
Graphical Abstract

A comprehensive view of software vulnerability risks through En-
terprise Knowledge Graphs

Mikel Egaña Aranguren, Jesualdo Tomás Fernández-Breis, Bidane Leon Ba-
lentzia, Markus Rompe, Alexander Garćıa Castro

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Highlights

A comprehensive view of software vulnerability risks through En-
terprise Knowledge Graphs

Mikel Egaña Aranguren, Jesualdo Tomás Fernández-Breis, Bidane Leon Ba-
lentzia, Markus Rompe, Alexander Garćıa Castro

• Data model and ontology network to represent semantically software
vulnerabilities

• Ontology modelling of the CycloneDX Bill of Materials Standard

• A proof-of-concept automated creation of a software vulnerability knowl-
edge graph

• Knowledge graphs enhance cybersecurity analysis and decision-making

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



A comprehensive view of software vulnerability risks

through Enterprise Knowledge Graphs

Mikel Egaña Arangurena, Jesualdo Tomás Fernández-Breisb,∗, Bidane Leon
Balentziaa, Markus Rompec, Alexander Garćıa Castroc

aUniversity of Basque Country (UPV/EHU), Bilbao, 48013, Basque Country, Spain
bUniversidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Pascual

Parrilla, Murcia, 30100, Spain
cSiemens Energy, Germany

Abstract

Cybersecurity has emerged as a critical concern for modern enterprises due
to the increasing complexity and diversity of threats. These risks exploit
multiple attack vectors, such as phishing, unpatched vulnerabilities, and
malware distribution, necessitating a comprehensive and unified approach to
threat modeling. However, cybersecurity data is often siloed across disparate
sources—ranging from JSON vulnerability reports (e.g., Amazon Inspector,
CycloneDX) and dependency files (e.g., NPM) to relational databases and
manual assessments—making integration a significant challenge. Knowledge
Graphs (KGs) offer the technological framework to successfully integrate dis-
parate data. This work presents KG-based solution for software vulnerability
data integration at Siemens Energy (SE), leveraging Enterprise Knowledge
Graphs (EKGs) to unify heterogeneous datasets under a shared semantic
model. Our approach consists of: (1) a Cybersecurity Ontology Network
defining core entities and relationships, (2) an automated pipeline convert-
ing diverse data sources into a (3) scalable EKG that enables advanced threat
analysis, and (4) competency questions validating the system’s effectiveness.
By adopting a Data-Centric Architecture, we demonstrate how EKGs provide
a flexible, future-proof framework for cybersecurity intelligence, overcoming
the limitations of traditional Application-Centric systems. This work offers
actionable insights for organizations seeking to enhance cyber threat visibility
while managing complex, evolving data landscapes.

∗Corresponding author

Preprint submitted to Computers & Security July 30, 2025

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Keywords: Cybersecurity, Knowledge Graph, ontology
PACS: 8920, 0705, 8805
2000 MSC: 6830, 6230

1. Introduction

Cybersecurity has become critical for most companies in the last years,
as the nature of cybersecurity threats has evolved significantly in both com-
plexity and impact [1, 2, 3, 4]. These threats now encompass numerous
attack types and vectors; key attack types include ransomware attacks, Dis-
tributed Denial of Service, Man-in- the-Middle attacks, and Advanced Per-
sistent Threats. These threats exploit various vectors, such as phishing cam-
paigns, unpatched software vulnerabilities, malware distributions through
jeopardized websites, and sophisticated supply chain attacks that compro-
mise trusted distribution channels [5]. As organizations become more inter-
connected and reliant on ever-growing digital ecosystems, the diversity and
subtlety of these attacks continue to expand. In order to obtain a useful and
comprehensive view of the potential threats and vulnerabilities a company
faces, data from diverse sources and processes needs to be integrated in a
meaningful model. For example, software vulnerabilities might be detected
in internal CI/CD pipelines by tools like Amazon Inspector [6], and stored
in JSON, with a proprietary schema; other vulnerabilities might arise from
other services, and stored in JSON, following the CycloneDX schema [7];
software dependencies might be stored in NPM JSON format; information
about software owners, developers and project managers might be stored in
a MySQL database or Excel spreadsheets; vulnerabilities might be manu-
ally detected, and their influence expanded to other software modules due to
dependencies; and other unforeseeable sources of vital information.

Such data integration processes not only pertain to the cybersecurity do-
main: it is a general trend in current companies to move from an Application-
Centric Architecture [8], in which information systems are designed around
applications and services, to a Data-Centric Architecture [9], in which infor-
mation systems are designed around data. This migration is complex and
each company faces it differently, according to the available expertise and
resources, technological debt, and culture. However, there is a clear trend to-
wards the use of Knowledge Graphs (KGs) [10] as vehicles for enterprise data
integration, in the form of Enterprise Knowledge Graphs (EKGs) [11]. EKGs

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



offer the necessary flexibility to accommodate heterogeneous data while pre-
serving a common data model. Furthermore, since EKGs include carefully de-
signed vocabularies (Ontologies), a lingua franca is implemented to describe
and include new entities that might arise in future integration efforts, offering
a robust, future-proof, and interoperable data infrastructure that complies
with FAIR principles (Findable, Accessible, Interoperable, Reusable) [12].

