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Abstract
Foundation models are premised on the idea
that sequence prediction can uncover deeper
domain understanding, much like how Kepler’s
predictions of planetary motion later led to the
discovery of Newtonian mechanics. However,
evaluating whether these models truly capture
deeper structure remains a challenge. We develop
a technique for evaluating foundation models that
examines how they adapt to synthetic datasets
generated from some postulated world model.
Our technique measures whether the foundation
model’s inductive bias aligns with the world
model, and so we refer to it as an inductive bias
probe. Across multiple domains, we find that
foundation models can excel at their training
tasks yet fail to develop inductive biases towards
the underlying world model when adapted to
new tasks. We particularly find that foundation
models trained on orbital trajectories consistently
fail to apply Newtonian mechanics when adapted
to new physics tasks. Further analysis reveals
that these models behave as if they develop
task-specific heuristics that fail to generalize.

1. Introduction
The promise of foundation models relies on a central pre-
sumption: that learning to predict sequences can uncover
deeper truths, or optimistically, even a world model. While
this idea is new in one sense, it is old in another. Hundreds
of years ago, astronomers like Kepler discovered geometric
patterns that could pinpoint the future locations of planets in
the night sky. Newton would later expand on this progress to
develop Newtonian mechanics, fundamental laws that could
not only predict the movement of planets but also explain
physical properties across the universe (Koestler, 1959; Gin-
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gerich, 2004). This path — from predicting sequences to
understanding the deeper mechanisms that underlie them —
is not unique to physics. In biology, animal breeders noticed
patterns in the traits of offspring long before their predictive
insights inspired Mendel to develop a theory of genetics.

How would we know if foundation models have also made
the leap from making accurate predictions to developing
reliable world models? This paper develops a framework for
answering this question. Specifically, we create a procedure
that, when given a foundation model and world model, tests
whether the foundation model has learned that world model.
We call this technique an inductive bias probe, and it is
built on a simple insight: the implicit world model of a
foundation model is revealed by how it extrapolates from
a small amount of information. This is inspired by how
scientists use world models — to make inferences from
small amounts of data. Similarly, the inductive bias of a
foundation model reveals its world model.

We first demonstrate this procedure using an example from
physics. Specifically, we aim to replicate Kepler’s and New-
ton’s experiments, albeit replacing the physicist with a foun-
dation model of orbital mechanics. Much like Kepler, the
model is able to predict orbital trajectories, even for solar
systems it has not seen.

What would it mean for this foundation model’s inductive
bias to be toward Newtonian mechanics? We demonstrate
one tangible way to test this: we fine-tune the foundation
model on a small dataset where the output is exactly the
force vector (a cornerstone of Newtonian mechanics) at
each point in the trajectory. If the foundation model’s world
model is toward Newtonian mechanics, it should have an
inductive bias towards these force vectors. In contrast, Fig-
ure 1 shows that the model produces poor force vectors.
More extremely, when we perform this exercise at a larger
scale across many solar systems, the laws of gravity it uses to
generalize bear no resemblance to Newton’s law (Table 1).

We further apply inductive bias probes in other domains
with a known world model: lattice problems and Othello
games (Liu et al., 2022; Hazineh et al., 2023; Nanda et al.,
2023b; Vafa et al., 2024). Across these domains, we find
that neural sequence models have weak inductive biases
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Figure 1: Each pair of panels illustrates the trajectory of a planet in the solar system and its gravitational force vectors,
comparing the true Newtonian forces (left) to the predicted forces (right) from a transformer foundation model pretrained on
orbital sequences and fine-tuned to predict forces. While the model excels at generating accurate predictions of planetary
trajectories, it does not have an inductive bias toward true Newtonian mechanics; moreover, its force predictions recover a
nonsensical force law, as revealed by symbolic regression.

toward the given world models. We also highlight a practical
implication: models that perform better on inductive bias
probes have better performance when they’re fine-tuned to
perform new tasks that rely on the underlying world model.

Taken together, our results provide a direction for under-
standing the deficiencies of foundation models: if a model’s
inductive bias isn’t toward a known model of reality, what is
it toward? We explore this question by examining whether
these foundation models have alternative inductive biases.
Our analysis reveals that these models instead behave as if
they develop task-specific heuristics that fail to generalize.
For physics, rather than learning one universal physical
law, the foundation model applies different, seemingly
nonsensical laws depending on the task it’s being applied
to. In lattice and Othello, models have an inductive bias
toward the set of legal next-tokens (e.g. a board’s legal next
moves) rather than the world model itself.

2. Framework
In this section, we lay out our framework for evaluating
whether a foundation model has learned a postulated world
model. We develop an inductive bias probe, which is a
procedure that evaluates the foundation model’s behavior as
it adapts to new tasks.

Data and tasks. Let x ∈ X denote an input and y ∈ Y de-
note some output. A dataset D = {(x1, y1), . . . , (xn, yn)}
is a collection of n input-output pairs. A task f : X → Y is
a mapping between inputs and outputs.

Foundation models: A foundation model is a learning al-
gorithm which, when given a dataset D, returns a prediction
function m̂D : X → Y that relates the input to the outputs.
Foundation models can take many forms; for example, m̂D

could be some pre-trained model that is fine-tuned on the
dataset D, or it can be an LLM that is supplied D in-context.

World model: A postulated world model is summarized by
a state space Φ and a mapping ϕ : X → Φ that associates
each input with some state ϕ(x) ∈ Φ. A dataset D is
consistent with the world model if for each (x, y) ∈ D, the
output is a deterministic function of the state, y = g(ϕ(x))
for some g : Φ → Y .

2.1. Comparing foundation models to world models

There is a challenge in defining what it means for a foun-
dation model to recover a world model: foundation models
and world models operate in different spaces. A founda-
tion model uses datasets to output predictions given inputs,
whereas a world model describes state structure implicit in
that data.

2



What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models

World model:
functions that obey an 

implicit state space 
over data

Fit foundation model to 
synthetic datasets and 

extract learned functions

… … … =
?

Compare learned functions to 
the given world model

Inductive bias probe

Inputs

Foundation model:
learns functions from 

data

Step 1 Step 2
<latexit sha1_base64="yD7ny5ZNIizRMrYkdNOa0g5lGN8="></latexit>

44
f̂1

<latexit sha1_base64="DqkVSz0IiFjx2GV3WMhRbeYY+/0="></latexit>

44
f̂n

<latexit sha1_base64="hUQ+hH7KJHfzaNzXzuy1uyN+UPk=">AAADJHicbVLLattAFB2rr1R9JGmX3Qw2gS6CKwXTdhMIKYEuU4iTgCXMndEoHjIPVXOV2gh/R7ftpl/TXemim35LR7ILsZ0LA4f74Jx75rJCSYdR9KcT3Lv/4OGjrcfhk6fPnm/v7L44d7YquRhyq2x5ycAJJY0YokQlLotSgGZKXLDrD0394kaUTlpzhrNCpBqujMwlB/SpdDBIkjCZANJ8fDDe6UX9qA26CeIl6JFlnI53g06SWV5pYZArcG4URwWmNZQouRLzMKmcKIBfw5UYeWhAC5fWreo53fOZjOa29M8gbbO3J2rQzs00850acOLWa03yrtqowvx9WktTVCgMXxDllaJoaWMBzWQpOKqZB8BL6bVSPoESOHqj7tS8n93Iwi3lTxf6w5XOszitmzUawhWhRnzBKYopzsM9ervAtFdGObQuFKX1P6Yd7aK1VIOZ0WYvCqqYABPouuvb46SdZ8IbKGjL0k6wN5wq8ISbKlrDVlWMGDtk1prMTvc5qP84rZveltxv44e51V5UVicn8zppaozVJ3PvQeiPJl4/kU1wftCP3/YHnwa9o+Pl+WyRV6RLXpOYvCNH5CM5JUPCyWfylXwj34Mfwc/gV/B70Rp0ljMvyUoEf/8BqCgEPg==</latexit>

