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ABSTRACT

Single-cell RNA sequencing has transformed our understanding of cellular diversity, yet current single-

]
2 cell foundation models (scFMs) remain limited in their scalability, flexibility across diverse tasks, and
3 ability to natively integrate textual information. In this work, we build upon the Cell2Sentence (C2S)
4 framework, which represents scRNA-seq profiles as textual “cell sentences,” to train Large Language
5 Models (LLMs) on a corpus comprising over one billion tokens of transcriptomic data, biological
6 text, and metadata. Scaling the model to 27 billion parameters yields consistent improvements in
7 predictive and generative capabilities and supports advanced downstream tasks that require synthesis
8 of information across multi-cellular contexts. Targeted fine-tuning with modern reinforcement
9 learning techniques produces strong performance in perturbation response prediction, natural language

10 interpretation, and complex biological reasoning. This predictive strength directly enabled a dual-

11 context virtual screen that uncovered a striking context split for the kinase inhibitor silmitasertib

12 (CX-4945), suggesting its potential as a synergistic, interferon-conditional amplifier of antigen

13 presentation. Experimental validation in human cell models unseen during training confirmed this

14 hypothesis, demonstrating that C2S-Scale can generate biologically grounded, testable discoveries

15 of context-conditioned biology. C2S-Scale unifies transcriptomic and textual data at unprecedented

16 scales, surpassing both specialized single-cell models and general-purpose LLMs to provide a

17 platform for next-generation single-cell analysis and the development of “virtual cells.”
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Figure 1: Scaling LLM-based single-cell analysis. A multidimensional expansion of the C2S [14] framework,
demonstrating advances in model capacity, dataset size, multimodality, multi-cell support, and integration across

biological scales, from single cells to organism-wide insights in natural language. This framework bridges computational
innovation with biological discovery, accelerating next-generation single-cell analysis.

18 1 Introduction

19 Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity by enabling
20 the profiling of gene expression at single-cell resolution [1]]. This technology has generated massive data atlases such
21 as CELLXGENE [2] and the Human Cell Atlas [3]], offering unparalleled opportunities for computational methods
22 to extract biological insights from this data. Recent transcriptomic foundation models (FMs), such as scGPT [4],
23 Geneformer [3]], scFoundation [6]], and scGenePT [[7] have shown promise in modeling single-cell transcriptomic data at
24 scale. Despite these advances, current models are often limited by custom architectures constrained to scRNA-seq data,
25 hindering their scalability to larger model sizes, integration of different data modalities, and ability to perform diverse
26 generative and predictive tasks. These limitations restrict the ability of expression-only foundation models to synthesize
27 insights across datasets, modalities, and biological contexts, and highlight the opportunity for new approaches that can
28 integrate diverse data types, including the rich contextual information contained in biological text and metadata.

20 Large Language Models (LLMs) [8| Ol [10] offer a promising solution to these challenges. Widely used in natural
30 language processing (NLP), LLMs exhibit consistent performance improvements with scale across diverse downstream
31 tasks [} [12]. Their ability to process vast text corpora and generalize effectively to new applications makes them
32 well-suited for addressing the limitations of current expression-only models. Cell2Sentence (C2S) [14]] provides a
33 framework to leverage LLMs for biology by transforming high-dimensional single-cell data into a textual format. By
34 converting scCRNA-seq profiles into “cell sentences” — sequences of gene names ordered by expression level — C2S
35 positions single-cell data within the LLM framework, providing better scalability and infrastructure advantages than
36 specialized model architectures. This data transformation strategy simplifies model development and deployment, and
37 enables easy integration of transcriptomic data with diverse modalities, including metadata, experimental conditions,
38 and textual descriptions from biological publications.

39 Here, we introduce C2S-Scale, a new family of LLMs trained on a multimodal corpus of over 50 million cells and
40 associated text. We show that scaling these models up to 27 billion parameters leads to consistent performance
41 improvements across a range of predictive and generative tasks (Fig.[I). C2S-Scale’s flexible context allows it to analyze
42 cellular interactions and diverse biological information in multi-cell contexts, enabling sophisticated applications from
43 predicting perturbation responses to answering complex biological questions. To further enhance the biological accuracy
44 of model outputs, we developed refinement techniques with reinforcement learning (GRPO) to align model predictions
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45 with key biological objectives. We also introduce a novel metric, single-cell Fréchet Inception Distance (scFID), for
46 assessing generative performance.

47 To demonstrate this platform’s capacity for novel biological discovery, we programmed a dual-context virtual screen
48 designed to find interferon (IFN)-conditional amplifiers of antigen presentation. The screen revealed a pronounced
49 context split for the kinase inhibitor silmitasertib, which has not been reported to enhance MHC-I expression. Our
so0 model predicted a strong effect in the context of low levels of IFN exposure, but no effect in the absence of IFN
51 signaling. We validated this prediction in targeted wet lab experiments using neuroendocrine human cell models not
52 seen during training.

53 By releasing our models and resources, we provide a powerful, open-source platform for next-generation single-cell
54 analysis.

55 2 Results

s6 2.1 C2S-Scale: A foundation model for single-cell analysis at scale

57 To create a model capable of jointly interpreting transcriptomic data and biological text, we developed C2S-Scale, a
s8  family of LLMs trained on a large-scale corpus of scRNA-seq data and associated text (Fig. [2). C2S-Scale builds on the
59 Cell2Sentence framework [[13}[14], which represents single-cell gene expression profiles as textual “cell sentences”:
s0 lists of gene names ranked by their expression level (Fig.[2B). This representation preserves relative gene expression
61 while also allowing the model to leverage its knowledge about genes learned from vast text corpora. The transformation
62 from expression to cell sentence representation is reversible with minimal information loss due to the strong relationship
63 between relative position and original gene expression [13}[14] (examples provided in Fig. [I0).

6+ Training C2S-Scale consists of two phases: a self-supervised general pretraining phase on our large-scale corpus,
65 followed by additional tuning for specific tasks. To assemble the pretraining corpus, we collected over 50 million
66 human and mouse transcriptomes from a diverse range of tissues gathered from the CELLXxGENE [2] and Human Cell
67 Atlas [3] data atlases, along with associated annotations, papers, and metadata. We pretrained C2S-Scale on a variety of
68 tasks constructed using samples from the raw corpus, encompassing predictive and generative tasks on both single and
o multi-cell context (Table[T). This allows the LLM to learn to model cell sentences while simultaneously learning to
70 follow prompt instructions for common scRNA-seq analysis tasks. During the fine-tuning phase, the pretrained model
71 is specialized for a particular task on a new dataset.

72 2.2 (C2S-Scale demonstrates broad predictive and generative capabilities

73 We evaluated C2S-Scale on a diverse spectrum of single-cell tasks, outperforming or matching existing state-of-the-art
74 transcriptomic and natural language foundation models (Fig. [3). For traditional single-cell analysis tasks, C2S-Scale
75 achieved results competitive with expression-only foundation models such as scGPT [4] and Geneformer [5] on immune
76  [I15] and lung [[16] datasets. For example, on a diverse immune tissue dataset, C2S-Scale predicted cell type annotations
77 in natural language with 95.43% accuracy, slightly better than scGPT (93.1%) and Geneformer (94.0%). C2S-Scale
78 models also generated rich cell embeddings when given a cell sentence as input, capturing both transcriptional and
79 contextual information from natural language. We also construct a multimodal integration task assessing the similarity
go of embeddings of paired single-cell and bulk data. Notably, C2S-Scale could accurately match single-cell profiles
81 to their corresponding bulk RNA-seq profiles despite no prior exposure to bulk RNA-seq data, suggesting that C2S
g2 captures a more biologically meaningful representation of cellular states through cell sentences.

83 Beyond these predictive tasks, C2S-Scale supports complex generative and interpretive functions not present in most
g4 other transcriptomic foundation models. For instance, C2S-Scale accurately predicts cellular transcriptional responses
85 to perturbations, even generalizing to combinatorial and previously unseen conditions (described further in Section [2.7).
g6 Furthermore, when tasked with interpreting scRNA-seq data using natural language, C2S-Scale outperformed even
g7 leading general-purpose LLMs such as Llama [17, [18], GPT-40 [19] and Gemini [20] at tasks such as generating
g8 descriptive captions for cell clusters and summarizing entire datasets. Remarkably, C2S-Scale generalizes effectively
8o to completely unseen scRNA-seq studies (Fig. [3), demonstrating its interpretive capabilities on completely unseen
90 datasets. On question answering in natural language, C2S-Scale outperformed the best public LLM model (GPT-40) by
91 3% in BERTScore, highlighting its answer quality and natural language capabilities. The ability to generate biologically
92 meaningful insights in natural language makes C2S-Scale a uniquely powerful and accessible tool for interacting
93 with and interpreting single-cell data. Detailed description of each task and evaluation methodology can be found in
94 Section[dl
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Figure 2: C2S-Scale bridges scRNA-seq data and natural language by training LLMs to perform single-cell analysis
tasks on diverse, multimodal data. (A) A multimodal corpus of over 50 million human and mouse transcriptomes is
gathered from public data atlases, encompassing cellular expression from a diverse range of tissues, textual annotations,
papers, gene sets, and disease labels from scRNA-seq studies. (B) C2S rank-orders genes by expression and converts
them to natural language “cell sentences”, leveraging powerful LLM architectures without the need for custom
modifications. (C) C2S supports diverse downstream use cases, including perturbation prediction, generative tasks, and
advanced biological reasoning tasks such as question answering.