In the last years, there has been an increasing interest in ontologies and
knowledge graphs for cybersecurity. On the ontology side, a few ontologies
have been proposed to address diverse needs, including threat intelligence,
incident response, vulnerability management, and cyber-physical system se-
curity. For example, the Unified Cybersecurity Ontology (UCO) integrates
existing standards such as STIX, CVE, CWE, and CAPEC, providing a com-
prehensive semantic layer for security information sharing and analysis [13].
The Internet of Things Security Ontology (IoTSec) [14] focuses on represent-
ing assets, vulnerabilities, and countermeasures specific to IoT ecosystems.
The Reachability Matrix Ontology [15] describes and evaluates reachabil-
ity and attack paths in network security contexts. A systematic review of
cybersecurity ontologies highlights that while numerous ontologies exist for
focused domains, constructing a truly generic and extensible cybersecurity
ontology remains a challenge due to the evolving nature of the cyber threat
landscape.

In this work, we are interested in contributing to the specific domain
of software vulnerabilities. An initial attempt was carried out in [16] pro-
vided an ontology for vulnerability management, without paying attention
to important aspects related to the software libraries and the software bill of
materials. A more recent effort with similar limitations was presented in [17].
In [18] a model for software defects was provided but, again, it just focused on
one aspect relevant for the effective management of software vulnerabilities.

On the cybersecurity knowledge graphs side, they have been applied to
different tasks such as risk assessment [19],cyber-attack detection [20, 21],
uncovering CWE-CVE-CPE relations [22], threat intelligence [23]. Large
language models have also been applied in this area to generate cybersecurity
knowledge graphs [24], or to evaluate vulnerabilities [25]. The importance
of cybersecurity knowledge graphs has led to the development of methods
for assessing the quality of cybersecurity KGs [26]. The review presented
in [27] shows that the cybersecurity KGs have as main focus the detection
of intrusions, risk assessment or malware detection, focusing on threats and
attack patterns as research object. However the connections between software

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



packages, libraries and vulnerabilities have not been sufficiently addressed to
date. [27] also identifies the challenge of exploiting log data for cybersecurity
management.

In this work we describe the application of EKGs to integrate software
vulnerability data at Siemens Energy (SE) [28], as a first step towards a
FAIR and Data-Centric system for managing cybersecurity knowledge. The
goal is to provide cybersecurity analysts with information to quickly iden-
tify which software packages and libraries may be affected by a vulnerability
detected by state of the art security inspector tools, whose information is
recorded in structured logs. Our approach comprises the following elements:
the Cybersecurity Ontology Network, a vocabulary to represent common
software vulnerability entities; the pipeline that, using the vocabulary, con-
verts and integrates data from diverse sources into the EKG (Cybersecurity
Knowledge Graph); the competency questions used to evaluate the system.
These elements, in combination, provide a robust infrastructure to integrate
and process cybersecurity related information to find meaningful facts. The
architecture of this work is based on semantic technologies: RDF (Resource
Description Framework) [29] for data codification, OWL (Web Ontology Lan-
guage) [30] for Knowledge Representation, and SPARQL (SPARQL Protocol
and RDF Query Language) [31] for querying. It should be noted that our
ontology network will be driven by the CycloneDX standards for specifying
software bills of materials, which have an increasing industry implantation.

In summary, this paper contributes to the field by introducing an ontology-
driven, enterprise-scale knowledge graph architecture for software vulnera-
bility management, demonstrating how CycloneDX SBOMs and related vul-
nerability data can be semantically integrated and queried to support threat
modeling and operational security intelligence.

The rest of the paper is organised as follows: section 2 describes the im-
plemented methods, including the data sources (Section 2.2), the developed
ontologies (Section 2.1), the mappings from the data sources to the Knowl-
edge Graph (Section 2.3), data storage (Section 2.4) and data consumption
(Section 3.2); section 3 provides an overview of the resulting Knowledge
Graph and it describes the competency questions used for the evaluation;
section 4 discusses the problems and decisions taken during the conversion
process; finally, section 5 provides the conclusions of the work and future
directions.

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



2. Materials and methods

The general workflow for the generation of the Software Vulnerabilities
Knowledge Graph can be seen in figure 1. The workflow starts in the data
sources (Section 2.2) and converts them to RDF by executing the conversions
defined in the Knowledge Mapper (Section 2.3), based on the vocabularies
provided by the Cybersecurity Ontology Network (Section 2.1); then, the
RDF produced as a result of the conversion is stored in the Triple Store
(Section 2.4) for further consumption (Section 3.2).

2.1. The Cybersecurity Ontology Network

The Cybersecurity Ontology Network offers the vocabulary to describe
the cybersecurity data of the domain. It comprises the following ontologies,
linked at different key points to build a network.

Software Bill of Materials (SBOM) ontology. The Software Bill of Materials
Ontology is the main element of the CyberSecurity Ontology Network, and
it is used to semantically describe Software Bill of Materials files generated
in CI pipelines that follow the CycloneDX specification. The upper classes
of the ontology can be seen in Figure 2.