44
f̂2

<latexit sha1_base64="yD7ny5ZNIizRMrYkdNOa0g5lGN8=">AAADJHicbVLLattAFB2rr1R9Je2ym8Em0EVwpWLabgqhJdBlCnESsIS5MxpHQ+ahaq5SG+Hv6Lbd9Gu6K11002/pSFYhtnNh4HAfnHPPXFYo6TCK/vSCW7fv3L23cz988PDR4ye7e09Pna1KLsbcKlueM3BCSSPGKFGJ86IUoJkSZ+zyQ1M/uxKlk9ac4KIQqYYLI2eSA/pUOholSZjkgHQ2jae7g2gYtUG3QdyBAenieLoX9JLM8koLg1yBc5M4KjCtoUTJlViGSeVEAfwSLsTEQwNauLRuVS/pvs9kdGZL/wzSNnt9ogbt3EIz36kBc7dZa5I31SYVzt6mtTRFhcLwFdGsUhQtbSygmSwFR7XwAHgpvVbKcyiBozfqRs0H2ZUsXCd/vtIfrnWexGndrNEQrgk14gvOUcxxGe7T6wWmvTLKoXWhKK3/Me1oH62lGsyCNntRUEUOTKDrb26PeTvPhDdQ0JalnWAvOVXgCbdVtIatq5gw9o5ZazI7P+Cg/uO0bnpbcr+NH+ZWe1FZnRwt66SpMVYfLb0HoT+aePNEtsHpq2H8ejj6NBocvu/OZ4c8J33ygsTkDTkkH8kxGRNOPpOv5Bv5HvwIfga/gt+r1qDXzTwjaxH8/QeldAQ9</latexit>

44
f̂1

<latexit sha1_base64="DqkVSz0IiFjx2GV3WMhRbeYY+/0="></latexit>

44
f̂n

<latexit sha1_base64="hUQ+hH7KJHfzaNzXzuy1uyN+UPk="></latexit>

44
f̂2

Figure 2: An inductive bias probe measures whether a foundation model has an inductive bias toward a given world model.
The probe involves repeatedly fitting a foundation model to small, synthetic datasets and comparing the functions it learns to
the functions in the given world model.

One approach would be to mechanistically probe the foun-
dation model, e.g. by comparing its weight-level representa-
tions to the postulated states in the world model. However,
understanding the internal mechanisms of large models is
challenging (Olah, 2022) and even then may not reflect how
a model actually behaves on new data (Casper et al., 2023).
Another approach is to study the model’s behavior statically,
on a single task (Toshniwal et al., 2022; Vafa et al., 2024),
but this doesn’t capture how foundation models are used in
the real world: as tools for new tasks.

We take a different approach, motivated by the no-free-
lunch theorem (Wolpert, 1996). Loosely speaking, the
no-free-lunch theorem states that no learning algorithm can
perform better than another one on average if any function
could have generated the data it is applied to. Given limited
data, learning algorithms must extrapolate to unseen inputs,
and if any underlying function is possible, any such extrap-
olation must be equally good or bad. This means that every
learning algorithm is better for some collection of possible
functions — those functions that it tends to learn when ex-
trapolating from limited data. The functions that a learning
algorithm tends to learn represent its inductive bias.

The idea of inductive bias offers a connection between foun-
dation models and world models. A world model is a re-
striction on the possible functions from inputs to outputs:
only those that obey its state structure are possible. Conse-
quently, a foundation model that has learned a postulated
world model should have an inductive bias towards functions
that obey the world model’s state structure. For example,
physicists may train a foundation model on sequences of
planetary orbits. Since planetary orbits obey Newtonian
mechanics, they might hope the model has an inductive bias
toward functions of Newtonian mechanics (e.g. predicting
the force vector between two planets).

We develop an inductive bias probe for testing whether a
foundation model’s inductive bias matches the postulated
world model’s state structure. The inductive bias probe re-
peatedly applies a foundation model to synthetic datasets
consistent with the world model and studies the extrapo-
lated functions together (Figure 2). In each such simulation,
we do not calculate the “accuracy” of the resulting extrap-
olations since there is no one accurate function; multiple
ways to extrapolate may be allowed by the true world model.
Instead, we evaluate whether the extrapolations resemble
those that are allowed by the true world model.

2.2. Special case: finite state space and binary outputs.

To provide more intuition for the inductive bias probe, we
first consider the special case of a binary output Y = {0, 1}
and a postulated world model with a finite state space Φ.
The two metrics we introduce in this setting are special
cases of the general inductive bias probe defined in the next
section.

The inductive bias probe evaluates whether a foundation
model’s inductive bias is towards a postulated world model.
At a high level, the probe repeatedly applies the foundation
model to synthetic datasets consistent with the postulated
world model and each time evaluates its predictions on
held-out inputs. If the foundation model’s inductive bias
is towards the postulated world model, its extrapolations
should have two properties. First, the foundation model’s
predictions should respect state: if two inputs x, x′ map to
the same state (ϕ(x) = ϕ(x′)), the foundation model should
have the same predicted outputs (m̂D(x) = m̂D(x′)) when
applied across synthetic datasets. If not, it means that the
foundation model fits functions that do not belong to the
world model. Second, the foundation model’s predictions
should distinguish state: if two inputs x, x′ map to different

3
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Figure 3: An illustration of the inductive bias probe when the given world model has a finite state space. Each row represents
a function and each column represents an input xi, with inputs belonging to the same state grouped together. The shading
illustrates each function’s value at the corresponding input. A foundation model has low R-IB (middle) if it learns functions
that divide states, while a foundation model has low D-IB (right) if it learns function that merge states.

states (ϕ(x) ̸= ϕ(x′)), the foundational model should typi-
cally have different predicted outputs (m̂D(x) ̸= m̂D(x′))
across synthetic datasets. If not, then the foundation model
does not fit functions that fully cover the world model’s
allowable functions.

These properties can be measured using two metrics. Let
1(y, y′) denote the indicator for whether y = y′. We specify
a sampling distribution over consistent datasets D ∼ PD

and a sampling distribution over inputs (Xi, Xj) ∼ PX ×
PX . The foundation model’s inductive bias towards respect-
ing state (R-IB) is

EXi,Xj ,D[1(m̂D(Xi), m̂D(Xj)) | ϕ(Xi) = ϕ(Xj)]. (1)

R-IB measures the similarity between the foundation
model’s extrapolations on inputs in the same state under
the postulated world model: higher R-IB indicates more
similar predictions for the same states. The foundation
model’s inductive bias towards distinguishing state (D-IB)
is

1− EXi,Xj ,D[1(m̂D(Xi), m̂D(Xj)) | ϕ(Xi) ̸= ϕ(Xj)].
(2)

D-IB measures whether inputs that belong to different states
under the postulated world model nonetheless receive consis-
tently similar predictions by the foundation model: higher D-
IB indicates more dissimilar predictions for different states.
Figure 3 illustrates both metrics.

Together, R-IB and D-IB provide contrasting perspectives
on a foundation model’s implicit world model, analogous
to precision and recall in binary classification. For example,
while it is trivial for a foundation model to achieve high R-
IB by making the same prediction on every input, its D-IB
will suffer. Both metrics are needed to contrast a foundation
model’s inductive bias with the postulated world model.

In this sense, the inductive bias probe captures behavior of
a foundation model that is not captured by standard probe
tests (Nanda et al., 2023b), which measures how well a sim-
ple predictive model (e.g., a linear model) can predict state
from a foundation model’s intermediate representation. By
contrast, the inductive bias probe directly analyzes how the
foundation model behaves when adapted to synthetic tasks
from the postulated world model. When there are many
distinct state mappings that are predictable from a founda-
tion model’s internal representation, standard probes can-
not distinguish which is actually being used by the model.
Moreover, the standard probe is sensitive to how state is
mechanistically represented by the chosen world model. For
example, Nanda et al. (2023b) find that different representa-
tions of the Othello game board (one based on the standard
board and another that inverts the board based on whose
turn it is) lead to different results by standard probes. By
contrast, because inductive bias probes only depend on state
equality, they are insensitive to equivalent representations.