95 Taken together, these results show that C2S-Scale is a uniquely versatile tool. It is the only model to our knowledge
96 capable of spanning this entire range of single-cell analysis tasks, including prediction, generation, and natural language
97 reasoning. This positions C2S-Scale as a comprehensive platform for next-generation biological discovery.

98 2.3 Scaling enhances the biological reasoning capabilities of C2S-Scale

99 A central principle of modern LLM:s is that their performance improves predictably with increased scale [11[12]. We
100 analyzed the performance of C2S-Scale at a range of model capacities to test whether similar effects exist for LLMs in
101 single-cell analysis. Our results show that similar scaling laws emerge when LLMs are trained on natural language
102 representations of transcriptomic data: as model size increased from 410 million to 27 billion parameters, we observed
103 consistent performance improvements across diverse biological tasks, including cell type annotation, tissue inference,
104 and conditional cell generation (Fig. B[C).
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Figure 3: C2S-Scale outperforms both transcriptomic and natural language foundation models across diverse predictive
and generative single-cell tasks. Tasks include standard single-cell analysis tasks such as cell type annotation (red) and
cell embedding (green), a generative perturbation response prediction task (orange), and natural language interpretation
tasks including cluster captioning, dataset interpretation, and question answering tasks (blue). Raw performance
numbers are available in the Supplement. C2S-Scale is the only model capable of spanning the entire range of single-
cell analysis tasks, and demonstrates competitive performance on all tasks.

105 These scaling trends were consistent in both fully fine-tuned and parameter-efficient training regimes where only a
106 fraction of model parameters were trained (Fig. D). Furthermore, for a fixed model size, performance also scaled with
107 the amount of training data seen by the model (Fig. E). Together, these results establish that increasing both model and
108 dataset size is a reliable strategy for enhancing the biological reasoning capabilities of cellular language models. This
109 suggests that the full potential of this approach has not yet been reached and that future, larger models may yield even
110 greater biological insights.

111 2.4 Interpreting single-cell data across biological scales using natural language

112 Natural language interpretation is an underexplored aspect of single-cell analysis, enabling researchers to bridge
113 experimental scRNA-seq data with existing biological literature and providing a user-friendly tool for biologists to
114 interact with and interpret their data. Existing LLM-based single-cell models such as GenePT [21]] and scGenePT [7]]
115 offered limited integration of natural language and single-cell data, focusing primarily on using language embeddings
116 in single-cell architectures and tasks. C2S-Scale bridges large-scale training on transcriptomic data with the natural
117 language pretraining and generative capabilities of LLMs, enabling natural language interpretation of scRNA-seq data
118 at multiple scales of biology, illustrated in Fig. FA.

119 We benchmark C2S-Scale on a series of natural language interpretation tasks at various scales of biology, evaluating
120 its ability to reason about and generate meaningful descriptions about data. At the individual cell level, C2S-Scale is
121 able to accurately annotate cell types in natural language given cell sentences as input. The model is first fine-tuned
122 on a diverse immune tissue dataset [15] to predict cell type labels in natural language. C2S-Scale is able to correctly
123 classify almost all cell types on a held-out partition of the immune tissue data (Fig. [5B), demonstrating C2S-Scale’s
124 effectiveness at standard single-cell analyses.

125 At the cluster level, we introduce a novel task called Cluster Captioning, where the goal is to generate biologically
126 meaningful descriptions for groups of cells from the same tissue and batch within a sScRNA-seq dataset. To create
127 training data for this task, we use GPT-40 [19] to generate natural language captions for cell clusters derived from
128 annotated datasets (Methods Section4.6). C2S-Scale is fine-tuned to predict these captions given multiple input cell
129 sentences from each cluster and is evaluated on held-out clusters not seen during training. Performance is measured
130 using BioBERTScore [22], which quantifies semantic similarity between generated and ground-truth captions. As
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Figure 4: Cell2Sentence demonstrates consistent scaling in performance with increasing model capacity across diverse
single-cell analysis tasks. (A) Examples of predictive and generative tasks on single-cell data. (B) Natural language
prompts and responses for tasks in (A), colored by expression generation (red), predictive (blue), and language generation
(green) tasks. (C) Performance scaling of fully fine-tuned C2S models on cell type annotation, dataset interpretation,
and conditional sample generation tasks. (D) LoRA fine-tuned C2S-Scale-2B and 27B models demonstrate performance
scaling with increased model capacity in the parameter-efficient regime. (E) Performance scaling by number of training
samples seen by C2S-Scale-27B.
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Figure 5: C2S-Scale enables natural language interpretation of scRNA-seq data at multiple scales, from single cells to
entire datasets. (A) Different scales of biological data interpretation, from single cells to organism and dataset-level
annotation. (B) Ground truth and predicted cell types for immune cells extracted from 16 different tissues of adult
human donors [15]], demonstrating the ability of C2S-Scale to annotate data at the single-cell level. (C) Cluster
captioning performance on unseen scRNA-seq data clusters. Models are given multi-cell context from unseen data
clusters and tasked with captioning the data, measured by BERTScore. (D-E) Performance of C2S-Scale models on
natural language interpretation of entire sSCRNA-seq datasets on held-out cells and held-out studies. Error bars represent
standard deviation across test set samples.

131 shown in Fig. [5C, C2S-Scale outperforms all baseline LLMs on this task, demonstrating its ability to interpret and
132 summarize expression patterns at the cluster level.

133 At the dataset level, we further evaluate interpretive ability through a Dataset Interpretation task, where the model
134 receives multiple cell sentences from a sScRNA-seq dataset and is tasked with generating a high-level summary in the
135  style of a biological abstract. These summaries are expected to describe key features of the dataset, including dominant
136 cell types, tissues, disease states, or perturbations (examples provided in Fig. [IT). Fig.[5D shows that C2S-Scale
137 achieves the highest BERTScore among all evaluated models, including Llama [[17, I8} 23], Meditron [24]], BioMistral
138 [25], Gemini [20], and GPT-4o [19]. Notably, C2S-Scale generalizes well to entirely unseen datasets, producing
130 summaries that remain relevant and informative (Fig.[5E), highlighting its robust natural language understanding of
140 scRNA-seq data.

141 Overall, C2S-Scale enables natural language interpretation at multiple scales, spanning single cells, clusters, and
142 datasets. Its ability to integrate textual and biological data unlocks new opportunities for biologists to explore, annotate,
143 and generate insights from scRNA-seq data in natural language.

144 2.5 C2S-Scale Learns Spatial Reasoning from Multi-cell Context and Interaction Data

145 Understanding spatial organization in tissues is fundamental to uncovering the mechanisms that govern cellular
146 interactions, particularly in how they drive disease progression and tissue homeostasis [26} 27, 28]]. Cellular niches,
147 defined by their specific cell types, signaling molecules, and extracellular matrix components, play a crucial role in
148 regulating these processes. Accurately predicting spatial relationships among cells from transcriptomic data alone
149 1is challenging, as traditional approaches often rely on explicitly structured spatial models or predefined interaction

150 networks [29, 30} 31]].
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Figure 6: C2S-Scale can interpret multi-cellular spatial context and predict niche neighborhoods. (A) We fine-tune
C2S-Scale on a variety of single and multi-cellular spatial tasks designed to enable C2S-Scale to perform spatial
reasoning, including predicting niche labels, generating spatial neighbors, and identifying whether cells belong to
the same neighborhood or niche. A “neighborhood” is defined to be cells within a fixed radius from a central cell.
(B) We use publicly available gene interaction databases including BioGRID and CellPhoneDB to construct natural
language interaction prompts about gene interactions. To maximize relevance, BioGRID is filtered to include only
genes expressed in the CosMx dataset and restricted to extracellular proteins. (C) C2S outperforms scGPT and
GPT-40 in spatial neighborhood identification accuracy. Additionally, integrating gene interactions from BioGRID and
CellPhoneDB individually improves performance, and their combination provides the greatest improvement (* = P <
0.05, ** =P < 0.01; McNemar’s test). These results highlight the multi-task transfer learning potential of C2S-Scale for
spatially-aware biological modeling.

151 Although C2S-Scale was not explicitly designed for spatial reasoning, its ability to incorporate multi-cellular context
152 provides a natural mechanism for modeling spatial organization. We hypothesize that by sampling and encoding cells
153 from shared neighborhoods, C2S-Scale can infer spatial relationships without requiring architectural modifications.
154 To test this, we evaluate the model’s performance in predicting spatial neighborhoods using a human liver spatial
155 RNA-seq dataset [32]. Additionally, we simultaneously train C2S-Scale on related tasks aimed at improving its spatial
156 understanding: niche label prediction, neighbor cell generation, and determining whether multiple cells belong to the
157 same niche (Fig.[6]A). By training on these complementary tasks, C2S-Scale learns robust representations of spatial
158 organization, significantly outperforming both scGPT and GPT-4o in neighborhood prediction (Fig. [6C).