Vulnerability ontology. The Vulnerabity Ontology provides the terms and
properties for describing the data about vulnerabilities that can affect soft-
ware components included in the software projects in use in Siemens Energy,
and that will be the vulnerabilities reported by AWS or other security an-
alytics services (Figure 3). The scope of the ontology is to describe the
information about vulnerabilities offered by standardization organizations,
including the description of the vulnerablity, their impact and types of prob-
lems generated by the vulnerability. In this case, the scope is limited by
the U.S. government repository of standards based vulnerability manage-
ment model, that is, the specification of the National Vulnerabilty Database
(NVD) of the US National Institute of Standards and Technology (NIST).
The ontology has been developed to provide a data model based on the NVD
JSON Schema 1.1. This schema uses other schemas for particular content:
CVE vulnerabilities [32], CVSS V2.0 scores [33], and CVSS V3.0 scores [34].
The current version models all the elements included in those schemas.

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 1: General Worfklow for the generation of the Cybersecurity Knowledge Graph.
Data Sources (left, blue): Various formats such as CycloneDX JSON, NVD JSON, Python
Module JSON, and ASSF provide input data; it is expected that more data sources will
be added in the future. The Cybersecurity Ontology Network (top, red), comprising the
SBOM Ontology, Vulnerability Ontology, Vulnerability Finding Ontology, and Software
Library Ontology, defines the vocabulary for the domain. The Knowledge Mapper (center,
orange) receives input data, allows data selection via a GUI, annotates it with ontology
terms, and converts it to RDF (Python scripts or Morph-KGC are also used for the
conversion). Triple Store (right, blue): The generated RDF is stored in graph databases
such as Amazon Neptune. Consumption (bottom right, purple): The RDF data can be
queried using SPARQL or visualized. Arrows indicate the flow of data and vocabulary
between components. The ontologies provide the semantic model for annotation and
mapping, enabling integration and querying of heterogeneous cybersecurity data.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 2: Software Bill of Materials ontology. A Bill Of Materials includes, amongst
other metadata, components (e.g. software libraries) and services, that can be affected by
vulnerabilities. Other classes are not included in the diagram.

Figure 3: Vulnerability ontology. NVD describes the data in terms of record, and each
record provides information about a set of Common Vulnerabilities and Exposures (CVE).
Each CVE is described by metadata (not shown in the figure), the score of the impact of the
vulnerability, the types of problems it may cause, references describing the vulnerability
and additional information such as configurations.

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 4: Software Library ontology. The software library and its versions are the main
entities, which have several relations between them. The model also represents the fact
that a software library version has dependencies with versions from different software
libraries, that the software library is stored in a code repository and that the distribution
of the library versions is through software package managers.

Software Library ontology. The scope of the ontology is to describe the in-
formation about software libraries generated by software package managers.
It provides the terms and properties for describing the data about software
libraries included in the software projects in use in Siemens Energy and that
could be the subject of vulnerabilities reported by AWS or other security
analytics services. This ontology is reused by the other two ontologies to
represent the sofware components of the SBOM and the software libraries
for which vulnerabilities have been identified. The upper classes of the on-
tology can be seen in Figure 4.

Vulnerability finding ontology. The scope of the ontology is to describe the
information about vulnerability findings on software libraries generated by
the AWS Security Hub [35]. The ontology has been developed to provide
a data model based on JSON Schema of the AWS Security Finding Format
(ASFF) [36]. The current version does not implement the whole format, only
the fields included in the data samples provided by Siemens Energy, which is
also delimiting the scope of this ontology. It provides the terms and properties
for describing the findings about vulnerabilities in software libraries included
in the software projects in use in Siemens Energy and deployed in AWS. The

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 5: Vulnerability finding ontology. A CVE finding affects a software library version
and is due to a common vulnerability and exposure (CVE). The finding is described by
the severity of the vulnerability, the vendor, the security inspector and in which account
(AWS in this case) it has been identified.

upper classes of the ontology can be seen in Figure 5.

2.2. Data sources

The cybersecurity information needed for a company to have a compre-
hensive view of the current problems is compiled by internal and external
sources. The data gathered from internal sources is the result of analysis
tools. External sources are public databases that contain additional infor-
mation about the detected problems. The information is generally structured
in JSON files, easing its parsing: however, the schemas of those files are de-
signed for syntactic interoperability rather than semantic interoperability,
and hecne the need for the vocabulary described in Section 2.1. The follow-
ing data sources are the main ones used for the current implementation of
the pipeline.

2.2.1. CycloneDX JSON files

CycloneDX Bill of Materials (BOM) represents a full-stack inventory
of software, hardware, services and other assets, and serves as a specifica-
tion for creating Software Bill of Materials (SBOM) files. An SBOM file
is an structured description of components, libraries and modules required

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



to build, maintain and deploy software through the whole life cycle. Cy-
cloneDX has become the ECMA-424 standard [37]. An SBOM file typically
includes a component Inventory (Lists all software components, including
libraries, frameworks, and tools), a dependency graph (Relations between
components), information about vulnerabilities affecting components, meta-
data (Details about the SBOM itself, such as version, author, and timestamp)
and license Information for each component (Figure 6).