To implement the inductive bias probe, a practitioner must
supply a sampling distribution over consistent datasets PD

and a sampling distribution over inputs PX . In our ex-
periments with a finite state space and binary outputs (see
Section 4), we sample consistent datasets by assigning each
unique state the output 0 or 1 uniformly at random.

2.3. Inductive bias probe

We now describe the inductive bias probe allowing for gen-
eral outputs, state spaces, and tasks. For example, for se-
quences of two planets orbiting one another, the states could
correspond to their relative positions, relative velocities,
and the masses of each planet under Newtonian mechan-
ics. We further introduce a collection of admissible func-
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tions on state G that govern the relationship between the
state space and the output under the world model with each
g ∈ G : Φ → Y . For example, in some settings, we may
expect the output to vary smoothly with the state, in which
case G could be the collection of K-Lipshitz functions. A
dataset is now consistent with the world model if for each
(x, y) ∈ D, y = g(ϕ(x)) for some g ∈ G.

Given a sampling distribution over consistent datasets PD

and a sampling distribution over inputs PX , the inductive
bias probe repeatedly applies the foundation model to sam-
pled datasets, and then evaluates its predictions on held-
out inputs. It measures how predictable the foundation
model’s predicted outputs for one input are from those of
another input across many synthetic datasets. The intuition
is unchanged: inputs in “similar” states should be more
predictable from one another than inputs from “different”
states. We next formalize this property.

Extrapolative predictability. We further specify a family
of predictors H with h ∈ H such that h : Y → Y and a
loss function over outputs ℓ : Y × Y → R+. We define the
extrapolative predictability between two inputs as

Î(xi, xj) = −min
h∈H

ED∼P [ℓ(h(m̂D(xi)), m̂D(xj))], (3)

which measures how predictable the foundation model’s
predicted outputs for one input are from the other. Higher
values of extrapolative predictability indicate higher lev-
els of predictability. If a foundation model behaves as if
it extrapolates based on the postulated world model, the
extrapolative predictability should be larger for inputs with
more similar states.

Oracle foundation model. As a calibration, we calculate
the extrapolative predictability for an “oracle” foundation
model that is given access to the true state space Φ and
admissible functions G. When applied to consistent dataset
D, the oracle foundation model returns

m∗
D = argmin

g∈G
1

|D|
∑

(xi,yi)∈D ℓ(g(ϕ(xi)), yi). (4)

(The loss function used here need not be the same as the
loss function used to calculate extrapolative predictability.)
The oracle extrapolative predictability is

I∗(xi, xj) = −min
h∈H

ED∼P [ℓ(h(m
∗
D(xi)),m

∗
D(xj))]. (5)

Inductive bias towards the world model. The inductive
bias probe compares the foundation model’s extrapolative
predictability to that of the oracle. Specifically, the foun-
dation model’s inductive bias towards the world model is
defined as, for any 0 ≤ s ≤ s,

IB(s, s) = EXi,Xj [Î(Xi, Xj) | s ≤ I∗(Xi, Xj) ≤ s].
(6)
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Figure 4: Inductive bias probe performance (Equation 6) for
a transformer pretrained on orbital trajectories. A 45-degree
line would indicate perfect inductive bias toward an oracle
that extrapolates based on the Newtonian state vector.

We calculate this quantity over a grid of values 0 = s0 <
s1 < · · · < sm, visualizing how IB(s, s) varies over the
grid. The foundation model’s inductive bias towards the
world model can be interpreted like a calibration curve: if
the foundation model behaves like the oracle when applied
to many small datasets, then IB(s, s) should lie on the 45-
degree line in this visualization (as illustrated in Figure 4).

R-IB and D-IB are special cases of the foundation model’s
inductive bias towards the world model (Equation 6). Con-
sider the case in which the output is binary, Φ is finite, and
G is the collection of all mappings. Provided PD places pos-
itive probability on all possible consistent datasets and H is
limited to the identity function, there are only two possible
values for the oracle’s extrapolative predictability, which
occur when ϕ(xi) = ϕ(xj) and when ϕ(xi) ̸= ϕ(xj). Con-
sequently, the foundation model’s inductive bias towards the
world model reduces to R-IB in in the former case (Equa-
tion 1) and D-IB (up to a sign change) in the latter case
(Equation 2).

3. Orbital Mechanics
We illustrate these ideas by testing whether a transformer
trained to predict the locations of planets in motion has re-
covered Newtonian mechanics. We first train a model to
predict the location of planets across solar systems. Despite
the model’s ability to accurately predict the future trajecto-
ries of planets, the inductive bias probe reveals that it has
a low inductive bias toward Newtonian mechanics. This is
corroborated by the fact that when the model is fine-tuned
to predict a planet’s force vector — a cornerstone of Newto-
nian mechanics — its predictions imply a nonsensical law of
gravitation. We find that the model has recovered piecemeal
heuristics rather than a compact world model; it recovers a
different law of gravitation depending on the slice of data it
is applied to.

Background. For centuries, astronomers and physicists
have worked on predicting the orbits of planets around the

5



What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models

sun. A groundbreaking model was offered by the astronomer
Johannes Kepler in the 17th century. His model was based
on geometric patterns: for example, that the orbit of each
planet followed an ellipse with the sun at one of its foci.
While the model could predict orbits with a near-perfect
level of precision, it couldn’t explain why the planets obeyed
these geometric orbits or be applied to new problems beyond
predicting trajectories.

Later, Isaac Newton expanded on this model using new laws
of motion, now known as Newtonian mechanics. These
laws involved computing properties of the set of planets in
motion, such as their relative velocities and masses. Using
these properties, he could derive Kepler’s earlier laws for
orbital trajectories, but also go beyond, understanding and
formalizing other concepts like force and gravity.

From Kepler to Newton, scientists were able to move beyond
good predictive models of sequences to a deeper understand-
ing of them. In this section, we test whether a transformer
that can predict sequences of orbital trajectories is merely
a good sequence model, or whether it has also made the
transition to providing a world model.

Data and pre-training. We first simulate a dataset of se-
quences, where each sequence describes planets in motion
around a sun. To do this, we randomly sample initial condi-
tions (e.g. the masses and positions of the planets and their
initial relative velocities) to target the shape of orbits ob-
served in known exoplanets (Kipping, 2013). We simulate
each planet’s trajectory around the sun using Newton’s laws
of motion; because planet masses are much smaller than the
sun’s, interactions between planets are minimal, so we omit
them. To convert orbits into sequences, we record (x, y) co-
ordinates of each planet and the sun across regular intervals,
and interleave all the locations into a single sequence with
1,000 observations. This means that each sequence denotes
a different solar system.

We consider two different types of time intervals: fixed
intervals, which uses the same 6-month interval for each
sequence, and varied intervals, for which a random half of
the sequences use 6-month intervals and the other half use 1-
week intervals, with a special token at the beginning indicat-
ing the interval length. For example, in a solar system with
K planets and varied intervals, the first timestep encodes the
interval length, the next K observations are the (x, y) coordi-
nates for each planet at the first point in time, and the next K
are the coordinates for each planet the appropriate timestep
later, etc. We consider two training set sizes: 2B tokens
(across 1M sequences) for fixed intervals and 20B tokens
(across 10M sequences) for the varied intervals. We find
similar results for models trained on each, so we report the
results for the varied interval model unless noted otherwise.

We train a 109M parameter transformer (Vaswani et al.,

2017) to predict the next token of each sequence in the train-
ing set. We experimented between using a) continuous coor-
dinates (and MSE loss) and b) discretized coordinates (with
cross-entropy loss), finding the latter worked better. We dis-
cretize each position vector of each body in the solar system
by creating 7K bins per coordinate (x, y), where the coordi-
nates spans from -50 to 50 AU. We train for 25 epochs using
8 H100 GPUs. See Appendix A for more training details.

We evaluate model predictions on held-out data. The model
makes good predictions: its R2 is above 0.9999, and it sig-
nificantly outperforms baseline models that always predict
the most recent position or the per-orbit mean (Table 7). It
can also generate long orbits with a high degree of accuracy.