159 We further hypothesize that incorporating external biological knowledge — specifically, gene interaction networks — can
160 enhance spatial reasoning. Receptor-ligand and other protein-protein interactions are central to cell-cell communication,
161 yet many scFMs are unable to integrate this information. Instead of imposing predefined rules, we simply expose
162 C2S-Scale to receptor-ligand interactions from CellPhoneDB [33]] and protein interaction data from BioGRID [34],
163 formatted as natural language prompts (Fig.[6B). This approach allows the model to implicitly integrate prior knowledge
164 while maintaining flexibility in how it applies this information.

165 Fine-tuning with gene interaction data further improves C2S-Scale’s ability to predict spatial relationships, reinforcing
166 the hypothesis that external molecular context enhances spatial reasoning (Fig.[6B). Notably, adding either CellPhoneDB
167 or BioGRID data individually improves performance, demonstrating that both receptor-ligand and protein-protein
168 interaction knowledge contribute to spatial reasoning (Fig. [6IC). Moreover, combining both datasets results in the
169 greatest improvement, suggesting that integrating diverse biological interaction sources allows LLMs to develop a
170 richer understanding of multi-cellular organization and interactions.

171 A key advantage of C2S-Scale is its ability to integrate diverse data sources without requiring explicitly structured
172 incorporation of external knowledge. Unlike traditional methods that rely on predefined pathways or manually curated
173 interaction models, C2S-Scale implicitly learns to incorporate relevant information during training. This highlights a
174 fundamental strength of C2S: rather than designing bespoke architectures for specific tasks, we can provide relevant
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Figure 7: C2S-Scale demonstrates superior single-cell question answering performance compared to state-of-the-art
(SOTA) LLMs. (A) Example QA scenario based on scRNA-seq data. (B) Overview of the GRPO framework [35],
which further refines model performance by training on preference data. (C) Empirical comparison of C2S-Scale and
SOTA LLMs on single-cell QA tasks, highlighting C2S-Scale’s advantage in domain-specific reasoning. Error bars
represent standard deviation across test set QA samples.

175 data, and the model autonomously determines how to utilize it. This capability extends beyond spatial reasoning and
176 suggests broad applicability for integrating multimodal biological data.

177 2.6  Single-Cell Question Answering (QA) through Reinforcement Learning

178 QA tasks form a core part of NLP, providing a standard test to measure a model’s ability to understand information and
179 apply reasoning [36} 37,138, 39]]. In biomedical research, QA tasks are particularly valuable for assessing advanced
180 reasoning in domain-specific contexts, as evidenced by the development of numerous specialized QA datasets for
181 medical [40, 41]] and biological [42] applications. Building on this foundation, we introduce a single-cell Question
182 Answering (scQA) task to assess the ability of foundation models to reason about and interpret single-cell transcriptomic
183 data.

184 The scQA dataset consists of two thousand question-answer pairs, each containing: (i) an associated biological context,
185 (ii) relevant scCRNA-seq data sampled from clusters or cell type annotations, (iii) a main question, and (iv) a final answer.
186 Additionally, each answer is annotated with keywords to help evaluate response quality. To construct the dataset,
187 we sample cells from scRNA-seq datasets, provide the sampled data along with associated biological manuscripts to
188 GPT-4.5 [19], and prompt it to generate meaningful questions (Fig. [7A).

180 After supervised fine-tuning (SFT), C2S-Scale surpasses the performance of state-of-the-art LLMs on scQA (Fig.[7C),
190 demonstrating the advantages of specialized training on transcriptomic data paired with natural language. To further
191 improve C2S-Scale’s question answering capabilities, we employ Reinforcement Learning (RL) [43]] through Group
192 Relative Policy Optimization (GRPO) to further optimize the model to generate preferred responses to questions
193 (Fig. [7B). By using BioBERTScore as the reward function, we guide C2S-Scale toward producing higher-quality
194 answers aligned with biological insights. Following GRPO training, C2S-Scale significantly outperforms the SFT
195 baseline on the scQA dataset, highlighting the potential of RL techniques to optimize LLMs for specialized single-cell
196 applications.
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197 2.7 Perturbation Response Prediction

198 Single-cell foundation models offer remarkable opportunities for conducting large-scale virtual perturbation experiments
199 that would otherwise be infeasible or prohibitively expensive in a laboratory setting. Here, we demonstrate C2S-Scale’s
200 generalization capabilities across unseen perturbations and cellular contexts, along with its broad applicability for
201 modeling perturbation responses (Fig. [§A).

202 Training proceeds in two stages (Figure [§C): supervised fine-tuning (SFT) to predict gene-expression profiles of
203 untreated cells—including L1000 cell lines—under specified perturbation conditions, followed by online reinforcement
204 learning with GRPO [35] that optimizes biologically relevant objectives. We designed the reward function to prioritize
205 the accurate prediction of key gene programs of interest. This includes apoptosis for L1000 [44] and interferon response
206 for Dong et al. [43]. Concretely, the reward is computed over these targeted gene subsets (Figure [§F), which focuses
207 optimization while preserving full-profile generation and improves out-of-distribution generalization (Figure [§G).

208 We introduce a new metric, scFID (Fig. [§B), an adaptation of the FID metric [46] widely used in computer vision to
209 evaluate the realism of generated images. scFID adapts the FID metric by replacing the Inception-v3 model with a
210 single-cell foundation model to embed transcriptomic data, enabling evaluation of generated cells in a representation
211 space aligned with biological structure and functional gene programs. By assessing differences in this embedding space
212 rather than at the level of individual genes, scFID captures higher-order variation across cell states, yielding stable
213 model rankings (Fig. [BE) and aligning with distributional similarities evident in cell-state embeddings (Fig. [§D), while
214 complementing expression-level metrics such as Kendall’s 7 and Pearson’s r (Fig. [§G).

215 C2S-Scale outperforms existing methods on the Dong et al. dataset, accurately predicting responses to unseen cytokine
216 perturbations on entire gene expression profiles. It generalizes to novel combinations of cell type, cytokine, and exposure
217 duration, highlighting its ability to transfer to completely new contexts not seen during training (Fig.[8E). Compared to
218 baselines, C2S-Scale performs best on fully unseen combinatorial perturbations, capturing nonlinear synergistic effects.
219 Quantitative results (Fig.[§F) show superior MMD, Wasserstein, and scFID scores relative to competing models. GRPO
220 further reduces scFID on interferon-related genes by 16%, thereby improving biological fidelity on immune pathways
221 (Fig.[BG).

222 The L1000 results further underscore C2S-Scale’s versatility in modeling perturbation responses across single-cell
223 and bulk transcriptomic data. We evaluate performance on apoptosis-related genes, focusing on generalization to
224 unseen compound treatments. Applying GRPO yields consistent gains (Fig. [§G), improving Kendall’s 7 by 9.2%
225 for the 410M model and 4.9% for the 1B model, and Pearson’s r by 6.6% for the 410M model and 3.6% for the 1B
226 model. Rewards are defined on phenotype-linked gene programs (e.g., apoptosis in L1000 [44] and interferon response
227 [45]; Fig.[8JF), which yields context-aware scores well suited for virtual screening and candidate prioritization, while
228 preserving full-profile prediction and enhancing out-of-distribution generalization (Fig. [G).

229 2.8 Immune-context virtual screening reveals a cytokine-conditional amplifier of antigen presentation

230 A differentiating feature of C2S-Scale is its ability to connect complex transcriptional states across diverse biological
231 contexts. To test whether C2S-Scale can uncover context-dependent determinants of immune visibility, we programmed
232 a dual-context in-silico screen that predicts drug effects on MHC-I antigen-presentation programs in immune-context-
233  positive versus immune-context-neutral cytokine signaling settings. Leveraging its demonstrated strength in perturbation
234 response prediction, the model identified silmitasertib, a CK2 inhibitor, as one of the top candidates with a pronounced
235 context split: a strong predicted increase in antigen-presentation programs in the immune-context-positive condition of
236 low-level interferon (IFN) signaling (Fig. [OB; other drugs known to upregulate MHC-I highlighted in blue), but little
237 to no effect in the neutral condition (Fig. [9[C). We selected low-level IFN signaling as a tissue-specific regulator of
238 immunity that is frequently present, but insufficient to drive maximal antigen presentation. We reasoned that enhanced
239 antigen presentation in this context has the potential to drive increased T cell recognition, further IFN production, and
240 positive feedback.

241 Our results were notable because silmitasertib has not been reported in the literature to enhance MHC-I expression,
242 highlighting the novelty of both the effect itself and its context dependence. We confirmed that interferon response,
243 quantified by a rank-based score for an interferon-stimulated gene set, was elevated in the immune-context-positive
244 sample, but negligible in the neutral sample (Fig. [OD). Based on both the model’s predictions and the known role
245  of interferons in MHC-I regulation, we hypothesized that the compound acts as an interferon-conditional amplifier,
246 lowering the response threshold to interferon rather than initiating antigen presentation de novo (Fig. [OE).

247 We validated this hypothesis in two human neuroendocrine cell models that were completely unseen in C2S-Scale’s
248 training data. In the first model (Merkel cell origin), silmitasertib alone did not alter HLA-A,B,C surface levels, whereas
249 the combination of low-dose IFN-/ and silmitasertib produced a marked increase in MHC-I mean fluorescence intensity
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250 (MFI) (Fig. PF; 13.6% increase MHC-I MFI at 10nM and 34.9% at 1000nM). The amplification effect generalized
251 across interferon subtypes (IFN-v, Fig. O[G; 24.9% increase MHC-I MFI at 10nM and 37.3% at 300nM) and was
252 reproduced in a second, independent human cell model (pulmonary origin, Fig. OH; 17.1% increase MHC-1 MFI at
253 10nM and 28.1% at 100nM). Notably, neuroendocrine cells were minimally represented in the training data for our
254 model, with no representation of Merkel cells at all.

255 This discovery of a novel cytokine-conditional amplifier of antigen presentation demonstrates C2S’s ability to perform
256 high-throughput virtual screens to identify promising therapeutic candidates to validate experimentally. Additionally, it
257 illustrates how C2S can reveal context-conditioned biology that is missed in context-neutral assays.

28 3 Discussion

259 Although artificial intelligence approaches including neural network models have achieved significant breakthroughs in
260 protein structure and the prediction of molecular interactions, less progress in modeling multi-cellular tissues, pathologic
261  states, and context-specific biology has been made. Principal challenges in this space include the underlying diversity,
262 complexity, and pleiotropy of biological systems, which compounds across hierarchical organization from genes to
263 transcriptional programs, and cells to tissues to organisms. Indeed, the semantic complexity and contextuality of
264 biological systems seems unrivaled—outside of language itself. Our work introduces C2S-Scale, a family of LLMs for
265 single-cell analysis that leverages the benefits of state-of-the-art LLMs out of the box. By converting transcriptomic
266 profiles into “cell sentences,” C2S-Scale avoids the need for bespoke model architectures while readily integrating
267 contextual information from annotations, metadata, and biological texts. This data engineering paradigm yields a
268 flexible system capable of predictive and generative single-cell tasks, and our results demonstrate that scaling C2S-Scale
269 up to 27 billion parameters systematically boosts performance, mirroring similar scaling phenomena observed in the
270 broader field of NLP.

271 Moreover, we show that C2S-Scale bridges the gap between raw transcriptomic information and natural language-
272 based interpretation by supporting tasks at multiple scales, ranging from cell type annotation to entire dataset-level
273 summarization. We propose new evaluation datasets for these interpretation tasks and demonstrate that LLMs trained in
274 the C2S-Scale framework provide meaningful captions and summarizations of single-cell data, even in cases where
275 the dataset is completely new to the model. By aligning expression data with rich textual metadata and biological
276 domain knowledge, our approach highlights the potential of language-based modeling to offer biologically informed
277 explanations and generate insights unavailable to purely expression-only systems.

278 Context-specific decoding is a core task for both LLMs and biological systems alike. To test the ability of C2S-Scale
279 to derive context-specific biological meaning, we conducted a conditional virtual screen, identifying an IFN-specific
280 regulator of antigen presentation. We validated the effectiveness of silmitasertib in neuroendocrine Merkel cell and
281 pulmonary cell models in which the downregulation of antigen presentation machinery is a well-established mechanism
282 of resistance to immunotherapies. This success provides a blueprint for future screens targeting other complex biological
283 contexts.

284 We anticipate that higher-capacity models and more diverse training corpora will unlock advanced capabilities, such
285 as the integration of epigenomic, proteomic, and clinical data into a single multimodal model. In parallel, increasing
286 transparency and explainability in LLM decision making will be essential for building trust and accelerating adoption of
287 these tools in single-cell research. Reinforcement Learning and other innovations in LLM alignment will provide a path
288 forward for aligning LLMs to preferred responses in the context of biological tasks. By directly linking natural language
289 and transcriptomic data, C2S sets the stage for transformative innovations in biological discovery and personalized
290 medicine.

21 4 Methods

292 The following section details the data collection, processing, and formatting for multi-task samples, as well as the model
293 architecture for Large Language Models.

204 4.1 Data Collection

295 To construct the C2S-Scale pretraining corpus, we assembled over 50 million single-cell transcriptomic profiles from
296 human and mouse tissues. Datasets were obtained from established public repositories, including the CELLXGENE [2]
297 and Human Cell Atlas [3] data portals, and span a wide range of tissues, disease states, and experimental conditions.
298 Each dataset was accompanied by author-provided metadata, such as cell type and tissue annotations, donor information,
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Figure 9: Immune-context virtual screening identifies a cytokine-conditional amplifier of antigen presentation. (A)
Schematic of a dual-context virtual screen that predicts drug effects on immune visibility (MHC-I program) in
immune-context-positive (primary human samples with endogenous interferon signaling) versus immune-context-
neutral (isolated cell) settings. (B) Ranked predictions in the immune-context-positive screen nominate silmitasertib, a
CK2 inhibitor, among top candidates to increase antigen-presentation programs (highlighted in red). Selected positive
controls known to upregulate MHC-I are highlighted in blue. (C) Silmitasertib shows a context split, with a strong
predicted effect in the immune-context-positive setting and negligible effect in the immune-context-neutral setting. (D)
Interferon response was quantified by a rank-based score of a curated interferon-stimulated gene set (see Methods).
Each point is one sample; bars = mean+SEM; **** P < (0.0001 (Wilcoxon test). (E) Hypothesis: the compound is
an interferon-conditional amplifier that lowers the response threshold for STAT1/IRF1 and thereby amplifies MHC-I
upregulation. (F) Experimental validation in an unseen cell type shows no effect of CK2 inhibition alone and marked
HLA-A,B,C upregulation in the presence of low-dose IFN-3 (n=3 independent experiments; points = replicates; bars =
mean+SD.; two-sided tests with multiple-comparison correction). (G) The amplification holds with IFN-+, indicating
robustness across interferon subtypes. (H) The same interferon-conditional amplification is observed in a second,
independent human cell model, supporting generality.
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299 developmental stage, and associated study identifiers. Where available, supplementary textual resources, including
300 paper abstracts and study descriptions, were also retained.

301 Raw scRNA-seq data were processed using standard preprocessing pipelines, including quality control, library size
s02 normalization, and log-transformation, following established conventions [47]]. For each dataset, the transcriptomic
303 profiles were converted into cell sentences, and the accompanying annotations were preserved to construct natural
304 language prompts. This resulted in a multimodal corpus linking expression profiles with textual descriptors of biological
305 context. A complete list of datasets included in the corpus is provided in Supplementary Table 1.

s06 4.2 Cell Sentence Transformation

307 To adapt high-dimensional single-cell gene expression data into a format compatible with natural language processing,
308 we converted expression profiles into textual representations termed “cell sentences.” For each cell, let X € R be the
309 expression vector, where X, denotes the normalized expression value of gene k in that cell. The cell sentence for X is
310 constructed by rank-ordering the genes within a cell by their expression levels and taking the K most highly expressed
311 genes. If S is a list of indices from 1 to D sorted in descending order based on expression level in X, then

cell sentence(X) := “gene(S[1]) gene(S[2]) ... gene(S[K])”.

stz The gene names are in natural language, forming a sentence interpretable by language models (exemplified in Fig. [2).
313 Under this framework, there is no need to extend or modify the vocabulary of the language model, and it allows any
314 LLM architecture to tokenize gene names according to their existing vocabulary. This has two primary benefits: (i)
315 by avoiding architectural modifications, the C2S framework is immediately applicable to any LLM architecture or
316 innovation, and (ii) the LLM is able to recognize gene names and associate prior knowledge about that gene obtained
317 during self-supervised pretraining on natural language data, which has been shown to be significant for large-scale
s1e  pretrained LLMs [21].

319 The cell sentence transformation into textual sequences retains the underlying biological information by preserving
320 the rank-order of gene expression. We find there is a strong linear relationship (in log space) between a gene’s rank in
321 the cell sentence and the (normalized) expression level, validating the fidelity of this transformation. This relationship
322 is shown in Supplementary Fig. |10| for two scRNA-seq datasets. A linear model fitted between rank and original
323 expression can predict the original gene expression values given a gene’s rank with R? = 0.85, demonstrating that
324 minimal information is lost during conversion to cell sentences. This interchangeability allows us to utilize the strength
s2s of LLMs in natural language processing while retaining the ability to convert back to gene expression vectors for
326 traditional single-cell analysis methods. The parameters of the linear model for each scRNA-seq dataset used during
327 training are saved to enable reversible transformation from cell sentences back to expression values during inference.

s2s 4.2.1 Multi-Task Prompt Formatting.

329 (C2S-Scale was designed to operate in natural language, enabling a broad range of predictive and generative tasks
330 in single-cell analysis. These tasks include cell type and tissue annotation, multi-cell generation, and dataset-level
a3t interpretation. The complete list of pretraining tasks, together with their inputs and outputs, is provided in Table[T]

332 Prompts were constructed by combining the cell sentence representation of one or more cells with task-specific natural
333 language instructions. For predictive tasks, the input prompt included a cell sentence and an instruction, and the output
s34 corresponded to the metadata label of interest. For example, in the cell type annotation task, the input consisted of the
335 cell sentence and the instruction “Predict the cell type of this cell”, and the output was the corresponding cell type label.
336 For generative tasks, this structure was inverted: metadata conditions were provided in the input prompt, and the model
337 was trained to generate one or more cell sentences in response.

ss8 Metadata included in natural language prompts encompassed cell type, tissue annotations, perturbation conditions,
339 disease states, and text from associated studies or abstracts, thereby providing additional biological context. This
s40 framework enables C2S-Scale to interpret instructions, integrate biological knowledge, and generalize across diverse
341 applications.

s42 4.3 C2S-Scale architecture and pretraining

343 4.3.1 Input representation

344 C2S-Scale employs large language models (LLMs) based on the Transformer architecture 8] to model cell sentences in
a45 natural language. Input sequences are represented as high-dimensional embeddings suitable for processing by neural
a46 networks. Each word in a cell sentence corresponds to a gene name, which is first tokenized using the pretrained
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347 tokenizer associated with the backbone model. This approach avoids the introduction of new vocabulary and maintains
a4 compatibility with the LLM’s pretraining knowledge.

s49 Tokenized gene names are mapped into vector representations through an embedding layer trained alongside the model.
350 These embeddings capture semantic properties of genes informed both by their biological context and by the pretrained
351 model’s prior knowledge. Positional encodings are added to preserve the rank order of genes within each cell sentence,
352 allowing the model to learn dependencies across expression-ranked sequences.

353 4.3.2 Attention mechanism

354 The central component of the Transformer is the self-attention mechanism [48], 8], which enables the model to compute
355 pairwise relationships between tokens. For single-cell tasks, this allows the model to dynamically prioritize genes that
ss6 are most informative for a given context, such as lineage-defining markers for classification or perturbation-responsive
357 genes for prediction. The attention mechanism also extends naturally to metadata tokens (e.g. cell type, tissue, disease
358 state), enabling the model to integrate gene expression with contextual information in a shared representation.

359 4.3.3 Model architecture

360 C2S-Scale adopts a decoder-only Transformer design [[19], chosen for its capacity to model sequential data and support
ss1  generative tasks. The architecture consists of a stack of Transformer blocks, each containing a multi-head self-attention
ss2 layer followed by a position-wise feedforward network. Residual connections and layer normalization are applied
363 throughout to stabilize optimization and facilitate scaling to billions of parameters. This modular structure allows the
ss4 model to capture long-range dependencies in gene expression data while remaining computationally efficient.

365 4.3.4 Pretraining objective

ss6 The model is pretrained with a next-token prediction objective [49]], in which the model learns to predict the next
367 token in a sequence given all preceding tokens. Applied to cell sentences, this involves predicting the next gene in the
ses rank-ordered expression list, optionally conditioned on metadata tokens. This autoregressive formulation encourages
ss9 the model to capture the hierarchical organization of gene expression programs and to integrate biological context
370 during generation.

s71  In contrast to masked-token objectives such as those used in Geneformer [S]], which predict randomly masked genes
372 in non-linguistic sequences, the autoregressive objective aligns naturally with downstream generative applications.
a73  Training the model in this way conditions it to produce coherent, biologically meaningful outputs for tasks such as cell
374 generation, dataset-level interpretation, and question answering.

375 4.3.5 Training Setup

a76  Pretraining was carried out on the C2S-Scale corpus of more than 50 million single-cell transcriptomes with associated
377 metadata and textual annotations. A multi-task learning framework was used to jointly optimize across the pretraining
a7 tasks described in Table|l} enabling the model to integrate transcriptomic and contextual information.

379 The C2S-Scale 410M-parameter and 1B-parameter models were trained on one Nvidia A100/H100 GPU with the
380 Transformers library (version 4.46.3) [50] and PyTorch (version 2.4.1) [51]] on a High Performance Computing (HPC)
381 cluster running Red Hat Enterprise Linux release 8.10. Models larger than 1B parameters were trained on 256 TPU v4s
ss2  using the Jax library. We used a starting learning rate of 1e-5 with linear decay and weight decay of 0.01.

383 4.4 Scaling Evaluation

384 To evaluate scaling behavior in C2S-Scale models, we benchmarked models ranging from 410 million to 27 billion
3ss parameters, based on the Gemma 2 [52] and Pythia [S3]] architectures. We assessed performance on a held-out set of 500
ass  test samples spanning multiple single-cell tasks listed in Table[I] including cell type annotation, dataset interpretation,
387 and conditional sample generation tasks. Both fully fine-tuned and LoRA fine-tuned variants [54] were evaluated to
sss assess scaling behavior under different computational budgets.

389 Performance was measured using BERTScore [22] between generated and reference outputs for predictive tasks such as
s90 cell type annotation and dataset interpretation, providing a semantic measure of response quality. Let the reference

se1 outputbe z = (x1,..., ;) and the generated output be & = (&1, ..., &), where tokens are represented by contextual
sz embeddings. Pairwise similarity between tokens is given by the cosine similarity s(z;, ;) = m BERTScore
25

393 recall, precision, and F1 are then defined as
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Table 1: Pretraining task inputs and outputs for C2S-Scale multi-task training. For multi-cell tasks, multiple cells are
sampled from the same donor sample with the same tissue label.

Task name Type Input information Target output Metric

Single cell language modeling Single-cell - Single cell sentence Overlap %
Cell type annotation Single-cell  Single cell sentence Cell type BertScore
Conditional cell generation Single-cell  Cell type of one cell Single cell sentence Overlap %
Multiple cell language modeling Multi-cell - Multiple cell sentences Overlap %
Tissue sample annotation Multi-cell ~ Multiple cell sentences Tissue label BertScore
Sample cell type(s) annotation Multi-cell ~ Multiple cell sentences Cell types of multiple cells BertScore
Conditional sample generation (tissue) Multi-cell ~ Tissue annotation Multiple cell sentences Overlap %
Conditional sample generation (cell type) Multi-cell ~ Cell types of multiple cells Multiple cell sentences Overlap %
Conditional sample generation (abstract) =~ Multi-cell ~ Paper abstract Multiple cell sentences Overlap %
Natural language interpretation Multi-cell ~ Multiple cell sentences Paper abstract BertScore
Gene set enumeration Gene set Gene set name List of genes in gene set Overlap %
Gene set naming Gene set List of genes in gene set Gene set name BertScore

1 R 1 .
Rpgrr = — E max s(x;,2;), Pserr = 7 max §(2;, L),
|z Lo wien || o e
J

Freor — 2 Peerr RBERT

BERT= 55— H -

Pggrr + RBERT

394 This formulation captures semantic similarity even when exact lexical matches are absent. Unless otherwise noted, all
sss reported BERTScore values correspond to the F1 variant.

396 For generative tasks such as conditional cell generation, we evaluated outputs by measuring gene overlap between
397 generated and target cell sentences. This metric captures the proportion of ground truth genes recovered in the generated
398 output, providing a direct measure of transcriptomic fidelity. Let G,.t denote the set of genes in the reference cell
399 sentence and Ggep the set of genes in the generated cell sentence. Gene overlap is defined as

Geen N Greo
Overlap(Ggem CTvref) = g|CTYf|f
re

400 4.5 Post-training methods

401 4.5.1 Supervised fine-tuning

402 C2S-Scale was adapted to downstream applications through supervised fine-tuning on labeled datasets. Fine-tuning
403 used the same autoregressive next-token prediction objective as pretraining, with prompts formatted to match each task.
404 For example, a prompt might consist of a cell sentence followed by the instruction “Predict the tissue of origin for this
405 cell:”, and the model was trained to output the corresponding metadata label.

406 Parameter-efficient strategies were used to limit overfitting and reduce compute cost. Low-Rank Adaptation (LoRA)
407 and lightweight adapter layers updated only a small subset of parameters, while the majority of pretrained weights
408 remained frozen. This design allowed rapid task-specific adaptation with modest data requirements.

409 4.5.2 Reinforcement learning alignment

410 Reinforcement learning (RL) was used to further align model outputs with biological accuracy and interpretability. We
411 employed Group Relative Policy Optimization (GRPO), a policy-gradient method that incorporates task-specific reward
412 signals directly into parameter updates [43] 35].

413 The supervised fine-tuned model (policy 7y) generated multiple candidate outputs o = (o1, ..., 0},|) for each input
414 prompt ¢. Each token o; was assigned probability mg(o; | ¢, 0<+), where o< denotes the prefix. Rewards r; were
415 assigned to each candidate sequence o; using automated evaluation metrics such as BERTScore [22]] and domain-specific
416 scores for tasks like perturbation response prediction.

417 Proximal Policy Optimization (PPO) maximizes a clipped surrogate objective, which requires estimating per-token
418 advantages A; using a value function:
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where mg_,, is the policy from the previous iteration, A, is the advantage at step ¢, and ¢ is the clipping threshold.
Maintaining a critic to estimate A; increases computational cost and can destabilize training.

GRPO replaces the value function with a group-relative baseline. For each prompt ¢, the model samples G candidate
outputs {01, . ..,0c} with associated rewards {r1, . .., r¢}. Relative advantages are defined by normalizing rewards
across the group:

r; — mean(r)

std(r) 7

= Ai,t =7, VtEo;.

The GRPO objective is

TOo1a (Ol-,t | q, Oz,<t)

Chp( 7T9(0i,t | q, Oi,<t)) ’ 1— € 1+ E) Ai,t) o BDKL(WG ” 7rref)>‘| ,

014 (Oi,t | q,0i <t

G loi]
1 . T(0; , O0i, 1
JGRPO(H) 0.{0:}5, [G E 70 g <m1n< 9( 7% I q <t) Ai,ta

where m.¢ is the frozen SFT model and 3 controls the KL regularization strength.

GRPO eliminates the critic network, reduces memory requirements, and yields stable optimization at scale. When
trained with biologically relevant reward functions, C2S-Scale refined its predictions and aligned generative behavior
with biological ground truth.

4.6 Downstream Tasks

4.6.1 Cell type annotation

For the cell type annotation task, we fine-tuned the model to predict cell type labels on an immune tissue dataset [S5]],
pancreas dataset [56], and a lung dataset [[16]. We used 80% of cells from each dataset for training and reserved 20%
for evaluation. C2S-Scale was provided with a cell sentence and a natural language prompt, such as “Predict the cell
type of this cell:”. C2S-Scale was fine-tuned for this task using the same next-token prediction objective [49] as the
pretraining step, predicting cell type labels in natural language. Other scFMs were fine-tuned using prediction heads on
top of the pretrained transformer weights in accordance with the recommended strategies for each model.

4.6.2 Cell generation

For cell generation tasks, we fine-tuned the model to unconditionally or conditionally generate cell expression on the
immune tissue and lung datasets. The model was given a natural language prompt containing relevant metadata for
conditional generation, or no information in the case of unconditional generation, and was tasked with generating a cell
sentence of K genes representing the expression of the cell under that condition. For instance, to conditionally generate
a B cell, the model might be given a prompt such as: "Generate a list of 1000 genes in order of descending expression
which represent a Homo sapiens cell of cell type B cell."

4.6.3 Cell embedding

For cell embedding, we used C2S-Scale foundation models (e.g. C2S-Scale 1B) trained on the C2S multimodal corpus
to embed cells without any dataset-specific fine-tuning. To embed cells, we first formatted input prompts for C2S-Scale
in the same manner as in cell type prediction tasks. However, instead of decoding token predictions, we took the last
hidden state from the last layer of the C2S-Scale model, and average pooled the latents in order to form our embedding
of the input prompt. We note that this procedure can be done for multi-cell contexts as well as contexts that involve
different metadata and condition components in natural language prompts, making C2S-Scale a diverse embedding
model for transcriptomic and language inputs.
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452 4.6.4 Single-cell bulk integration

453 Multimodal integration is essential for capturing the complexity of biological systems, as different data modalities
454 provide complementary perspectives on cellular function. Each modality has its own strengths and limitations: some
455  offer high resolution at the cost of sparsity, while others provide broader coverage but lack single-cell detail. Therefore,
456 models that can integrate modalities can provide a more complete and robust understanding of cellular behavior,
457 improving both interpretability and predictive power in biological analysis.

458 To assess this, we designed a simple single-cell and bulk RNA seq integration task. Using a single-cell lung tissue
459 dataset [16], we constructed pseudo-bulk samples by aggregating over donor, cell type, and batch. For each pseudo-bulk
460 sample, we randomly sampled ten single-cell samples from the same conditions to construct pairs. We embedded
461 each single-cell and pseudo-bulk sample individually using each model and computed the cosine similarity between
462 the paired single-cell and bulk samples. Following [57], we used the “fraction of samples closer than the true match”
463 (FOSCTTM) to evaluate the performance of each model. A FOSCTTM of 0 corresponds to a perfect model (the cosine
464 similarity of matched pairs is higher than any other pair), whereas a FOSCTTM close to 0.5 means the cosine similarity
465 between the matched pairs is about as good as the cosine similarity between random pairs.

46 4.6.5 Cluster captioning

467 To generate the cluster captioning dataset, we selected 30 scRNA-seq datasets and performed standard preprocessing,
468 clustering, and differential expression analysis. We then prompted GPT-40 [19] to generate five captions for a cluster
469 based on the cell type, tissue type, organism, disease, top three differentially expressed genes, and the full text of the
470 associated paper. This resulted in a total dataset of 1,723 captions from 345 distinct clusters. To produce the final
471 training data, we randomly sampled two cells from a cluster to construct the training prompt, and a caption from that
472 cluster as the target. The C2S-Scale models were fine-tuned using supervised fine-tuning with a next-token prediction
473 learning objective with a learning rate of 1 x 107>, weight decay of 0.01, and a batch size of 64. All models were
474 evaluated on the same holdout test set consisting of clusters unseen in the training data.

475 4.6.6 Dataset interpretation

a76  For the dataset-level interpretation task, we created two test sets for dataset-level interpretation: (i) a training distribution
477 dataset interpretation test set, where sScRNA-seq data and paper abstracts come from 613 of the scRNA-seq datasets
a7 gathered from CELLXGENE [2] as a part of the C2S-Scale training corpus, and (ii) an out-of-distribution (OOD)
479 evaluation set where the papers and data are completely unseen by the C2S-Scale model. By evaluating dataset-
480 level interpretation on scRNA-seq studies from both the training corpus and out of distribution data, this serves as a
481 challenging generalization benchmark for writing meaningful interpretations of scRNA-seq data.

4s2  Each dataset interpretation sample was created by sampling between 5 and 20 cells from the same tissue and donor in a
483 given scRNA-seq dataset, and formatting a prompt with the multi-cell context that tasked the model with generating a
484 biological abstract summary to describe the data. The ground truth for the abstract summary of the data was obtained by
g5 taking the abstract of the paper associated with the scRNA-seq study; to create more diversity in the biological abstracts
486 seen across samples, we create 500 variations of each dataset abstract using GPT-3.5-Turbo-1106, to prevent the model
47 from simply memorizing a few hundred dataset abstracts. For each multi-cell context, we choose one of the abstract
488 summaries as the ground truth target summary. Example abstract summaries can be found in Fig.

489 To create the training corpus distribution dataset interpretation test set, we first gathered held-out abstract generation
490 samples from the training corpus. These are multi-cell contexts and samples which the model had not seen during
491 training since they were a part of held-out validation and test sets of the C2S-Scale corpus, however since each dataset
492 only contains one abstract, the held-out samples will still contain similar information to training set abstract generation
493 samples that the model has seen. We sampled 5 held-out abstract generation samples from 613 datasets gathered from
494 CELLXGENE [2], yielding a total test set of 3065 dataset interpretation samples.

495 For the out-of-distribution dataset interpretation test set, we constructed new abstract generation samples by incor-
496 porating two new datasets from CELLxGENE that were either published recently (after the initial C2S-Scale corpus
497 gathering period) or verified to not be a part of the C2S-Scale training corpus: (i) a pancreas tissue [56]] and a human
498 retina [58]] dataset. We constructed 200 samples from each dataset, again creating 50 variations of the abstract of each
499 dataset to again provide more diversity in summary language.

s00 4.6.7 Spatial niche prediction

so1  For the spatial niche prediction task, we used the CosMx Spatial Molecular Imager Human Liver dataset [32], which
502 provides annotated spatially-resolved single-cell data from both normal and hepatocellular carcinoma liver tissues from
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503 two different donors. This dataset encompasses over 800,000 single cells across a total of approximately 180 mm? of
504 liver tissue, with expression measured on a set of 1,000 curated genes. The dataset was processed to filter out genes
s05 expressed in fewer than three cells and cells expressing fewer than 50 genes. It was then normalized to a total count of
s06 1 x 10* and the base 10 logarithm was applied. Spatial coordinates were saved to define neighborhoods and facilitate
507 spatial analyses. We define a neighborhood to be a radius of 0.02 pixels (approximately 20 pm), chosen to maximize
so8 the number of cells we can fit into the model’s context. The dataset was split into training and test sets based on spatial
s09 coordinates to prevent spatial leakage between sets.

510 To train C2S-Scale on spatial and multi-cellular relationships, we designed the following tasks:

511 1. Niche label prediction: Given a cell sentence for a single cell, predict the niche label annotation for that cell.
512 2. Conditional Neighbor Generation: Given multiple cell sentences from a neighborhood, generate a novel cell
513 sentence that would belong to the same neighborhood.

514 3. Spatial neighborhood prediction: Given multiple cell sentences, predict whether these cells come from the
515 same neighborhood.

516 4. Same niche prediction: Given multiple cell sentences, predict whether all of these cells have the same niche
517 label or different niches.

st To construct prompts, cell sentences were randomly sampled from the appropriate data split. Multi-cell contexts were
s19 created by taking all cells in the sampled cell’s neighborhood for positive samples, or an equivalent number of randomly
520 sampled cells outside the neighborhood as negative samples. The data contained 19,754 training samples and 3,968 test
521 samples.

522 Additionally, to enhance the model’s understanding of cell communication, we included gene interaction metadata from
523 CellPhoneDB [33] and BioGRID [34]. We restricted the data to only retain interactions involving the 1,000 genes in the
524 CosMx data, and also only to genes coding for extracellular proteins (determined using MatrixDB [59]]). We included
525 5,822 interaction samples from CPDB and 2,334 from BioGRID.

526 Models were evaluated on a held-out test set comprising 3,968 samples. Performance was measured as mean prediction
527 accuracy across the spatial neighborhood prediction tasks. To compare models, paired differences in prediction
528 outcomes were assessed using McNemar’s test with continuity correction, which evaluates whether two classifiers differ
529 significantly in their error distributions when applied to the same test set. Significance was reported as p-values from
s30 McNemar’s test, with values below 0.05 considered statistically significant.

531 4.6.8 Question answering

52 We used the GPT-4.5 model to generate question-answer pairs from three sections of each manuscript (abstracts,
533 discussions, and results) as well as data sampled from that study. Each scRNA-seq study contributed 20 QA pairs, for a
s34 total of approximately 1600 QA pairs used for SFT. We conduct SFT with a learning rate of 1 x 10~° and 100 warmup
535  steps.

s3s  Following SFT, we applied GRPO to further refine answer quality. To create the GRPO training set, we collected an
537 additional 600 samples from unseen studies, with each sample prompting the SFT model to generate 32 candidate
s3s answers. We then used BioBERT to compute a reward score for each candidate answer against the ground truth answer
539  provided by GPT-4.5, capturing its biological plausibility. These BioBERT-derived scores served as the primary reward
s40  signals, guiding the GRPO update step and optimizing model parameters to favor biologically accurate, contextually
541 relevant responses. For GRPO training, we set 8 = 0.03 and use a learning rate of 5 x 10~7. Finally, we evaluated the
s42  GRPO-refined model on a new test set derived from unseen studies, and compare its performance against a commonly
543 used LLM, as illustrated in Fig.

544 4.6.9 Perturbation prediction

s45  The Dong et al. dataset [45] dataset includes immune cells exposed to individual and combinatorial cytokines, with
s46 each cell annotated by type, stimulation, and exposure length — yielding 133 conditions. We retained the 5000 most
547 highly variable genes and evaluated models in the scGPT embedding space [4] using maximum mean discrepancy
s8¢ (MMD), Wasserstein distance, and scFID (Section[4.7). This embedding-based evaluation provides more meaningful
549 comparisons than expression-level metrics, which can be skewed by a small number of genes with extreme values.

s50 The training of C2S models for the Dong et al. dataset followed a structured two-stage process to effectively predict
551 responses to unseen cytokine stimulations. The test dataset featured three tiers of held-out perturbations with increasing
ss2  difficulty: (1) a completely excluded combinatorial perturbation (interferon-3 + IL-6), (2) one perturbation entirely
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553 held out for each cell type across both chronic and acute conditions (B: interferon-III, CD4 T: interferon-y, CD8 T:
s54  interferon-a2, Dendritic: interferon-/3 (no chronic cells), NK: IL-6), and (3) one perturbation excluded in either chronic
555 or acute conditions for each cell type while the other condition remained in training (B: acute interferon-3, CD4 T:
ss6 acute interferon-/3 + interferon-y, CD8 T: chronic TNF-«, NK: chronic interferon-III). In the first stage, the model
557 was fine-tuned using supervised learning on both cell sentence generation and natural language label prediction, where
ss8 it simultaneously predicted all three labels—cell type, perturbation, and exposure—ensuring it learned bidirectional
s59 relationships between conditions and gene expression. This fine-tuning stage was conducted for 3—4 epochs using the
s60 Hugging Face Trainer on a single H100 GPU.

s61  The second stage employed GRPO to refine perturbation response generation. For the Dong et al. dataset, the reward
se2 was computed as the negative mean squared error between generated and ground truth cells, randomly paired under the
563 same condition labels and embedded using scGPT. GRPO training used 32 generated responses and 32 real cells per
se4 prompt, and was conducted on 4 H100 GPUs for 3 epochs. The interferon subset used for GRPO was defined as the
s65 union of the MSigDB [60] interferon-«v and interferon-y hallmark gene sets, intersected with the highly variable genes
se6 (HVGs) from the dataset, resulting in 95 genes.

s67 To benchmark against other perturbation response models, we included scGen, CellOT, and scGPT. For scGen, we
ses used the pertpy library [61] to generate perturbation predictions. For CellOT, we followed the standard procedure
se9  but replaced the encoder with the pretrained encoder from scGen. For scGPT, we added linear encoders for cell type,
570 perturbation, and exposure, projecting binary vectors into dense vectors, and then added these embeddings to each gene
571 token embedding before forwarding them through the model.

s72 For the L1000 dataset [44]], we trained on the 978 landmark genes following quantile normalization. We paired untreated
573 and treated samples by matching the cell line name. To evaluate generalization, we selected 50 perturbations with fewer
s74 than 1,000 total samples and held out half the cell lines in each perturbation as test data. We used Kendall’s 7 as the
575 reward function during reinforcement learning, as it properly accounts for tied ranks. This is especially important for
s76  1.1000 where non-expressed genes share the same lowest rank. SFT was conducted using a batch size of 2 and gradient
577 accumulation of 32, with a learning rate of le-4. Training ran on a single H100 GPU for 3,500 steps (approximately
576 one epoch, though not all data is seen due to dataset size). For GRPO, the model was trained with a batch size of 8§ and
579  gradient accumulation of 4. We generated 24 responses per prompt. The learning rate was set to 1le-6 with a beta value
580 of Se-3. Training was distributed across 4 H100 GPUs—three for model training and one for vLLM-based response
ss1  generation. GRPO ran for approximately 3,000 steps over 3 epochs, although as with SFT, the model likely saw less
ss2 than a full epoch due to data scale.

s83 For evaluation, we computed metrics differently across datasets. For the Dong et al. [45] dataset, we computed
584 maximum mean discrepancy (MMD), Wasserstein distance, and scFID for each unique combination of condition labels
s85  (cell type, cytokine, and exposure duration), and averaged these values across all combinations to obtain the final metric.
sss  For the L1000 dataset [44], we computed Pearson’s 7 against the Level 3 gene expression values and Kendall’s 7 on the
s87  ranks of the gene expression values for each test sample individually and then reported the average across all samples.

sss  Kendall’s 7 measures rank correlation between two ordered lists. Given n genes, we consider all %n(n — 1) possible
589 gene pairs. For any pair of genes (i, 7), if their relative order (which gene is ranked higher) is the same in both the
s90 generated output and the ground-truth ranking, the pair is concordant; if their relative order is reversed, the pair is
s91  discordant. Tied pairs (where the genes share the same rank in either list) are handled by assigning them the same value.
s92  Kendall’s 7 is then defined as

Ne —Ng

B in(n—1)

593 where n. and ng denote the number of concordant and discordant pairs, respectively. In our application, the ranks of the
s94 978 L1000 landmark genes are derived from the generated output of the model, where the cell sentence places genes
s95 in descending expression order (e.g., GeneT GeneA GeneS GeneW ...). Genes not present in the model’s output are
s96 assumed to share the lowest possible rank (e.g., if 950 genes are generated, the remaining 28 share rank 951). The same
597 ranking convention is applied to the L1000 ground-truth sample, where unexpressed genes also share the last rank.
s9s8 Kendall’s 7 is then computed between these two ranked lists, yielding a rank-based correlation that is robust to tied
s99 ranks and sparse expression. Only the apoptosis genes from the MSigDB hallmark set that were present in the L1000
600 landmark gene list were used during GRPO, totaling 40 genes.

601 4.7 Single-Cell Fréchet Inception Distance
602 The scFID is an adaptation of the FID [46] tailored for evaluating generative models in single-cell transcriptomics.

603 While the traditional FID employs the Inception v3 model [62] to extract features from images, scFID utilizes scGPT
604 [4] as its foundation model to embed single-cell gene expression profiles. Notably, scFID is flexible and can incorporate
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605 any suitable foundation model for embedding. The scFID quantifies the similarity between the distributions of real and
e0s generated single-cell embeddings by assuming that these distributions are multivariate normal (Gaussian). Under this
607 assumption, the scFID computes the Wasserstein distance between the two Gaussian distributions, providing a measure
eos of how closely the generated data resembles the real data in the embedding space.

609 Mathematically, given two sets of single-cell embeddings—one from real cells and one from generated cells—scFID is
610 defined as:

1
SCFID = 1y — g3 + tr (3, + 5 = 2(5,5,)?)

611 where:

612 * u, and g are the mean vectors of the real and generated cell embeddings, respectively,

613 * ¥, and X, are the covariance matrices of the real and generated cell embeddings, respectively,
614 * tr denotes the trace of a matrix.

615 To evaluate generative model performance across various conditions, we computed the scFID for each unique com-
616 bination of test labels—such as specific cell types, perturbations, and exposure durations—and then averaged these
617 individual scFID values.

e1e 4.8 Virtual Screen Setup

619 Datasets We analyzed drug responses in both primary tumor samples and an immortalized cell line in order to capture
620 effects across distinct immune environments. The immune-context-positive data comprised bulk RNA-seq from a pan-
621 cancer atlas [63]], which includes 364 tumor specimens spanning 12 cancer types. Cells were sorted by flow cytometry,
622 and we restricted our analysis to the “tumor” compartment, yielding 162 bulk samples. As an immune-context-neutral
623 system, we used the Merkel cell WAGA cell line, as it was not part of the training data for the model. We obtained data
624 from GEO [64], containing 4,199 cells. For the single-cell data, standard preprocessing was applied, including removal
625 of genes expressed in fewer than three cells, removal of cells with fewer than 50 counts, normalization to a total count
626 of 10* per cell, and 1og1p transformation.