2.2.2. NVD JSON files

Vulnerabilities in Cybersecurity are normally represented as CVEs (Com-
mon Vulnerabilities and Exposures). The CVE system [38] is maintained by
the MITRE Corporation [39] and provides a standardized way to identify
and reference vulnerabilities across different tools, databases, and organi-
zations. The National Vulnerability Database (NVD) [40] provides JSON
feeds that contain detailed and enriched information about CVEs, including
their descriptions, severity scores (CVSS), affected software, and references
[41]. These JSON files are updated regularly and are widely used by security
professionals, researchers, and tools to analyze and manage vulnerabilities.
NVD JSON Files typically include the CVE unique ID (e.g., CVE-2023-
1234), a description, CVSS Metrics (Common Vulnerability Scoring System
-CVSS- scores and vectors to assess the severity), references (Links to ad-
visories, patches, and additional resources), affected products (details about
the software or hardware impacted by the vulnerability), and published and
modified dates (timestamps for when the vulnerability was disclosed and last
updated) (Figure 7).

2.2.3. Software registries

A software registry is a centralized repository or database where infor-
mation about software components is stored, managed, and made accessible
to users and systems. A software registry is a key part of the infrastructure
for developing, distributing, and managing software, whether for code pack-
ages, containers, or system configurations. The specific meaning depends on
context. In this work we have worked with data from Javascript and Python
software libraries both. Therefore, the data of these libraries was provided
as NPM and PyPI packages.

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 6: This is a partial view of a CycloneDX Software Bill of Materials (SBOM) in
JSON format. It describes metadata about the SBOM, including the schema version,
format, serial number, timestamp, and tools used to generate the SBOM (such as npm
and CycloneDX tools). Each tool entry may include its name, version, vendor, and external
references like repository URLs, websites, and issue trackers.

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 7: This image shows a snippet of a JSON file containing CVE (Common Vulner-
abilities and Exposures) data in the MITRE/NVD format. The file includes metadata
about the CVE list and detailed entries for individual CVEs, such as CVE-2025-0015,
with fields for assigner, problem type, references, and description. The structure is typical
for NVD JSON feeds used in vulnerability management and cybersecurity automation.

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 8: This image shows a JSON file containing a security finding from AWS Inspector.
The finding includes metadata such as schema version, finding ID, product and company
information, region, generator ID, account ID, finding types, timestamps, severity, and a
CVE title. This format is typically used for reporting vulnerabilities and configuration
issues in cloud environments.

2.2.4. AWS Security Finding Format (ASFF) files

Amazon Inspector is an automated vulnerability assessment service of-
fered by Amazon Web Services (AWS) that enhances cloud security by con-
tinuously scanning EC2 instances for software vulnerabilities, network mis-
configurations, and compliance deviations, leveraging CVE databases. Ama-
zon Inspector produces findings in AWS Security Finding Format (ASFF), a
JSON-based file format that includes, most importantly, found vulnerabili-
ties, their CVSS score, and the affected software packages (Figure 8).

2.3. Mapping

The conversion process of source data (e.g. JSON files) to RDF is carried
out using the Knowledge Mapper, a tool developed internally at SE (Figure
9). The Knowledge Mapper offers a Graphical User Interface (GUI) that
allows the user to choose a data source, annotate it with ontologies, and
convert it to RDF. The resulting RDF is stored directly in the Triple Store
(Section 2.4). Additionally, the Knowledge Mapper saves the defined map-
ping in the YARRRML format [42], making the mapping reproducible at any
time in the future.

13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 9: Knowledge Mapper interface. The interface shows a data sources pane on
the left, and a main display on the center, in which elements from the data sources are
connected to ontologies, to do the mapping. Once the mapping has been defined, it can
be executed and the resulting RDF is stored in the Triple Store.

A conceptual representation of the mapping of data sources to RDF is
shown in Figure 11. The mapping process generates an RDF Named Graph
for each data source, containing, for example, the data from SBOM JSON
files. However, the Named Graphs are not connected, and therefore a link-
ing process is set up. The linking process detects package names that can
be found in SBOM descriptions and AWS ASFF descriptions, therefore de-
tecting SBOM libraries (Components) that have vulnerabilities detected by
AWS ASFF (Figure 12). The linking process is executed by an SPARQL SE-
LECT/INSERT query, and it uses Named Graphs to organize the discovered
links (Figure 10).

2.4. Storage

Semantic technologies like RDF and (RDF-serialized) OWL offer the
guarantee of loading into any W3C standard compliant Triple Store, en-
hancing technical interoperability.

Data is organized within the Triple Store as a collection of Named Graphs.
A Named Graph is a collection of triples identified by a URI. That URI
can be used as the subject for further triples, effectively using the same
language (RDF) for data (Triples within the Named Graph) and metadata

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 10: Linking process (Short names instead of URIs are used for Named Graphs, for
the sake of clarity). The data to be linked is contained in two Named Graphs, AWS-ASFF
and SBOM: both contain a triple that refers to the same name, Minimatch 3.1.2, through
different predicates. The linking process detects the name and creates a further link in
another Named Graph, SBOM-AWS-ASFF-links.

Figure 11: Mapping example. The table bellow summarises the data from a sample JSON
file. The Knowledge Graph on the top renders the data from the JSON file, including its
annotation to the pertinent ontology classes. Blue arrow: object property; green arrow:
data property; red arrow: subClassOf; black arrow: rdf:type.