Has the model recovered Newtonian mechanics? The
transformer’s predictions reflect a very good sequence
model. But has it recovered Newtonian mechanics? To
test this, we note that Newtonian mechanics dictate that
each observation in a sequence of orbits is governed by a
state vector consisting of the masses, relative velocities, and
relative positions of each planet. Given the current state of a
trajectory, the next position of an orbit is deterministic. This
is our world model; if a foundation model’s inductive bias
depends on Newtonian mechanics, it must be extrapolating
based on this state vector.

We use the inductive bias probe described in Section 2
to assess the model’s inductive biases. We create 100
synthetic datasets where the outputs are linear functions of
the state of the sequence. We then fine-tune the transformer
by training it to predict these functions. We measure
the model’s extrapolative predictability across inputs
(Equation 3) by considering H to consist of the identity and
the loss function ℓ to be MSE. We evaluate Equation 6 by
comparing the model to an oracle that extrapolates based on
state directly (we consider both linear models and 2-layer
neural networks for the oracle, finding similar results). The
inductive bias toward simple functions of Newtonian state
is poor; see Figure 4 for a visualization of the fixed-interval
model. In other words, the model’s inductive bias is not
toward Newtonian state; when it has to extrapolate, it makes
similar predictions for orbits with very different states and
different predictions for orbits with very similar states. For
implementation details, see Appendix B.1.

To understand the degree to which the model fails to apply
Newtonian mechanics, we test its ability to predict spe-
cific quantities derived from Newtonian mechanics. Specifi-
cally, we consider each planet’s force vector, a simple trans-
formation of state given by Newton’s law of gravitation:
F = Gm1m2

||r||2 er, which relates the force F between a planet
and the sun to their masses m1,m2 and their squared dis-
tance ||r||2 (in the direction er of its relative position). The
force vector can be computed for each observation in a se-
quence; force is a simple transformation of state, so the
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Ground-truth law F ∝ m1m2

r2

Estimated laws

Galaxy 1 F ∝
(
sin

(
1

sin(r−0.24)

)
+ 1.45

)
∗ 1

1
r+m2

Galaxy 2 F ∝ cos
(
cos(2.19 ∗m1)

)
Galaxy 3 F ∝ cos

(
sin( 0.48m1

)
)

Galaxy 4 F ∝ sin
(
r + 8569.2 + 1

m1

)
Galaxy 5 F ∝ cos

(
cos(em2)

)
Table 1: Force equations recovered via symbolic regression
of a transformer pretrained on orbital mechanics and fine-
tuned to different galaxy samples. The model recovers
different equations for each sample, never recovering the
true law.

predictions of a model that has recovered Newtonian me-
chanics should obey this law.

We test this by creating a sequence-to-sequence dataset
where each input is a trajectory and each output is the force
vector F on the planet implied by the state of the orbit. We
first fine-tune the pretrained transformer to predict the force
vector on orbits from our solar system, providing 1% of
the true forces as training data. Figure 1 shows these force
predictions are poor. To assess how close the model is to
recovering Newton’s law of gravitation, we further fine-tune
it to predict the force magnitude on a larger dataset of 10K
solar systems. We then perform a symbolic regression (us-
ing the PySR software (Cranmer, 2023)) of the predicted
force magnitudes on the true values of m1,m2, and r. A
symbolic regression is a method to search for a symbolic ex-
pression that optimizes a regression-like objective (Cranmer
et al., 2020). When the symbolic regression is applied to the
transformer’s predictions, the physical law is nonsensical
(Figure 1). In contrast, an oracle trained on the true state
predicts the force vectors well and a symbolic regression
recovers the true physical law (Figure 7 in Appendix C). See
Appendix C for implementation details and Appendix D for
a similar experiment with LLMs.

How can a model perform so well at predicting orbit loca-
tions without having inductive biases towards the laws of
physics that govern them? We study this question by apply-
ing the fine-tuned model’s force predictions to five different
sets of randomly sampled galaxies (each consisting of many
solar systems). We then perform a symbolic regression on
the force magnitude for each sample. The symbolic regres-
sion finds a different implied law of gravitation for each
sample (Table 1). In contrast, the oracle trained on true
state recovers the same (correct) law for each galaxy. These
results show that rather than building a single universal law,
the transformer extrapolates as if it constructs different laws
for each sample.

4. Other Applications
We now apply the inductive bias probe to evaluate the extent
to which foundation models obey known world models in
other domains. Evaluating world models requires studying
domains where there’s a state structure and ground-truth
state is known. We study two such types of datasets: lattice
problems and the board game Othello.

Lattice. One common type of structure to assess models
against is spatial structure, or lattices (Vafa et al., 2024; Liu
et al., 2022). We study a lattice setting that simulates an
agent moving along a line segment with a finite number of
positions. There is a true state space consisting of S states:
Φ = {1, 2, . . . , S}. The language x consists of sequences
with three tokens: Σ = {L,⊥, R}. The initial state of the
sequence is 1. For a token σ = R, the state increases by 1,
while the state decreases by 1 for σ = L and stays the same
for σ =⊥. When the state is 1, the state is at the boundary,
so σ = L is not a valid token; similarly, when the state is
S, σ = R is not a valid token. All tokens are valid for all
other states. We randomly generate sequences of length
100 over the language by sampling a move uniformly at
random over the set of valid moves for each timestep. We
consider different versions of the lattice problem, varying
the number of states from 2 to 5. We consider sequences
taken from a training set containing 10M tokens, along with
100k hold-out tokens.

Othello. We also study the board game Othello, a common
testbed for evaluating the world models of sequence models
(Li et al., 2023; Nanda et al., 2023b; Hazineh et al., 2023;
Vafa et al., 2024). The game consists of two players taking
turns placing tiles on an 8x8 board. Each game of Othello is
tokenized into a sequence of at most 60 moves, where each
token indicates which of the 60 squares the most recent tile
was placed on (the middle four tiles are always occupied).
The true state space Φ corresponds to all 8x8 boards and the
mapping ϕ converts game sequences into states. We con-
sider game sequences taken from a training set containing
7.7M tokens, along with 300K hold-out tokens.

Models. We study the properties for five classes of pre-
trained sequence models: RNNs (Elman, 1990), LSTMs
(Hochreiter, 1997), transformers (Vaswani et al., 2017),
Mamba (Gu & Dao, 2023), and Mamba-2 (Dao & Gu,
2024). We train each model using next-token prediction
for each domain. By way of comparison, we also compare
these pretrained models to untrained models that fine-tune
from a random initialization. See Appendix A for more
information.

All pre-trained models perform well at next-token predic-
tion, generating outputs that appear to obey state. Following
Toshniwal et al. (2022), we measure the fraction of a
model’s top predictions that are legal in the underlying
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Lattice (5 States) Othello
Pre-training R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN Untrained 0.346 (0.026) 0.749 (0.027) 0.240 (0.019) 0.987 (0.002)
(Elman, 1990) NTP trained 0.574 (0.026) 0.803 (0.032) 0.558 (0.021) 0.845 (0.019)

LSTM Untrained 0.456 (0.028) 0.718 (0.031) 0.506 (0.028) 0.672 (0.032)
(Hochreiter, 1997) NTP trained 0.782 (0.021) 0.921 (0.030) 0.649 (0.030) 0.448 (0.035)

Transformer Untrained 0.268 (0.027) 0.742 (0.028) 0.714 (0.022) 0.840 (0.021)
(Vaswani et al., 2017) NTP trained 0.483 (0.031) 0.677 (0.034) 0.668 (0.023) 0.593 (0.034)

Mamba Untrained 0.260 (0.026) 0.771 (0.027) 0.342 (0.019) 0.933 (0.013)
(Gu & Dao, 2023) NTP trained 0.571 (0.023) 0.866 (0.029) 0.597 (0.024) 0.734 (0.028)

Mamba-2 Untrained 0.244 (0.026) 0.785 (0.026) 0.490 (0.020) 0.936 (0.008)
(Dao & Gu, 2024) NTP trained 0.617 (0.021) 0.864 (0.029) 0.590 (0.022) 0.732 (0.027)

Table 2: The inductive bias towards respecting state (R-IB) and inductive bias towards distinguishing state (D-IB) metrics
(1 is perfect performance, 0 is equivalent to noninformative model). “NTP-trained” represents a model pre-trained on
next-token prediction, while “untrained” refers to a model trained on the same synthetic tasks, initialized from scratch.
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Figure 5: Inductive bias probe results (R-IB and D-IB) for
the lattice problem as a function of the underlying number
of states. A different model is pre-trained on data consistent
with each number of states and its inductive bias for that
state structure is recorded using the metrics in Section 2.

state. Table 6 in Appendix G shows the results. All models
do very well across all datasets, e.g. every model’s top
prediction is legal ≈ 90% of the time for Othello and legal
100% of the time for a lattice problem with five states.

