hierarchi-
cal (leader-follower), and nested (hybrid systems of systems).

The Babel of Agents: The Imperative for Standardized Communication For a global
Agentic Web to function, agents developed by different organizations on different platforms must be
able to communicate and interoperate. Without common standards, the ecosystem would devolve
into a collection of isolated, proprietary “walled gardens,” akin to the pre-HTTP internet, stifling
innovation and collaboration.

The primary challenge is to develop and adopt standardized communication protocols that are
expressive enough to support complex agent interactions yet simple and open enough to foster
widespread adoption. This involves standardizing both the syntax (the format of messages) and
the semantics (the meaning of communicative acts, often based on speech act theory). Emerging
standards like IBM’s ACP and Google’s A2A for agent-to-agent communication and Anthropic’s
MCP for agent-to-tool communication are designed to work in tandem to provide this foundational
layer. Major industry players are championing these open protocols, arguing that achieving ubiquity
is more important than perfecting minor semantic differences, in order to create a truly open agentic
web.

Establishing Trust and Reputation in Decentralized Ecologies In a decentralized system
of autonomous, potentially self-interested agents, trust is the essential lubricant that enables col-
laboration and reduces uncertainty. To make informed decisions about whom to interact with and
delegate tasks to, agents need a mechanism to assess the reliability and competence of their peers.

8.4 The Human-Agent Interface: Ensuring Goal Alignment and Control

This section focuses on the critical interface between human users and autonomous agents. The
central challenge is ensuring that an agent’s actions faithfully reflect the user’s true, often nuanced
and evolving, intent. This requires solving deep problems of goal ambiguity, preference discovery,
and the design of effective oversight mechanisms to maintain human control.

The Ambiguity Problem: From User Intent to Actionable Goals The first step in any
agentic workflow is understanding the user’s goal. However, human language is often imprecise, and
user requests can be complex, ambiguous, or underspecified. An agent must be able to disambiguate
this input and translate it into a concrete, actionable plan. This often involves a process of active
disambiguation, where the agent poses clarifying questions to maximize information gain and narrow
the space of possible interpretations (Jiang et al., 2024).

Eliciting Nuanced Preferences A significant challenge in achieving goal alignment is that users
themselves often do not have fully formed, stable preferences. A substantial body of psychology
research has demonstrated that preferences are often constructed “on the fly” at the time of decision-
making, influenced by the immediate context and the options presented (Lawless et al., 2024).

An agent, therefore, cannot simply ask a user for their complete utility function. Instead, it must
engage in an iterative, collaborative process of preference elicitation, helping the user to discover,
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construct, and refine their own preferences over time. This requires the agent to move beyond a
passive question-answer model to become an active participant in the user’s reasoning process. The
cost and accuracy of a user’s responses to preference queries are highly dependent on context; users
respond more easily and accurately to queries about situations they are currently or have recently
experienced. This makes naturalistic, chat-based elicitation a promising approach.

Human-in-the-Loop (HITL): Designing Effective Oversight Architectures Given the cur-
rent limitations in agent reliability and alignment, incorporating a “human in the loop” (HITL) is
a critical mechanism for ensuring safety, accountability, and control, especially for high-stakes or
irreversible actions. HITL represents a collaborative paradigm where humans and AI work together
to optimize processes.

8.5 Systemic Risks: Ensuring Safety, Security, and Robustness

As agents become more autonomous and capable of taking real-world actions, the risks they pose
escalate dramatically. This section addresses the critical challenges of ensuring that agentic systems
are secure from attack, robust to failure, and safe to deploy in high-stakes environments such as
finance and critical infrastructure.

Safety and Security Challenges We explore the safety and security challenges of the agentic
web, where autonomous agents operate across open, dynamic environments. It categorizes threats
across cognitive, communication, and economic layers and highlights cascading risks that amplify
system vulnerabilities. To address these issues, both human-involved and automated red teaming are
discussed, with LLM-driven approaches offering scalability but requiring robust oversight. Defense
strategies include advanced guardrails with reasoning and lifelong learning, such as AGrail (Luo
et al., 2025) and GuardAgent (Xiang et al., 2025). While benchmarks like SafeArena (Tur et al.,
2025) and ST-WebAgentBench (Levy et al., 2024) have made progress in evaluation, significant
gaps remain, particularly in multimodal and reasoning safety, calling for further research in scalable,
adaptive safety solutions.

Long-Horizon Planning and Error Recovery Real-world tasks are rarely simple, single-step
operations. They often involve long-horizon plans with numerous sequential and parallel actions. In
complex and partially observable environments, failures are not a possibility but a certainty.

The dual challenges are (1) creating and maintaining a coherent plan over a long sequence of steps
without the plan degrading or becoming irrelevant, and (2) building in robust mechanisms for
detecting, diagnosing, and recovering from the inevitable errors, exceptions, and action failures that
will occur. Simple, sequential agentic chains that work well in prototypes often break under the
variability and load of real-world use because they lack graceful failure modes and recovery paths. A
key to robustness is moving beyond open-loop “plan-and-execute” paradigms to closed-loop systems
that can self-correct based on feedback from their actions (Nayak et al., 2024).

The Challenge of Autonomous Payments: Security and Regulation Empowering agents
with the ability to spend money is a critical enabler for a transactional Agentic Web, but it also
represents one of the highest-risk applications, facing immense technical, regulatory, and social
hurdles.

8.6 Socio-Economic Implications

The successful deployment of the Agentic Web would not be a mere technological evolution but a
profound socio-economic transformation, reshaping business models, labor markets, and the very
structure of the digital economy. This section explores the challenges and open questions related to
the economic viability and societal impact of this new paradigm.
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Beyond Advertising: Viable Business Models for an Agentic Economy The current
economic foundation of the consumer web, advertising, is ill-suited for and actively threatened by
the rise of AI agents. The Agentic Web necessitates a shift towards new, more direct forms of value
exchange.

The ad-supported model, which monetizes human attention, is breaking down as agents become the
primary interface for information retrieval, disintermediating and reducing traffic to content web-
sites. The challenge is to develop and scale new business models that are native to an economy of
automated actions, not human eyeballs. This likely involves a move towards transactional, subscrip-
tion, and value-based pricing models. Emerging models already position agents as first-class business
entities that can be customized and deployed by organizations, enabling new revenue streams. These
include: Intelligence-as-a-Service, where the outputs of AI-powered research are sold on demand;
Zero Marginal Cost Services, where the incremental cost of serving another customer is near zero;
and Value-Based Pricing, where customers pay for outcomes rather than time invested.

Furthermore, the integration of blockchain technology presents promising opportunities for the Agen-
tic Web’s economic foundation. Blockchain-enabled platforms can facilitate decentralized agent in-
teractions, autonomous transactions, and trustless value exchange between AI agents. Projects like
ChainOpera (ChainOpera AI, 2024) demonstrate the practical convergence of Web3 and agentic AI,
while emerging protocols such as Protocol AI (Protocol AI, 2025) support agent-blockchain inte-
gration for decentralized tokenization of alternative assets (Borjigin et al., 2025) and autonomous
operations in decentralized finance (Ante, 2024). This convergence could enable new forms of au-
tonomous economic activity where agents can independently engage in value creation and exchange
without traditional intermediaries.

Economic Disruption: Labor Markets, Productivity, and Inequality The widespread
adoption of AI agents promises massive gains in productivity and economic growth but also portends
significant disruption to the labor market and carries the risk of exacerbating economic inequality.
Research suggests that generative AI alone could add trillions of dollars annually to the global econ-
omy, but it could also automate a significant fraction of current work activities, affecting hundreds
of millions of jobs worldwide.

9 Conclusion

The internet is undergoing a fundamental paradigm shift, evolving from a passive repository of
information to a dynamic environment of action. This transition is powered by the emergence
of the Agentic Web, a landscape populated by autonomous systems capable of perceiving their
environment, reasoning through complex problems, and executing tasks to achieve specified goals.
This marks a significant leap from generative AI, which excels at responding to human prompts, to
agentic AI, which is characterized by proactive, independent decision-making and execution.
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