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 12: This figure illustrates the process of linking security findings from AWS ASFF
data to software component libraries using SPARQL. The left panel lists available RDF
Named Graphs, while the right panel shows a SPARQL INSERT query that creates the
approrpiate relationships between libraries and vulnerabilities. This process effectivelly
integrates data from the urn:aws-asff and urn:sbom-aws-asff Named Graphs, and writes
the results to the urn:links:sbom:aws:asff Named Graph. Arrows indicate the flow of data
between the relevant Named Graphs and the query logic.

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 13: Named Graphs. Data (On the left) is stored in a Named Graph identified by
a URI (Yellow circle in the center. Metadata referring to the Named Graph, on the right,
is also codified in RDF and stored in the Default Graph (The graph storing all the triples
of the repository).

(Triples in the Default Graph referring to the Named Graph URI). This
mechanism offers an advantage over the relational model, making information
management more flexible and efficient, for example for provenance recording
(Figure 13).

3. Results

3.1. An Enterprise Knowledge Graph for software vulnerabilities information

The result of executing the pipeline described in Section 2 is a collection
of RDF Named Graphs that integrate the cybersecurity-related information
from data sources. The RDF data is also annotated with entities from the
Cybersecurity Ontology Network, hence offering a Knowledge Graph. Prove-
nance and metadata are also collected for each Named Graph through the
appropriate vocabularies like DCAT [43] and PROV [44].

3.2. Graph consumption

Once the data has been converted to RDF and stored in the triple store,
it can be consumed by the human users (SE data analysts) and/or other
agents like applications for Business Intelligence (e.g. dashboards). There
are currently three modes for exploration of the data:

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 14: This figure displays the GraphDB Explore interface for the urn:nvd named
graph, presenting a tabular view of RDF triples. Each row lists a subject, predicate,
and object, representing configuration entities for various CVEs as typed by the NVD
vocabulary, facilitating exploration of vulnerability metadata.

Triples exploration (Figure 14). This interface shows the RDF triples in tab-
ular form. This interface is for technical developers to explore specific areas
of the graphs.

SPARQL interface (Figure 15). The SPARQL interface allows users to pose
advanced SPARQL queries against the data, obtaining the results in the ap-
propriate format. More importantly, the SPARQL endpoint can be accessed
by any agent through the SPARQL protocol [45].

Graph visualisation (Figure 16). The Graph visualisation allows end users
to explore the graph visually.

3.3. Evaluation

The resulting EKG was evaluated by performing a set of predefined com-
petency questions. Those competency questions were gathered from SE staff
related to the cybersecurity domain, and translated to SPARQL by devel-
opers. A sample of the competency questions, their translation to SPARQL
and the corresponding answer are shown in Listings 1, 2 and Tables 2, 2.

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 15: This figure shows the GraphDB SPARQL Query and Update interface, where
a SPARQL query is constructed to correlate CVE vulnerability descriptions from the
NVD dataset with software dependencies extracted from a Python SBOM. The query
uses multiple RDF prefixes and joins data across Named Graphs to identify dependencies
mentioned in vulnerability descriptions.

Figure 16: This figure presents a visual Knowledge Graph in GraphDB, illustrating re-
lationships between software components, libraries, dependencies, and licenses. Nodes
represent entities such as libraries and components, while edges denote relationships like
hasComponent and hasDependency, providing an intuitive overview of the software supply
chain structure.

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Listing 1: SPARQL query for answering the competency question Which import ID I can
reach for a vulnerability defined in a NVD database? Vulnerabilty: CVE-2025-23211. We
do not know in which place of the hierarchy this package lives, so we have to go upwards
and downwards in the hierarchy

PREFIX so f tware vocab : <http :// on t o l o g i e s . siemens−energy . com/ so f tware/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX s e s e c nvd vocab : <https : // onto logy . siemens−energy . com/nvd/>
PREFIX cve : <https : // data . siemens−energy . com/ cyber sec / cve/>

SELECT ? vu lne rab l e package ?downward dependecy ?upward dependency
WHERE {

? vu lne rab l e package rd f : type so f tware vocab : Software package .
? vu lne rab l e package se s e c nvd vocab : ha sVu lne rab i l i t y cve :CVE−2025−23211 .
? vu lne rab l e package so f tware vocab : hasDependency+ ?downward dependecy .
?upward dependency so f tware vocab : hasDependency+ ? vu lnerab l e package .

}

vulnerable package downstream dependency upward dependency
Jinja2 Babel Flask
Jinja2 MarkupSafe Flask

Table 1: Response to query from listing 1.

Listing 2: SPARQL query for answering the competency question Which toplevel imports
I have in my Python environment (Python.json)?

PREFIX so f tware vocab : <http :// on t o l o g i e s . siemens−energy . com/ so f tware/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX s e s e c nvd vocab : <https : // onto logy . siemens−energy . com/nvd/>
PREFIX cve : <https : // data . siemens−energy . com/ cyber sec / cve/>

SELECT ? package ?downward dependecy ?upward dependency
WHERE {

? package rd f : type so f tware vocab : Software package .
? package so f tware vocab : hasDependency ?downward dependecy .
FILTER NOT EXISTS {

?upward dependency so f tware vocab : hasDependency ?package .
}

}

4. Discussion

This work presents a prototype pipeline for the generation of an EKG
that represents cybersecurity information from a diverse set of data sources.