Inductive bias probe results. We measure each model’s
inductive bias using the procedure from Section 2 to assess
the inductive bias of these models. The procedure involves
fine-tuning each model to small datasets of randomly gen-
erated outputs and assessing whether the model’s inductive
bias — as measured by its extrapolations — obeys state
structure. We use the discrete version of the procedure for
both models.

The results for the lattice problem are depicted in Figure 5.
While models have high inductive biases when the number
of states is small, as the number of states increases, the in-
ductive biases drop off. Notably, the transformer model con-
sistently does worse than the other models, all of which have

architectures based on recurrent or state-space models. The
results for Othello are depicted in Table 2. Here, all models
perform worse than on the lattice problems, indicating poor
inductive bias. Despite generating legal moves nearly 100%
of the time when pretrained to play Othello, these models
don’t use the board as an inductive bias on new tasks.

To understand the implications of these results, we study
how different models transfer to new functions of state (the
board). Specifically, we take the Othello dataset and con-
struct new sequence-to-sequence datasets. The input se-
quence for each dataset is the original game transcript, and
we consider three different output transformations that are
functions of state. In “Majority Tiles”, each element of
the output is 1 or 0 indicating where there are more black
or white tiles in the board implied by the sequence so far.
In “Board Balance”, each element of the output sequence
indicates whether black has more pieces in the top half of
the board or in the bottom half of the board. Finally, in
“Edge Balance”, the output measures whether black has
more pieces along the edge squares of the board. Each
of these functions is a deterministic function of state (the
board), so foundation models that have inductive bias to-
ward state should be better at transfer. We transfer models
for 5,000 iterations; see ?? for other amounts. The results
are depicted in Table 9. The last row shows the (unsigned)
correlation for each metric and the ratio, R-IB

1−D-IB that sum-
marizes the inductive bias measures in Table 2. There is
strong correlation across all metrics; models that do better
on inductive bias metrics transfer better to these functions
of state. See ?? for further analysis.

What are the inductive biases? These results show that
models can perform well at predicting token sequences with-
out appearing to learn the underlying world model. This
raises the question: If a foundation model’s inductive bias
isn’t toward a given world model, what is it toward?
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Legal next move Incorrect tile prediction

True board Predicted board

Figure 6: On the left, a true Othello board implied by a sequence, and on the right, the predicted board from a model
fine-tuned to predict boards. Although the prediction has errors, the set of predicted next tokens exactly matches the true
board. On the right, metrics about board reconstruction during fine-tuning. Consistently, even as Mamba models struggle to
recover full boards, they recover them well enough such that the sets of valid next moves match those in the true boards.

Here, we consider one hypothesis motivated by the next-
token pretraining objective: that when foundation models
are applied to new tasks, they group together sequences
with distinct states for which the set of legal next tokens are
nevertheless equivalent. For example, in the board game
Othello, two distinct boards can have the same set of al-
lowable next moves. Therefore, a model’s inductive bias
might be toward boards with the same sets of allowable next
moves rather than the true board itself.

To first demonstrate this concept with Othello, we fine-tune
a foundation model pretrained on next-token prediction to
predict the true board of each sequence. We record two
metrics when we fine-tune: 1) whether the predicted board
exactly matches the true board, and 2) whether the set of
valid moves in the predicted board matches the set of valid
moves in the true board. The results are depicted in Figure 6:
surprisingly, even when the predicted board is incorrect, the
set of legal moves frequently matches the set of legal moves
from the true board. Rather than recovering the full board,
the foundation model is often recovering “enough of” the
board to calculate legal next moves.

To quantify this hypothesis generally, we modify the in-
ductive bias probe to test whether a model’s inductive bias
is toward next-token partitions of state. Recall that D-IB
measures how similar extrapolations for two points with
different states are one from another. If a model is extrap-
olating based on which next-tokens are legal, sequences
in different states that happen to have the same legal next
tokens will have more similar predictions than sequences in
different states that have different legal next tokens.

Specifically, let q denote the next-token coarsening
of the state space such that q(x) = q(x′) if and
only if NextTokens(ϕ(x)) = NextTokens(ϕ(x′)), where
NextTokens(s) is the set of valid next tokens for state
s. We decompose D-IB into two quantities. First, de-

fine Same(Xi, Xj) as the event that ϕ(Xi) ̸= ϕ(Xj) but
q(Xi) = q(Xj). We then define,

D-IBq= = 1−E [1(m̂D(Xi), m̂D(Xj)) | Same(Xi, Xj)] ,

which measures how predictable the extrapolations for in-
puts associated with different states that have the same legal
next tokens are. Similarly, define Diff(Xi, Xj) as the event
that ϕ(Xi) ̸= ϕ(Xj) and q(Xi) ̸= q(Xj). Analogously,

D-IBq ̸= = 1− E [1(m̂D(Xi), m̂D(Xj)) | Diff(Xi, Xj)] ,

which measures how predictable the extrapolations for in-
puts associated with different states that have different legal
next tokens are. If distinct-state inputs with the same legal
next tokens are more predictable than distinct-state inputs
with different legal next tokens (i.e., D-IBq= < D-IBq ̸=),
then it suggests the model extrapolates based on the next-
token partition rather than the true board state.

We compute these refined metrics for lattice and Othello.
Each has a natural definition of legal next moves (cor-
responding to boundaries and game rules). The results
are depicted in Table 8. For all models, the gap between
D-IBq= and D-IBq ̸= is statistically significant, suggesting
that models are grouping together distinct states with the
same sets of legal next tokens.

5. Related Work
This paper studies whether predictive models form world
models (LeCun, 2022). One strand of world model research
studies whether the outputs of a fixed model accord with
a known world model by studying the fixed model’s outputs
(Vafa et al., 2024). For example, one way that Toshniwal
et al. (2022) and Li et al. (2023) study world models is by
assessing whether a model trained on sequential game data
always predicts legal moves in the underlying game. The
question we study is a different yet related question: rather
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than studying the world model properties of a fixed model,
we study what it means to test if a learning algorithm — a
foundation model — has a world model embodied in it.

Another strand of the literature assesses whether a model’s
parametric representations encode world models without
directly studying learning properties. For example, a
common method uses probes or sparse autoencoders
(SAEs) (Trenton Bricken et al., 2023) to assess whether
an intermediate representation used by a neural network is
predictive of state (Hewitt & Liang, 2019; Li et al., 2021;
Abdou et al., 2021; Jin & Rinard, 2023; Li et al., 2023;
Spies et al., 2025; Karvonen, 2024). However, there are
open questions about the reliability of probes (Belinkov,
2022), such as appropriate function complexity (Alain &
Bengio, 2018; Cao et al., 2021; Li et al., 2023). Our method
sidesteps these issues by asking how a model learns, rather
than what’s encoded in its fixed representations.

The methods in this paper are also related to the study of
mechanistic interpretability of ML models (Nanda et al.,
2023a; Cunningham et al., 2023; Bereska & Gavves, 2024).
Closely related to us, jylin04 & Rager (2024) and Nikankin
et al. (2025) find that a GPT model trained on Othello and
math tasks, respectively, performs internal computations
corresponding to “bags of heuristics” rather than a coherent
world model. While our procedures differ in aim, these
findings support our analysis of the Othello model relying
on heuristics, rather than state, as its inductive bias (McCoy
et al., 2019).