627 To quantify type I interferon activity across bulk tumour samples and single cells, we computed a rank-based analytical
628 z-score for a curated interferon-stimulated gene (ISG) set. For each expression profile, all detected genes were ranked
629 by expression level. The mean rank of the ISG set was then compared to the null expectation of randomly distributed
630 ranks using a two-sample Wilcoxon test.

631 Compound library The screening library was derived from the L1000 resource, which catalogs over 30,000 small
632 molecules. Because our goal was to prioritize compounds that could feasibly be validated, we filtered this set using
633 GPT-03 to predict commercial availability. This step produced a working library of 4,266 drugs.

634 Perturbation inference Drug perturbations were simulated using our C2S-Scale perturbation response prediction
635 model. Each bulk tumor sample was perturbed in silico with every drug in the library three times, for a total of N = 486
636 samples per drug. For the WAGA cell line, 20 representative cells were each perturbed 20 times with every drug for a
637 total of N = 400 samples per drug. Replicates corresponded to independent forward passes through the model, with
638 stochastic sampling at a temperature of 0.3 to introduce variability across predictions.

639 Scoring of antigen-presentation programs Antigen-presentation activity was quantified by calculating enrichment
640 scores for each perturbed profile. We applied single-sample gene set enrichment analysis (ssSGSEA) with the “Class I
641  MHC mediated antigen processing and presentation” gene set from MSigDB [60], using the Python package gseapy
642 (v1.1.8) with parameters sample_norm_method=‘rank’ and weight=0. Scores were aggregated across replicates for
s43 each drug and normalized to the interval [—1, 1]. As a complementary metric, we also computed the average log-fold
644 change for HLA-A,B,C, which produced results consistent with ssGSEA (Supplementary Fig. [12).

645 Top-ranked drugs were examined for prior evidence of involvement in antigen-presentation pathways. Manual inspection
e46 was used to flag compounds not previously reported in the literature, and these were prioritized for further analysis.

647 4.9 Experimental Validation of Interferon-Conditional Effects
e48 To validate the interferon-conditional effects predicted in silico, we performed experiments in two tumor-derived cell

649 lines: MDK-knockout WAGA (Merkel cell carcinoma, MCC) and DMS153 (small cell lung cancer, SCLC). Cells
650 (600,000-2,500,000 cells/ml) were treated with Silmitasertib at the indicated concentrations for 24 hours, followed by
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stimulation with 2 U/ml human IFNJ (PBL Assay Science, cat. #11415) or 2 U/ml human IFN~ (PBL Assay Science,
cat. #11500) for an additional 24 hours. In parallel, dose-response assays were performed by titrating IFN/3 across a
range of 0.5-200 U/ml to characterize sensitivity to interferon signaling.

After treatment, cells were harvested and stained for surface expression of major histocompatibility complex class I
molecules HLA-A,B,C (clone W6/32, BioLegend). Live tumor cells were gated using Zombie Aqua fixable viability
dye (BioLegend) to exclude dead cells prior to analysis by flow cytometry using the CytoFLEX S running CytExpert 2.4
(all Beckman Coulter). All assays were performed in three independent biological replicates. For statistical comparisons,
a two-way Brown—Forsythe and Welch ANOVA was applied, followed by Dunnett’s T3 correction for multiple testing.

4.10 Data Availability

A list of HCA and CELLxGENE datasets used for pretraining is provided in Supplementary Table 1. Spatial transcrip-
tomic data for the niche prediction task was obtained from CosMx [32]. Publicly available interaction databases were
acquired from [33} 34, 159]. For the perturbation prediction task we used transcriptomic data from L1000 [44] and from
[45]]. For the virtual screen we used primary tumor data from [63] and cell line data from [64]. Model weights are
available on Hugging Face.

4.11 Code Availability

Code for model training is publicly available at: https://github.com/vandijklab/cell2sentence
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sss 7 Supplementary

g7 7.1 Limitations

gss  7.1.1 Addressing Limitations of Causal Attention in Gene Expression Modeling

ssa  While our approach demonstrates strong empirical performance in modeling single-cell gene expression using autore-
g70  gressive language models, we acknowledge that causal attention’s inherent unidirectionality—favoring high-to-low
g71  gene expression dependencies—could theoretically limit the modeling of true causal biological interactions that flow
g7z from low- to high-expression genes. However, we contend that this constraint does not significantly impede our
873 objectives and can be mitigated through several complementary strategies. First, our approach aligns with successful
874 paradigms from vision-language models, where arbitrary tokenization orders paired with causal attention still achieve
875  state-of-the-art performance [65]]. Similar to hybrid vision architectures that combine causal and non-causal attention
g76 layers, our framework could incorporate indirect bidirectional context through auxiliary reasoning tokens or non-causal
877  gene interactions.

g7e  Multi-cell context and reasoning as a corrective mechanism The model’s reasoning capabilities provide additional
879 corrective potential. Emerging evidence from language modeling demonstrates that explicit reasoning steps can
gso compensate for causal attention limitations [66 167, 68]]. In our context, intermediate tokens representing biological
g8t pathways or gene interactions enable iterative prediction refinement, effectively circumventing strict unidirectionality.
gs2  Furthermore, our multi-cell training framework enables implicit bidirectionality—Ilow-expression genes in one cell can
ss3 influence high-expression genes in the following cell, approximating bidirectional attention across a multi-cell context.

gss« Correlation, not causation It is important to emphasize that our model is designed to capture predictive correlations
e85 over inferring causal gene relationships. This mirrors natural language processing, where autoregressive models
gss successfully capture statistical correlations despite occasional misalignment between word order and true causal
a7 relationships (e.g. passive constructions) [69, [70]. Our results confirm that expression correlations provide sufficient
sss predictive power for key biological analysis tasks.

889 Architectural enhancements Looking forward, we propose three architectural enhancements to further mitigate
g0 this limitation: (1) bidirectional attention by partitioning gene sequences, (2) variable gene ordering during training
go1 to induce order invariance, and (3) hybrid attention architectures blending causal and non-causal attention layers.
go2  While our current approach already demonstrates that sequential modeling of gene expression—despite lacking natural
893 ordering—Ileverages pretrained LLMs without requiring custom architectures, these enhancements aim to further
g4 improve biological fidelity and predictive power.

895 In summary, while causal attention restricts bidirectionality within individual cells, its ability to capture correlations
s9s aligns with our predictive objectives. The combined effects of multi-cell context, reasoning mechanisms, and prospective
97  architectural improvements position this approach as a robust foundation for single-cell analysis, with multiple pathways
gos available for extending its biological fidelity.

se9 7.1.2 Hallucination and Interpretability

900 A known challenge with large language models is their tendency to generate plausible but incorrect outputs, often
901 referred to as hallucinations. While our benchmarking focuses on structured biological tasks with ground-truth labels,
902 more open-ended interpretation tasks—such as abstract generation or cluster captioning—may be susceptible to such
903 errors. Developing domain-specific safeguards, such as biological fact-checking mechanisms or constrained decoding
904 strategies, remains an important direction for improving interpretability and reliability in high-stakes settings.
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Figure 10: C2S allows for conversion from expression information into cell sentence format with minimal information
loss. Using a linear model fitted between rank and original expression, cell sentences can be converted back to
expression accurately.

High-throughput single-nucleus RNA sequencing of over three million nuclei from the
entire adult human brain identified 461 clusters and 3313 subclusters. The analysis
revealed area-specific cortical neurons, diverse midbrain and hindbrain neurons, and
regional diversity in astrocytes and oligodendrocyte precursors. This study provides a
comprehensive understanding of the molecular diversity of the human brain, offering
insights into brain health and diseases.

Single-cell and single-nucleus assays were used to create a detailed atlas of healthy and
diseased kidney cells, identifying rare populations and altered cellular states in kidney
injury. This revealed biological pathways related to chronic kidney disease progression.
The atlas, developed through collaborative efforts, aims to provide a valuable resource for
kidney research.

Single-cell RNA sequencing of glioblastoma cells from four patients revealed genomic and
transcriptomic variations within the tumor. Infiltrating neoplastic cells shared a consistent
gene signature across patients, suggesting a common infiltration mechanism. Additionally,
distinct myeloid cell populations were identified in the tumor core and surrounding
peritumoral space. This study provides detailed insights into GBM cell types, shedding

light on tumor formation and migration.
. J

Figure 11: Example abstract summaries from scRNA-seq datasets collected from CELLxGENE [2]].
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Figure 12: Predicted effects of silmitasertib on MHC-I antigen presentation in immune-context-positive (left) and
immune-context-neutral (right) screens. Each point represents a compound, plotted by the average predicted log-fold
change of HLA-A,B,C versus the corresponding significance level. Silmitasertib is highlighted in red. Results are
consistent with the primary scoring approach using the antigen-presentation gene set (see Methods).
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