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



vulnerable package downward dependency
Jinja2 Babel
Jinja2 MarkupSafe

Table 2: Response to query from listing 2. Only a fragment of the obtained results is
shown.

In order to integrate the data, a common data model has been developed,
the Cybersecurity Ontology Network, which provides a reusable language for
annotating entities from the cybersecurity domain. A common data model
facilitates the automation of the mapping process: such automations have
been implemented through a set of reusable, declarative mappings, making a
reproducible pipeline for the generation of RDF data that can be integrated
in the company’s internal CI/CD processes.

After a thorough review of the data sources, it was concluded that new
ontologies needed to be developed. This process was facilitated by the fact
that the data sources were structured and even included an already existing
specification in the case of SBOM files (CycloneDX). CycloneDX represents
an industry standard for package information that acts as a “backbone” to
integrate the rest of cybersecurity information. Therefore, by providing a
translation from the standard to a re-usable and live ontology, we offer the
community a valuable tool for data integration.

The use of the W3C open standards RDF, OWL and SPARQL ensures
the technical interoperability and avoid product lock-in, additionally setting
the stage for the semantic interoperability provided by the newly created on-
tologies. This is a future-proof architectural choice, since it will allow for new
data, unpredicted data sources to be processed by the pipeline, like module
description files from other languages (e.g. Maven files in Java program-
ming) or the vulnerability files from other repositories (e.g. European Union
Vulnerability Database [46]).

The use of Semantic Web technologies also allows for the discovery of
links between the integrated nodes. In this case, such a discovery process
has been performed by parsing the content of the vulnerability description
looking for package names extracted from SBOM files. This syntactic discov-
ery, albeit reasonably performant, requires manual validation to reject links
to packages with commons names (e.g. “click”). It is expected that in future
developments a new entity reconciliation module will be implemented, based
on more sophisticated link detection methods that exploit Machine Learn-

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



ing. Furthermore, best practices for creating URIs will be documented and
included in the Knowledge Mapper (e.g. [47]), and a SHACL-based [48] data
quality module will be added to production workflows.

The proposed EKG architecture is inherently scalable, both in terms of
data volume and system complexity. The automated data ingestion pipeline
transforms diverse structured sources—including JSON vulnerability reports
(e.g., Amazon Inspector), software bill of materials (e.g., CycloneDX), and
dependency manifests —into a unified semantic format without manual in-
tervention, enabling continuous and high-throughput data integration. Fur-
thermore, the modular design of the underlying ontology network allows for
incremental expansion without impacting performance, as sub-ontologies can
be developed, maintained, and reasoned over independently. The approach
has been validated through deployment at Siemens Energy, where it success-
fully processes and integrates cybersecurity data at enterprise scale, demon-
strating robustness and responsiveness in an operational setting. The exten-
sibility of the proposed EKG framework is enabled by its modular ontology
design, standards-based architecture, and flexible data integration pipeline.
New data sources—such as emerging SBOM formats, vulnerability databases,
or internal security tools—can be incorporated by defining mappings to the
existing ontology without altering the system’s core. The ontology network
itself can be extended with additional classes, properties, or aligned with
external vocabularies, allowing the system to evolve as cybersecurity stan-
dards and requirements change. This design ensures the framework remains
adaptable to future threat models, compliance needs, and enterprise contexts
beyond its initial deployment.

In the current prototype, even though the data are integrated, it is only
available for consumption by SE users through technical interfaces. In the fu-
ture, other interfaces are expected to be provided, like customized graph visu-
alizations, BI dashboards, or LLM based Graph-RAG (Retrieval Augmented
Generation) implementations such as GraphDB’s Talk To Your Graph [49].
In the case of graph visualizations, the problem of building tailored inter-
faces for data consumers, which add value to the company’s workflows, is a
challenge that requires considerable investment.

Once the system is deployed to production, other aspects of it will become
valuable. For example, in its current form, the prototype already complies
with the content-related FAIR principles (F2, F3, I1, I2, I3, R1, R1.1, R1.2,
R1.3). However, the infrastructure related principles (A1, A1.1, A1.2, A2)
will be implemented in a company-wide infrastructure deployment. The de-

22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



ployment to production will also allow other developers to contribute with
more competency questions that will also require the extension of the model
(e.g. “Which component prevents that this artifact can be updated to a
version without known vulnerabilities with minimal changes?”, “Will an up-
grade to vulnerability free component of the project change the license con-
ditions?”.)

5. Conclusions

Current companies are moving from an Application-Centric Architecture
to a Data-Centric Architecture, building information systems that seamlessly
integrate information in future-proof, flexible and interoperable platforms.
By doing so, companies comply with FAIR principles.

SE has developed a prototype for integrating information about cyber-
security from different sources: SBOM files, NVD files, and AWS ASFF
files. This prototype includes a Knowledge Mapper that exploits semantic
technologies (RDF, SPARQL, OWL) to integrate the data, based on the
Cybersecurity Ontology Network to provide a common data model.