Recent work developing foundation models in scientific
domains such as like protein folding, gene regulation, and
molecular chemistry (Chowdhury et al., 2022; Benegas et al.,
2023; Boiko et al., 2023; Jablonka et al., 2024) use predic-
tive models as steppingstones toward uncovering deeper
principles. Our orbital mechanics example relates specif-
ically to the large body of work studying AI and physics
(Hao et al., 2022; Wu & Tegmark, 2019). It is most closely
related to works studying whether AI models can uncover
physical laws (Chen et al., 2022; Belyshev et al., 2024;
Kansky et al., 2017; Gurnee & Tegmark, 2024). We adapt
tools from this literature — such as using symbolic regres-
sions for interpretability — to study the inductive biases of
algorithms (Liu & Tegmark, 2021; Wu & Tegmark, 2019).

6. Conclusion
The promise of foundation models is that sequence predic-
tion can uncover deeper understanding of underlying mech-
anisms. We develop a framework for evaluating whether
a foundation model has learned a postulated world model
by measuring its inductive biases when transferring to new
tasks. Our empirical results reveal that while many sequence
models excel at next-token prediction tasks, they often have

limited inductive bias toward genuine world models. Rather
than learning coherent world models, we find that these
models may be relying on coarsened state representations
or non-parsimonious representations.

As described in Section 2, our metrics require specifying
a world model to test a foundation model against. That a
world model must be specified aligns with other examples
in this literature (Li et al., 2023; Vafa et al., 2024), but it is a
limitation for analysts searching for the exact representation
the model is using. While we propose strategies for testing
candidates (e.g. next-token partitions), future work should
prioritize methods for automatically constructing the world
model implicit in the foundation model’s behavior.
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A. Model and Training Details
We use the following specifications for each model:

• RNN (Elman, 1990): For Othello, We use 6 uni-directional RNN layers with 768 embedding dimensions. For the
lattice experiments, the architecture is the same except we use only 2 layers because it optimizes to better in-sample
and out-of-sample loss.

• LSTM (Hochreiter, 1997): We use the same specification as for the RNN, except we use LSTM layers.

• Transformer (Vaswani et al., 2017): We use a transformer decoder architecture, with 12 layers, 12 attention heads, and
768 embedding dimensions.

• Mamba (Gu & Dao, 2023): We first encode inputs with a 768-dimension embedding layer. We then pass inputs
through 24 Mamba layers (analogous to 12 layers in a transformer due to how Mamba layers are defined). We use
768 embedding dimensions, 16 for the SSM state expansion factor, 2 for the block expansion factor, and 4 for the
convolutional width.

• Mamba-2 (Dao & Gu, 2024): We use the same architecture as for Mamba except the mixer in each block is a Mamba-2
module. We use the same specifications as well: 768 embedding dimensions, an SSM state expansion factor of 16, a
block expansion factor of 2, and a convolutional width of 4.

We use Adam (Kingma & Ba, 2014) to optimize each model. We use a learning rate of 6e-4 and decay the learning rate
with with 2000 warmup iterations. We use weight decay of 0.1 and gradient clipping at 1 for each model. When we
pre-train models on next-token prediction, we include a head to predict next tokens (tying its parameter weights to the initial
embedding layer parameters).

For physics dataset generation, we use the following sampling strategy. For each solar system, we sample the number
of planets from Unif([1, 2, . . . , 10]), the eccentricity from a Beta(α = 0.867, β = 3.03) following Kipping (2013), the
semi-major axis from Unif(0.3, 42), in astronomical units (AU), the mass of each planet from LogUniform(10−7, 10−3),
the mass of the star from Unif(0.5, 5). These distributions ensure that our solar system is within the training distribution of
the model. In order to generate sequences, we randomly generate initial conditions and solve Kepler’s equation to obtain
each trajectory. We simulate 1000 timesteps with 6-month intervals for each sequence.

B. Metric Implementation Details
B.1. Physics

To compute the empirical approximations of Equation 6, we follow the following procedure. First, we create 100 datasets of
100 examples, D1, . . . , D100. For each dataset Di, we sample 100 sequences uniformly at random among the set of data
points and consider their corresponding sequences of state-vectors. First, we randomly sample 50 matrices of dimension
(6× 1) from standard Gaussian. We consider the linear projection of each state-vector using each of the 50 matrices, and
choose the one that maximizes the Spearman correlation between pairwise Euclidian distances in the 6D state space and the
projected 1D space. We randomly sample a projected point from each sequence, leading to Di of size 100. We then fine-tune
a model separately for each dataset, resulting in 100 fine-tuned models m̂(·;D1), . . . , m̂(·;D100). We then calculate the
associated prediction functions across all inputs xi from the same hold-out dataset, resulting in new datasets of the form
{(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D100)}.

To compute the metrics, we first randomly sample 2,000 examples from all inputs, xk1 , . . . xk100 , compute the pairwise
Euclidean distance among the Oracle (a linear map or a 2 layer MLP with 5 nodes in each hidden layer) predictions on the
inputs, and divide the range of predictions into 20 equally-spaced bins. For all the points that lie in each bin, we compute the
mean pairwise Euclidiean distance among the model predictions. The resulting figure is shown in Figure 4.

B.2. Lattice and Othello

To compute the empirical approximations of Equation 1 and Equation 2, we follow the following procedure. First, we create
100 datasets of 100 examples, D1, . . . , D100. For each dataset, we sample sequences uniformly at random among the set of
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data points and sample outputs from a Bernoulli(0.5) distribution. In our construction we make sure that any two sequences
with the same state are mapped to the same output variable. We then fine-tune a model separately for each dataset, resulting
in 100 fine-tuned models m̂(·;D1), . . . , m̂(·;D100). We then calculate the associated prediction functions across all inputs
xi from the same hold-out dataset, resulting in new datasets of the form {(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D100)}.

To compute the metrics, we first randomly sample 2,000 examples from all inputs, xk1 , . . . xk100 , then measure the average
predictive loss for all pairs (xki , xkj ) with the same state, ϕ(xki) = ϕ(xkj ) (R-IB):

R-IB ≈ ED∼Dtest

[
Ei,j:ϕ(xki

)=ϕ(xkj
) [m(xi;D) = m(xj ;D)]

]
(7)

and the average predictive loss for all pairs (xki
, xkj

) with different states, ϕ(xki
) ̸= ϕ(xkj

) (D-IB):

D-IB ≈ 1− ED∼Dtest

[
Ei,j:ϕ(xki

)̸=ϕ(xkj
) [m(xi;D) = m(xj ;D)]

]
(8)

We rescale them so that the value of 0 corresponds to perfect accuracy and 1 corresponds to random guessing (large values
for both indicate the model exhibits stronger inductive bias towards the state).

For the lattice example, we use a state space consisting of k states: Φ = {1, 2, . . . , k}. The inputs xi for extrapolation are
taken from 1,000 random sequences of valid moves, each of length 100, for a total of 100,000 sub-sequences of moves. Our
procedure for Othello follows the same steps as for the lattice example, except the state is a 64-dimensional board instead of
a single categorical variable.

Note that for Othello, if we randomly sample sequences from game transcripts, it is exceedingly likely that we end up with a
dataset in which two sequences lead to the same state if and only if they are permutations of one another. This implies that a
non-sophisticated model that detects unique permutations of sequences would appear to have high inductive bias towards the
state. To prevent this, we first construct all valid Othello game openings of depth 10, randomly choose a board that appears
many times in this dataset, then use all possible valid permutations of any sequence of moves that leads to that board as
our input dataset. Note that since all sequences will be permutations of one another, the non-sophisticated model would no
longer be able to distinguish different states. We end up with an input dataset of 210 Othello openings, each of length 10, for
a total of 2,100 subsequence of moves.

C. Force Prediction Implementation Details
Here we describe more implementation details for the force prediction experiments.

Force vector prediction. To create Figure 1, we fine-tuned the transformer to predict force vectors in two-body gravitational
systems. We keep force vectors as continuous, and normalize the force vectors in each sequence so the maximum force
vector in each sequence is unit length. We specifically fine-tune the model on the 8 sequences consisting of the trajectories
in our solar system, randomly using 1% of the observations in each sequence as labeled force vector data for the model. We
fine-tune the model to minimize MSE for 10,000 steps. We consider a learning rate grid between 1e-6 and 5e-4, finding that
2e-4 has the best validation loss. We keep the checkpoint with the lowest held-out loss. The model is then extrapolated to
make predictions across the remainder of the points in each sequence.

For comparison, we perform the same procedure for an oracle model that predicts force vectors based on the true state
matrices. Specifically, using the same sampling procedure, the oracle fits a k-nearest neighbor model with k = 2 based on
Euclidean distance with the true state. We then use this model to predict force vectors for the remainder of the points in the
solar system. The oracle predictions are depicted in Figure 7. These results show that it is feasible for a model to make
accurate predictions if it is extrapolating based on the correct world model.

Force magnitude prediction and symbolic regression. We use a symbolic regression to assess how close the recovered
force equation is to the true law. To simplify, we use the force magnitude rather than the full vector for these experiments
(the vector is always in the direction of the sun). Here, we don’t normalize the force magnitudes per solar system in order to
preserve the force magnitude’s dependence on the sun’s mass.

We start by creating a training set that includes 9K two-body problems sampled using the sampling strategy in Appendix A.
We create a test set of 1K sequences of two-body problems. We additionally ensure that the model is always extrapolating to
sequences where it has seen partial information by adding two randomly sampled timestep observations of each test set
sequence to the training set. Because F ∝ m1m2/r

2, this means that the only factor changing within the sequence is the
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True force law (Newton)<latexit sha1_base64="lD+y1m8pQbloKYNz7/PbTMB2a60="></latexit> x

F / m1m2

r2

x

Recovered force law (oracle)<latexit sha1_base64="lD+y1m8pQbloKYNz7/PbTMB2a60="></latexit> x

F / m1m2

r2

x

Oracle model

Figure 7: Each pair of panels illustrates the trajectory of a planet in the solar system and its gravitational force vectors,
comparing the true Newtonian forces (left) to the predicted forces from an oracle model that predicts force vectors based on
the true state matrices. A symbolic regression recovers the true gravitational law from its predictions.

r2 term. Additionally, instead of imputing predictions on the full test set, we select the 5,000 timesteps across the 1,000
sequences that have the most similar states to states in the training set (using Euclidean distance). This ensures that the
model is extrapolating to states that are similar to the ones it is trained on.

We fine-tune the transformer on the training set for 10,000 steps with a batch size of 64, keeping the checkpoint with the
lowest held-out MSE. We impute the model’s predictions on 1,000 randomly sampled points from the test set. We fit a
symbolic regression to these predictions using the PySR library (Cranmer, 2023). Specifically we constrain our search
space to have a max size of 20 and we consider two binary operators (addition and multiplication) along with 4 unary
operators (sine, cosine, exponentiation, and inverse). We use a loss function that applies 0 penalty if the model is within
1e-8 of the magnitude and otherwise penalizes based on the absolute distance. We choose the model with the best score
across three random restarts of 100 iterations each. We perform this symbolic procedure procedure five times, each time
randomly sampling 1,000 different points from the test set to correspond to a different galaxy. The symbolic regression
returns different equations for each sample, never recovering the true law (Table 1).

To make sure this procedure is feasible when a model is extrapolating based on true state, we also consider an oracle model
that is given true state. Specifically, we use the same data and fit a k-nearest neighbor model with k = 2 based on Euclidean
distance to the true state. We then use this model to predict the same held-out points as above and fit symbolic regressions in
the same manner. In contrast to the transformer results in Table 1, we find that this procedure recovers the true gravitational
law for all five sampled galaxies.

D. LLM Physics Experiments
Throughout this paper, we train foundation models on domain-specific data. Here, we consider large language models
(LLMs) as foundation models for physics. While LLMs aren’t trained on the same domain-specific trajectories we use, they
are trained on large quantities of text that contain information about physics and orbital trajectories.

We consider three advanced reasoning models: o3 (from OpenAI), Claude 4 Sonnet (from Anthropic), and Gemini 2.5 Pro
(from Google). Fine-tuning these models is infeasible because they’re proprietary and running the full inductive bias probe is
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Figure 8: Comparing LLM magnitude predictions to the true magnitude across timesteps for 5 randomly sampled solar
systems. Each LLM is provided the full trajectory and a random 2% sample of force magnitudes, and is prompted to impute
the remaining outcomes.

Ground-truth law F ∝ m1m2

r2

Estimated laws
o3 F ∝ m1

Claude Sonnet 4 F ∝ 1
m2−0.50

Gemini 2.5 Pro F ∝ m1

Table 3: Force equations recovered via symbolic regression of LLMs predicting force magnitudes.

expensive because it involves applying the model to many new datasets. Instead, we run a small-scale experiment assessing
each model’s ability to predict the force magnitude of orbital trajectories. Rather than fine-tuning models, we provide them
with information in-context, and study their extrapolation behavior. Specifically, we sample 5 random solar systems with
450 observations each. For each solar system, we provide each LLM with a prompt that describes the structure of the data,
also including the true force magnitudes for 10 randomly selected observations. We instruct the LLM to predict the outputs
for the remaining data points (we do not provide any information in the prompt indicating that the outputs correspond to
forces). See Figure 9 for an example of the prompt.

We collect the magnitude inferences for each solar system (2,250 observations per LLM). Figure 8 shows the predicted force
magnitudes for each solar system for each model. Most of the results are poor, which is further corroborated by symbolic
regressions (Table 3). Interestingly, the symbolic regressions are simpler than the ones found for the domain-specific
foundation models. However, this may be due to differences in experimental setup (e.g. using fewer solar systems for the
LLM due to cost concerns).
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LLM Prompt

You are a physics expert. You are given a sequence of coordinates and outcomes. The
coordinates are the positions of a planet in a 2-body solar system. The planet is
orbiting the sun. The sun is at the origin.

Here is a sequence of observations. Some of them are unknown. Your job is to predict
the outcomes for the unknown timesteps.

Timestep: 0, Coordinates: (-26.08, -6.98), Outcome: Unk
Timestep: 1, Coordinates: (-26.08, -6.99), Outcome: Unk
Timestep: 2, Coordinates: (-26.06, -7.01), Outcome: 2.907672751462087e-05
Timestep: 3, Coordinates: (-26.06, -7.04), Outcome: Unk
Timestep: 4, Coordinates: (-26.05, -7.05), Outcome: Unk
Timestep: 5, Coordinates: (-26.04, -7.08), Outcome: 2.9093407647451386e-05
Timestep: 6, Coordinates: (-26.04, -7.09), Outcome: Unk
Timestep: 7, Coordinates: (-26.02, -7.12), Outcome: Unk
Timestep: 8, Coordinates: (-26.02, -7.14), Outcome: Unk
Timestep: 9, Coordinates: (-26.01, -7.16), Outcome: Unk
...
Timestep: 449, Coordinates: (-20.28, -15.66), Outcome: Unk

You can reason all you’d like, but your answer should end with "ANSWER: " followed by
the predicted outcomes for all of the timesteps, even the unknown ones. You should
structure your predictions as a dict, where each key is a timestep and each value is
the prediction. You should make predictions for all of the timesteps, even the ones
that are known.

Here is an example of the output format:
ANSWER: {

0: 1.0e-8,
1: 1.0e-8,
2: 1.0e-8,
...
449: 1.0e-8,

}

Figure 9: Example prompt used in the LLM physics experiments.

E. Inductive Bias Ablations
On the Othello dataset, we perform ablation of the IB metrics on the number of fine-tuning iterations (Table 4), keeping the
number of fine-tuning examples fixed to 100, and the number of fine-tuning examples (Table 5), keeping the number of
fine-tuning iterations fixed to 100.

F. Additional Transfer Results
Table 9 shows the full transfer learning results described in Section 4.

G. Next Token Performance
Table 6 shows results for the next-token test (Toshniwal et al., 2022; Li et al., 2023) for the pre-trained models on the lattice
and Othello models. It measures the share of top model predictions that are true for the underlying state. All models learn
good next token predictions that appear to obey state.

Table 7 shows results for physics. Across 200 held-out trajectories, we autoregressively generate the model’s predicted
trajectory given the first 50 steps. Then, we compute the MSE of the predicted trajectory, 1, 5, 10 steps from the 50th step.
We include the MSE of a baseline that always predicts the most recent timestep.

17



What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models

# iterations 10 50 100 500

R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN 0.623 (0.023) 0.738 (0.030) 0.560 (0.022) 0.837 (0.020) 0.558 (0.021) 0.845 (0.019) 0.561 (0.022) 0.854 (0.018)

LSTM 0.680 (0.027) 0.491 (0.037) 0.652 (0.030) 0.445 (0.035) 0.649 (0.030) 0.448 (0.035) 0.653 (0.030) 0.451 (0.035)

Transformer 0.735 (0.020) 0.605 (0.035) 0.665 (0.024) 0.583 (0.035) 0.668 (0.023) 0.593 (0.034) 0.680 (0.021) 0.620 (0.030)

Mamba 0.626 (0.024) 0.704 (0.030) 0.595 (0.024) 0.731 (0.028) 0.597 (0.024) 0.734 (0.028) 0.600 (0.024) 0.732 (0.029)

Mamba-2 0.586 (0.023) 0.720 (0.028) 0.592 (0.022) 0.728 (0.027) 0.590 (0.022) 0.732 (0.027) 0.583 (0.023) 0.746 (0.027)

Table 4: Results for ablating the number of iterations of fine-tuning.

# examples 10 50 100 500

R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN 0.725 (0.023) 0.491 (0.037) 0.622 (0.024) 0.698 (0.029) 0.558 (0.021) 0.845 (0.019) 0.466 (0.020) 0.934 (0.010)

LSTM 0.838 (0.023) 0.302 (0.038) 0.693 (0.032) 0.409 (0.037) 0.649 (0.030) 0.448 (0.035) 0.710 (0.026) 0.457 (0.034)

Transformer 0.843 (0.023) 0.284 (0.035) 0.707 (0.024) 0.541 (0.034) 0.668 (0.023) 0.593 (0.034) 0.549 (0.021) 0.796 (0.021)

Mamba 0.705 (0.024) 0.547 (0.035) 0.622 (0.025) 0.653 (0.032) 0.597 (0.024) 0.734 (0.028) 0.482 (0.021) 0.843 (0.022)

Mamba-2 0.665 (0.026) 0.609 (0.037) 0.636 (0.022) 0.660 (0.030) 0.590 (0.022) 0.732 (0.027) 0.534 (0.021) 0.829 (0.019)

Table 5: Results for ablating the number of examples used for fine-tuning.

Lattice Othello

RNN 1.00 0.905
LSTM 1.00 0.907
Transformer 1.00 0.915
Mamba 1.00 0.890
Mamba-2 1.00 0.901

Table 6: Results for the next token test (Toshniwal et al., 2022; Li et al., 2023) for models pre-trained on next-token
prediction.

# steps out 1 5 100

Per-orbit mean (1.64± 0.09) · 10−1 (1.49± 0.09) · 10−1 (6.72± 0.73) · 10−2

Previous position (3.70± 0.30) · 10−4 (7.88± 0.80) · 10−4 (7.74± 0.89) · 10−3

Transformer (1.04± 0.14) · 10−7 (1.07± 0.11) · 10−7 (3.75± 0.56) · 10−7

Table 7: Orbit trajectory prediction performance (MSE) for models pre-trained on next-token prediction. Each column
shows prediction accuracy when forecasting planetary positions 1, 5, or 100 time steps ahead from position 500 in the
sequence. We compare the transformer model (trained on 6-month intervals) to two simple baselines (one that always
predicts a planet’s position at the previous timestep, and another that uses the per-orbit mean). All results are evaluated on
held-out test trajectories.
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Lattice Othello
D-IBq= D-IBq ̸= D-IBq= D-IBq ̸=

RNN 0.740 (0.042) 0.844 (0.034) 0.580 (0.029) 0.845 (0.019)
LSTM 0.873 (0.051) 0.952 (0.034) 0.447 (0.035) 0.448 (0.035)
Transformer 0.626 (0.037) 0.710 (0.037) 0.445 (0.032) 0.594 (0.034)
Mamba 0.764 (0.040) 0.933 (0.035) 0.552 (0.032) 0.734 (0.028)
Mamba-2 0.778 (0.042) 0.920 (0.033) 0.548 (0.031) 0.732 (0.027)

Table 8: Metrics for assessing whether a model’s inductive bias is toward its legal next-token partition. Low values of
D-IBq= and high values of D-IBq ̸= suggest that failures to differentiate state are driven by the models having an inductive
bias toward the legal next-token partition.

Majority Tiles Board Balance Edge Balance
Pretraining NLL (↓) ACC (↑) NLL (↓) ACC (↑) NLL (↓) ACC (↑)

RNN Untrained 0.362 (0.002) 0.825 (0.001) 0.290 (0.002) 0.865 (0.001) 0.087 (0.001) 0.963 (0.001)
NTP trained 0.308 (0.003) 0.857 (0.002) 0.210 (0.004) 0.907 (0.002) 0.077 (0.002) 0.967 (0.001)

LSTM Untrained 0.349 (0.002) 0.831 (0.001) 0.234 (0.002) 0.892 (0.001) 0.079 (0.001) 0.965 (0.001)
NTP trained 0.275 (0.003) 0.880 (0.002) 0.173 (0.003) 0.923 (0.001) 0.043 (0.002) 0.981 (0.001)

Transformer Untrained 0.413 (0.002) 0.798 (0.001) 0.259 (0.002) 0.880 (0.001) 0.073 (0.001) 0.968 (0.000)
NTP trained 0.249 (0.003) 0.889 (0.002) 0.170 (0.003) 0.924 (0.002) 0.048 (0.003) 0.983 (0.001)

Mamba Untrained 0.297 (0.002) 0.866 (0.001) 0.215 (0.002) 0.904 (0.001) 0.058 (0.001) 0.976 (0.000)
NTP trained 0.260 (0.003) 0.882 (0.002) 0.169 (0.003) 0.928 (0.001) 0.039 (0.003) 0.986 (0.001)

Mamba-2 Untrained 0.297 (0.002) 0.864 (0.001) 0.218 (0.002) 0.903 (0.001) 0.065 (0.001) 0.972 (0.000)
NTP trained 0.241 (0.004) 0.901 (0.002) 0.165 (0.003) 0.925 (0.001) 0.028 (0.003) 0.990 (0.001)

IB Correlation — 0.441 0.442 0.759 0.752 0.577 0.543

Table 9: Results showing transfer performance across new functions of state. “NLL” represents negative log-likelihood
(lower is better), and “ACC” represents accuracy (higher is better). “IB Correlation” measures the (unsigned) correlation
between each column of results to the ratios of the inductive bias metrics in Table 2, R-IB

1−D-IB . Transfer learning results are
correlated to the inductive bias metrics; models with low inductive bias perform worse at transfer.

H. What are models using to extrapolate?

Here we describe how we compute the decomposition of D-IB into D-IBq= and D-IBq ̸=. For lattice, we coarsen the
state-space by defining a mapping from the ground-truth state-space (of size N = 5) to pseudo-state-space of size 3. The
mapping is defined as {1} → 1′, {2, . . . , N − 1} → 2′, {N} → 3′.

For Othello, we coarsen the state-space by defining a mapping from board state to the set of legal next moves possible from
the state. Notice that this mapping is many-to-one: as the pair of boards in Figure 6 demonstrate, there can be many boards
that share the same set of legal next moves.

Then, we measure the expected extrapolative predictability of a random pair of sequences that have different states but the
same pseudo-state (D-IBq=) and a random pair of sequences that have both different states and also different pseudo-states
(D-IBq ̸=), as defined in Section 4.

The results are shown in Table 8. Note that across all models, D-IBq= is smaller than D-IBq ̸=. In other words, among
sequences with different states, extrapolations on sequences that share the same legal next tokens are more predictable from
each other than those on sequences that do not.
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