This methodology should be useful for companies involved in similar pro-
cesses, and in case cybersecurity information is involved, the data model
should provide a reusable base for data integration.

CRediT authorship contribution statement

Mikel Egaña Aranguren: Conceptualization, Methodology, Software,
Validation, Investigation, Data Curation, Writing - Original Draft.

Jesualdo Tomás Fernández-Breis: Conceptualization, Methodology,
Investigation, Supervision, Resources, Project administration, Funding ac-
quisition, Writing - Original Draft.

Bidane Leon Balentzia: Software, Validation, Data Curation, Writing
- Original Draft.

Markus Rompe: Conceptualization, Validation, Writing - Review &
Editing.

Alexander Garćıa Castro: Conceptualization, Supervision, Resources,
Project administration, Funding acquisition, Writing - Review & Editing.

Declaration of competing interest

The authors declare no conflict of interest.

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Acknowledgments

This work has been funded by Siemens Energy.

Data availability

The data and the ontology network is available at a GitHub repository:
https://github.com/tecnomod-um/CybersecurityOntologyNetwork.

URI Prefixes

Prefix URI
dvu http://data.siemens-energy.com/cve/

vul http://ontology.siemens-energy.com/cve/

dsbom http://data.siemens-energy.com/sbom/

sbom http://ontology.siemens-energy.com/sbom/

dlib http://data.siemens-energy.com/softwarelibrary/

lib http://ontology.siemens-energy.com/softwarelibrary/

References

[1] R. Anderson, T. Moore, The economics of infor-
mation security, Science 314 (5799) (2006) 610–613.
arXiv:https://www.science.org/doi/pdf/10.1126/science.1130992,
doi:10.1126/science.1130992.
URL https://www.science.org/doi/abs/10.1126/science.

1130992

[2] L. A. Gordon, M. P. Loeb, The economics of information secu-
rity investment, ACM Trans. Inf. Syst. Secur. 5 (4) (2002) 438–457.
doi:10.1145/581271.581274.
URL https://doi.org/10.1145/581271.581274

[3] R. Böhme, G. Schwartz, Modeling cyber-insurance: Towards a unifying
framework, in: Workshop on the Economics of Information Security,
2010.
URL https://api.semanticscholar.org/CorpusID:14172008

24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[4] C. Mavani, H. Mistry, R. Patel, A. Goswami, The role of cybersecurity
in protecting intellectual property, International Journal on Recent and
Innovation Trends in Computing and Communication 12 (2024) 529–
538.

[5] ENISA Threat Landscape 2024 — ENISA (3 2025).
URL https://www.enisa.europa.eu/publications/

enisa-threat-landscape-2024

[6] Amazon AWS, Amazon Inspector (2025).
URL https://aws.amazon.com/inspector/

[7] CycloneDX, CycloneDX (2025).
URL https://cyclonedx.org/

[8] D. McComb, Software Wasteland: How the Application-centric Mindset
is Hobbling Our Enterprises, Technics Publications, 2018.
URL https://books.google.es/books?id=_6JutAEACAAJ

[9] D. McComb, The Data-centric Revolution: Restoring Sanity to Enter-
prise Information Systems, Technics Publications, 2019.
URL https://books.google.es/books?id=5XuIxwEACAAJ

[10] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D. Melo, C. Gutier-
rez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier, et al., Knowledge
graphs, ACM Computing Surveys (Csur) 54 (4) (2021) 1–37.

[11] J. M. Gomez-Perez, J. Z. Pan, G. Vetere, H. Wu, Enterprise knowl-
edge graph: An introduction, in: Exploiting linked data and knowledge
graphs in large organisations, Springer, 2017, pp. 1–14.

[12] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva San-
tos, P. E. Bourne, et al., The FAIR guiding principles for scientific
data management and stewardship, Scientific Data 3 (2016) 160018.
doi:10.1038/sdata.2016.18.

[13] Z. Syed, A. Padia, M. L. Mathews, T. Finin, A. Joshi, et al., Uco: A
unified cybersecurity ontology, in: Proceedings of the AAAI Workshop
on Artificial Intelligence for Cyber Security, 2016, pp. 195–202.

25

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[14] B. A. Mozzaquatro, R. Jardim-Goncalves, C. Agostinho, Towards a ref-
erence ontology for security in the internet of things, in: 2015 IEEE In-
ternational Workshop on Measurements & Networking (M&N), IEEE,
2015, pp. 1–6.

[15] N. Scarpato, N. D. Cilia, M. Romano, Reachability matrix ontology:
a cybersecurity ontology, Applied Artificial Intelligence 33 (7) (2019)
643–655.

[16] J. A. Wang, M. Guo, Ovm: an ontology for vulnerability management,
in: Proceedings of the 5th Annual Workshop on Cyber Security and
Information Intelligence Research: Cyber Security and Information In-
telligence Challenges and Strategies, 2009, pp. 1–4.

[17] A. Shaked, N. Messe, T. Melham, Modelling tool extension for vulner-
ability management, in: Proceedings of the ACM/IEEE 27th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
2024, pp. 56–60.

[18] B. B. Duarte, R. de Almeida Falbo, G. Guizzardi, R. Guizzardi, V. E. S.
Souza, An ontological analysis of software system anomalies and their
associated risks, Data & Knowledge Engineering 134 (2021) 101892.

[19] J. Yin, W. Hong, H. Wang, J. Cao, Y. Miao, Y. Zhang, A compact
vulnerability knowledge graph for risk assessment, ACM Transactions
on Knowledge Discovery from Data 18 (8) (2024) 1–17.

[20] Y. Qi, Z. Gu, A. Li, X. Zhang, M. Shafiq, Y. Mei, K. Lin, Cybersecu-
rity knowledge graph enabled attack chain detection for cyber-physical
systems, Computers and Electrical Engineering 108 (2023) 108660.

[21] E. Gilliard, J. Liu, A. A. Aliyu, Knowledge graph reasoning for cyber
attack detection, IET Communications 18 (4) (2024) 297–308.

[22] Z. Shi, N. Matyunin, K. Graffi, D. Starobinski, Uncovering cwe-cve-cpe
relations with threat knowledge graphs, ACM Transactions on Privacy
and Security 27 (1) (2024) 1–26.

[23] I. Mouiche, S. Saad, Entity and relation extractions for threat intelli-
gence knowledge graphs, Computers & Security 148 (2025) 104120.

26

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[24] Y. Hu, F. Zou, J. Han, X. Sun, Y. Wang, Llm-tikg: Threat intelligence
knowledge graph construction utilizing large language model, Comput-
ers & Security 145 (2024) 103999.

[25] R. Ghosh, H.-M. von Stockhausen, M. Schmitt, G. M. Vasile, S. K. Karn,
O. Farri, Cve-llm: Ontology-assisted automatic vulnerability evaluation
using large language models, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 39, 2025, pp. 28757–28765.

[26] Z. Shi, H. Li, D. Zhao, C. Pan, Research on quality assessment methods
for cybersecurity knowledge graphs, Computers & Security 142 (2024)
103848.

[27] X. Zhao, R. Jiang, Y. Han, A. Li, Z. Peng, A survey on cybersecu-
rity knowledge graph construction, Computers & Security 136 (2024)
103524.

[28] Siemens Energy, Siemens Energy (2025).
URL https://www.siemens-energy.com/

[29] W3C, RDF 1.2 Concepts and Abstract Syntax (2025).
URL https://www.w3.org/TR/rdf12-concepts/

[30] W3C, OWL 2 Web Ontology Language Document Overview (Second
Edition) (2025).
URL https://www.w3.org/TR/owl2-overview/

[31] W3C, SPARQL 1.2 Query Language (2025).
URL https://www.w3.org/TR/sparql12-query/

[32] NIST, CVE JSON schema (2025).
URL https://csrc.nist.gov/schema/nvd/feed/1.1-Beta/CVE_

JSON_4.0_min_1.1_beta.schema

[33] NIST, JSON Schema for Common Vulnerability Scoring System version
2.0 (2025).
URL https://csrc.nist.gov/schema/nvd/feed/1.1-Beta/

cvss-v2.0_beta.json

[34] NIST, JSON Schema for Common Vulnerability Scoring System version
3.x (BETA) (2025).

27

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



URL https://csrc.nist.gov/schema/nvd/feed/1.1-Beta/

cvss-v3.x_beta.json

[35] Amazon AWS, Amazon AWS Security Hub (2025).
URL https://aws.amazon.com/security-hub/

[36] Amazon AWS, Amazon AWS Security Finding Format (2025).
URL https://docs.aws.amazon.com/securityhub/latest/

userguide/securityhub-findings-format.html

[37] ECMA international, ECMA 424 (2025).
URL https://ecma-international.org/

publications-and-standards/standards/ecma-424/

[38] MITRE Corporation, CVE (2025).
URL https://www.cve.org/

[39] MITRE Corporation, MITRE Corporation (2025).
URL https://www.mitre.org/

[40] NVD, NVD (2025).
URL https://nvd.nist.gov/

[41] NVD, NVD feeds (2025).
URL https://nvd.nist.gov/vuln/data-feeds

[42] RML, YARRRML: A human readable text-based representation for
declarative Linked Data generation rules (2025).
URL https://rml.io/yarrrml/

[43] W3C, Data Catalog Vocabulary (DCAT) (2025).
URL https://www.w3.org/TR/vocab-dcat-3/

[44] W3C, PROV ontology (2025).
URL https://www.w3.org/TR/prov-o/

[45] W3C, SPARQL 1.2 Protocol (2025).
URL https://www.w3.org/TR/sparql12-protocol/

[46] European Union Agency for Cybersecurity, European Union Vulnerabil-
ity Database (2025).
URL https://euvd.enisa.europa.eu/

28

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[47] UK , UK Government (2025).
URL DesigningURIsetsfortheUKpublicsector

[48] W3C, Shapes Constraint Language (SHACL) (2025).
URL https://www.w3.org/TR/shacl/

[49] Ontotext, GraphDB Talk To Your Graph (2025).
URL https://graphdb.ontotext.com/documentation/11.0/

talk-to-graph.html#

29

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388699

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed


