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ABSTRACT

Single-cell RNA sequencing has transformed our understanding of cellular diversity, yet current single-1

cell foundation models (scFMs) remain limited in their scalability, flexibility across diverse tasks, and2

ability to natively integrate textual information. In this work, we build upon the Cell2Sentence (C2S)3

framework, which represents scRNA-seq profiles as textual “cell sentences,” to train Large Language4

Models (LLMs) on a corpus comprising over one billion tokens of transcriptomic data, biological5

text, and metadata. Scaling the model to 27 billion parameters yields consistent improvements in6

predictive and generative capabilities and supports advanced downstream tasks that require synthesis7

of information across multi-cellular contexts. Targeted fine-tuning with modern reinforcement8

learning techniques produces strong performance in perturbation response prediction, natural language9

interpretation, and complex biological reasoning. This predictive strength directly enabled a dual-10

context virtual screen that uncovered a striking context split for the kinase inhibitor silmitasertib11

(CX-4945), suggesting its potential as a synergistic, interferon-conditional amplifier of antigen12

presentation. Experimental validation in human cell models unseen during training confirmed this13

hypothesis, demonstrating that C2S-Scale can generate biologically grounded, testable discoveries14

of context-conditioned biology. C2S-Scale unifies transcriptomic and textual data at unprecedented15

scales, surpassing both specialized single-cell models and general-purpose LLMs to provide a16

platform for next-generation single-cell analysis and the development of “virtual cells.”17
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Figure 1: Scaling LLM-based single-cell analysis. A multidimensional expansion of the C2S [14] framework,
demonstrating advances in model capacity, dataset size, multimodality, multi-cell support, and integration across
biological scales, from single cells to organism-wide insights in natural language. This framework bridges computational
innovation with biological discovery, accelerating next-generation single-cell analysis.

1 Introduction18

Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity by enabling19

the profiling of gene expression at single-cell resolution [1]. This technology has generated massive data atlases such20

as CELLxGENE [2] and the Human Cell Atlas [3], offering unparalleled opportunities for computational methods21

to extract biological insights from this data. Recent transcriptomic foundation models (FMs), such as scGPT [4],22

Geneformer [5], scFoundation [6], and scGenePT [7] have shown promise in modeling single-cell transcriptomic data at23

scale. Despite these advances, current models are often limited by custom architectures constrained to scRNA-seq data,24

hindering their scalability to larger model sizes, integration of different data modalities, and ability to perform diverse25

generative and predictive tasks. These limitations restrict the ability of expression-only foundation models to synthesize26

insights across datasets, modalities, and biological contexts, and highlight the opportunity for new approaches that can27

integrate diverse data types, including the rich contextual information contained in biological text and metadata.28

Large Language Models (LLMs) [8, 9, 10] offer a promising solution to these challenges. Widely used in natural29

language processing (NLP), LLMs exhibit consistent performance improvements with scale across diverse downstream30

tasks [11, 12]. Their ability to process vast text corpora and generalize effectively to new applications makes them31

well-suited for addressing the limitations of current expression-only models. Cell2Sentence (C2S) [13, 14] provides a32

framework to leverage LLMs for biology by transforming high-dimensional single-cell data into a textual format. By33

converting scRNA-seq profiles into “cell sentences” – sequences of gene names ordered by expression level – C2S34

positions single-cell data within the LLM framework, providing better scalability and infrastructure advantages than35

specialized model architectures. This data transformation strategy simplifies model development and deployment, and36

enables easy integration of transcriptomic data with diverse modalities, including metadata, experimental conditions,37

and textual descriptions from biological publications.38

Here, we introduce C2S-Scale, a new family of LLMs trained on a multimodal corpus of over 50 million cells and39

associated text. We show that scaling these models up to 27 billion parameters leads to consistent performance40

improvements across a range of predictive and generative tasks (Fig. 1). C2S-Scale’s flexible context allows it to analyze41

cellular interactions and diverse biological information in multi-cell contexts, enabling sophisticated applications from42

predicting perturbation responses to answering complex biological questions. To further enhance the biological accuracy43

of model outputs, we developed refinement techniques with reinforcement learning (GRPO) to align model predictions44
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with key biological objectives. We also introduce a novel metric, single-cell Fréchet Inception Distance (scFID), for45

assessing generative performance.46

To demonstrate this platform’s capacity for novel biological discovery, we programmed a dual-context virtual screen47

designed to find interferon (IFN)-conditional amplifiers of antigen presentation. The screen revealed a pronounced48

context split for the kinase inhibitor silmitasertib, which has not been reported to enhance MHC-I expression. Our49

model predicted a strong effect in the context of low levels of IFN exposure, but no effect in the absence of IFN50

signaling. We validated this prediction in targeted wet lab experiments using neuroendocrine human cell models not51

seen during training.52

By releasing our models and resources, we provide a powerful, open-source platform for next-generation single-cell53

analysis.54

2 Results55

2.1 C2S-Scale: A foundation model for single-cell analysis at scale56

To create a model capable of jointly interpreting transcriptomic data and biological text, we developed C2S-Scale, a57

family of LLMs trained on a large-scale corpus of scRNA-seq data and associated text (Fig. 2). C2S-Scale builds on the58

Cell2Sentence framework [13, 14], which represents single-cell gene expression profiles as textual “cell sentences”:59

lists of gene names ranked by their expression level (Fig. 2B). This representation preserves relative gene expression60

while also allowing the model to leverage its knowledge about genes learned from vast text corpora. The transformation61

from expression to cell sentence representation is reversible with minimal information loss due to the strong relationship62

between relative position and original gene expression [13, 14] (examples provided in Fig. 10).63

Training C2S-Scale consists of two phases: a self-supervised general pretraining phase on our large-scale corpus,64

followed by additional tuning for specific tasks. To assemble the pretraining corpus, we collected over 50 million65

human and mouse transcriptomes from a diverse range of tissues gathered from the CELLxGENE [2] and Human Cell66

Atlas [3] data atlases, along with associated annotations, papers, and metadata. We pretrained C2S-Scale on a variety of67

tasks constructed using samples from the raw corpus, encompassing predictive and generative tasks on both single and68

multi-cell context (Table 1). This allows the LLM to learn to model cell sentences while simultaneously learning to69

follow prompt instructions for common scRNA-seq analysis tasks. During the fine-tuning phase, the pretrained model70

is specialized for a particular task on a new dataset.71

2.2 C2S-Scale demonstrates broad predictive and generative capabilities72

We evaluated C2S-Scale on a diverse spectrum of single-cell tasks, outperforming or matching existing state-of-the-art73

transcriptomic and natural language foundation models (Fig. 3). For traditional single-cell analysis tasks, C2S-Scale74

achieved results competitive with expression-only foundation models such as scGPT [4] and Geneformer [5] on immune75

[15] and lung [16] datasets. For example, on a diverse immune tissue dataset, C2S-Scale predicted cell type annotations76

in natural language with 95.43% accuracy, slightly better than scGPT (93.1%) and Geneformer (94.0%). C2S-Scale77

models also generated rich cell embeddings when given a cell sentence as input, capturing both transcriptional and78

contextual information from natural language. We also construct a multimodal integration task assessing the similarity79

of embeddings of paired single-cell and bulk data. Notably, C2S-Scale could accurately match single-cell profiles80

to their corresponding bulk RNA-seq profiles despite no prior exposure to bulk RNA-seq data, suggesting that C2S81

captures a more biologically meaningful representation of cellular states through cell sentences.82

Beyond these predictive tasks, C2S-Scale supports complex generative and interpretive functions not present in most83

other transcriptomic foundation models. For instance, C2S-Scale accurately predicts cellular transcriptional responses84

to perturbations, even generalizing to combinatorial and previously unseen conditions (described further in Section 2.7).85

Furthermore, when tasked with interpreting scRNA-seq data using natural language, C2S-Scale outperformed even86

leading general-purpose LLMs such as Llama [17, 18], GPT-4o [19] and Gemini [20] at tasks such as generating87

descriptive captions for cell clusters and summarizing entire datasets. Remarkably, C2S-Scale generalizes effectively88

to completely unseen scRNA-seq studies (Fig. 3), demonstrating its interpretive capabilities on completely unseen89

datasets. On question answering in natural language, C2S-Scale outperformed the best public LLM model (GPT-4o) by90

3% in BERTScore, highlighting its answer quality and natural language capabilities. The ability to generate biologically91

meaningful insights in natural language makes C2S-Scale a uniquely powerful and accessible tool for interacting92

with and interpreting single-cell data. Detailed description of each task and evaluation methodology can be found in93

Section 4.94
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Figure 2: C2S-Scale bridges scRNA-seq data and natural language by training LLMs to perform single-cell analysis
tasks on diverse, multimodal data. (A) A multimodal corpus of over 50 million human and mouse transcriptomes is
gathered from public data atlases, encompassing cellular expression from a diverse range of tissues, textual annotations,
papers, gene sets, and disease labels from scRNA-seq studies. (B) C2S rank-orders genes by expression and converts
them to natural language “cell sentences”, leveraging powerful LLM architectures without the need for custom
modifications. (C) C2S supports diverse downstream use cases, including perturbation prediction, generative tasks, and
advanced biological reasoning tasks such as question answering.

Taken together, these results show that C2S-Scale is a uniquely versatile tool. It is the only model to our knowledge95

capable of spanning this entire range of single-cell analysis tasks, including prediction, generation, and natural language96

reasoning. This positions C2S-Scale as a comprehensive platform for next-generation biological discovery.97

2.3 Scaling enhances the biological reasoning capabilities of C2S-Scale98

A central principle of modern LLMs is that their performance improves predictably with increased scale [11, 12]. We99

analyzed the performance of C2S-Scale at a range of model capacities to test whether similar effects exist for LLMs in100

single-cell analysis. Our results show that similar scaling laws emerge when LLMs are trained on natural language101

representations of transcriptomic data: as model size increased from 410 million to 27 billion parameters, we observed102

consistent performance improvements across diverse biological tasks, including cell type annotation, tissue inference,103

and conditional cell generation (Fig. 4C).104
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Figure 3: C2S-Scale outperforms both transcriptomic and natural language foundation models across diverse predictive
and generative single-cell tasks. Tasks include standard single-cell analysis tasks such as cell type annotation (red) and
cell embedding (green), a generative perturbation response prediction task (orange), and natural language interpretation
tasks including cluster captioning, dataset interpretation, and question answering tasks (blue). Raw performance
numbers are available in the Supplement. C2S-Scale is the only model capable of spanning the entire range of single-
cell analysis tasks, and demonstrates competitive performance on all tasks.

These scaling trends were consistent in both fully fine-tuned and parameter-efficient training regimes where only a105

fraction of model parameters were trained (Fig. 4D). Furthermore, for a fixed model size, performance also scaled with106

the amount of training data seen by the model (Fig. 4E). Together, these results establish that increasing both model and107

dataset size is a reliable strategy for enhancing the biological reasoning capabilities of cellular language models. This108

suggests that the full potential of this approach has not yet been reached and that future, larger models may yield even109

greater biological insights.110

2.4 Interpreting single-cell data across biological scales using natural language111

Natural language interpretation is an underexplored aspect of single-cell analysis, enabling researchers to bridge112

experimental scRNA-seq data with existing biological literature and providing a user-friendly tool for biologists to113

interact with and interpret their data. Existing LLM-based single-cell models such as GenePT [21] and scGenePT [7]114

offered limited integration of natural language and single-cell data, focusing primarily on using language embeddings115

in single-cell architectures and tasks. C2S-Scale bridges large-scale training on transcriptomic data with the natural116

language pretraining and generative capabilities of LLMs, enabling natural language interpretation of scRNA-seq data117

at multiple scales of biology, illustrated in Fig. 5A.118

We benchmark C2S-Scale on a series of natural language interpretation tasks at various scales of biology, evaluating119

its ability to reason about and generate meaningful descriptions about data. At the individual cell level, C2S-Scale is120

able to accurately annotate cell types in natural language given cell sentences as input. The model is first fine-tuned121

on a diverse immune tissue dataset [15] to predict cell type labels in natural language. C2S-Scale is able to correctly122

classify almost all cell types on a held-out partition of the immune tissue data (Fig. 5B), demonstrating C2S-Scale’s123

effectiveness at standard single-cell analyses.124

At the cluster level, we introduce a novel task called Cluster Captioning, where the goal is to generate biologically125

meaningful descriptions for groups of cells from the same tissue and batch within a scRNA-seq dataset. To create126

training data for this task, we use GPT-4o [19] to generate natural language captions for cell clusters derived from127

annotated datasets (Methods Section 4.6). C2S-Scale is fine-tuned to predict these captions given multiple input cell128

sentences from each cluster and is evaluated on held-out clusters not seen during training. Performance is measured129

using BioBERTScore [22], which quantifies semantic similarity between generated and ground-truth captions. As130
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Figure 4: Cell2Sentence demonstrates consistent scaling in performance with increasing model capacity across diverse
single-cell analysis tasks. (A) Examples of predictive and generative tasks on single-cell data. (B) Natural language
prompts and responses for tasks in (A), colored by expression generation (red), predictive (blue), and language generation
(green) tasks. (C) Performance scaling of fully fine-tuned C2S models on cell type annotation, dataset interpretation,
and conditional sample generation tasks. (D) LoRA fine-tuned C2S-Scale-2B and 27B models demonstrate performance
scaling with increased model capacity in the parameter-efficient regime. (E) Performance scaling by number of training
samples seen by C2S-Scale-27B.
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Figure 5: C2S-Scale enables natural language interpretation of scRNA-seq data at multiple scales, from single cells to
entire datasets. (A) Different scales of biological data interpretation, from single cells to organism and dataset-level
annotation. (B) Ground truth and predicted cell types for immune cells extracted from 16 different tissues of adult
human donors [15], demonstrating the ability of C2S-Scale to annotate data at the single-cell level. (C) Cluster
captioning performance on unseen scRNA-seq data clusters. Models are given multi-cell context from unseen data
clusters and tasked with captioning the data, measured by BERTScore. (D-E) Performance of C2S-Scale models on
natural language interpretation of entire scRNA-seq datasets on held-out cells and held-out studies. Error bars represent
standard deviation across test set samples.

shown in Fig. 5C, C2S-Scale outperforms all baseline LLMs on this task, demonstrating its ability to interpret and131

summarize expression patterns at the cluster level.132

At the dataset level, we further evaluate interpretive ability through a Dataset Interpretation task, where the model133

receives multiple cell sentences from a scRNA-seq dataset and is tasked with generating a high-level summary in the134

style of a biological abstract. These summaries are expected to describe key features of the dataset, including dominant135

cell types, tissues, disease states, or perturbations (examples provided in Fig. 11). Fig. 5D shows that C2S-Scale136

achieves the highest BERTScore among all evaluated models, including Llama [17, 18, 23], Meditron [24], BioMistral137

[25], Gemini [20], and GPT-4o [19]. Notably, C2S-Scale generalizes well to entirely unseen datasets, producing138

summaries that remain relevant and informative (Fig. 5E), highlighting its robust natural language understanding of139

scRNA-seq data.140

Overall, C2S-Scale enables natural language interpretation at multiple scales, spanning single cells, clusters, and141

datasets. Its ability to integrate textual and biological data unlocks new opportunities for biologists to explore, annotate,142

and generate insights from scRNA-seq data in natural language.143

2.5 C2S-Scale Learns Spatial Reasoning from Multi-cell Context and Interaction Data144

Understanding spatial organization in tissues is fundamental to uncovering the mechanisms that govern cellular145

interactions, particularly in how they drive disease progression and tissue homeostasis [26, 27, 28]. Cellular niches,146

defined by their specific cell types, signaling molecules, and extracellular matrix components, play a crucial role in147

regulating these processes. Accurately predicting spatial relationships among cells from transcriptomic data alone148

is challenging, as traditional approaches often rely on explicitly structured spatial models or predefined interaction149

networks [29, 30, 31].150
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Figure 6: C2S-Scale can interpret multi-cellular spatial context and predict niche neighborhoods. (A) We fine-tune
C2S-Scale on a variety of single and multi-cellular spatial tasks designed to enable C2S-Scale to perform spatial
reasoning, including predicting niche labels, generating spatial neighbors, and identifying whether cells belong to
the same neighborhood or niche. A “neighborhood” is defined to be cells within a fixed radius from a central cell.
(B) We use publicly available gene interaction databases including BioGRID and CellPhoneDB to construct natural
language interaction prompts about gene interactions. To maximize relevance, BioGRID is filtered to include only
genes expressed in the CosMx dataset and restricted to extracellular proteins. (C) C2S outperforms scGPT and
GPT-4o in spatial neighborhood identification accuracy. Additionally, integrating gene interactions from BioGRID and
CellPhoneDB individually improves performance, and their combination provides the greatest improvement (* = P <
0.05, ** = P < 0.01; McNemar’s test). These results highlight the multi-task transfer learning potential of C2S-Scale for
spatially-aware biological modeling.

Although C2S-Scale was not explicitly designed for spatial reasoning, its ability to incorporate multi-cellular context151

provides a natural mechanism for modeling spatial organization. We hypothesize that by sampling and encoding cells152

from shared neighborhoods, C2S-Scale can infer spatial relationships without requiring architectural modifications.153

To test this, we evaluate the model’s performance in predicting spatial neighborhoods using a human liver spatial154

RNA-seq dataset [32]. Additionally, we simultaneously train C2S-Scale on related tasks aimed at improving its spatial155

understanding: niche label prediction, neighbor cell generation, and determining whether multiple cells belong to the156

same niche (Fig. 6A). By training on these complementary tasks, C2S-Scale learns robust representations of spatial157

organization, significantly outperforming both scGPT and GPT-4o in neighborhood prediction (Fig. 6C).158

We further hypothesize that incorporating external biological knowledge – specifically, gene interaction networks – can159

enhance spatial reasoning. Receptor-ligand and other protein-protein interactions are central to cell-cell communication,160

yet many scFMs are unable to integrate this information. Instead of imposing predefined rules, we simply expose161

C2S-Scale to receptor-ligand interactions from CellPhoneDB [33] and protein interaction data from BioGRID [34],162

formatted as natural language prompts (Fig. 6B). This approach allows the model to implicitly integrate prior knowledge163

while maintaining flexibility in how it applies this information.164

Fine-tuning with gene interaction data further improves C2S-Scale’s ability to predict spatial relationships, reinforcing165

the hypothesis that external molecular context enhances spatial reasoning (Fig. 6B). Notably, adding either CellPhoneDB166

or BioGRID data individually improves performance, demonstrating that both receptor-ligand and protein-protein167

interaction knowledge contribute to spatial reasoning (Fig. 6C). Moreover, combining both datasets results in the168

greatest improvement, suggesting that integrating diverse biological interaction sources allows LLMs to develop a169

richer understanding of multi-cellular organization and interactions.170

A key advantage of C2S-Scale is its ability to integrate diverse data sources without requiring explicitly structured171

incorporation of external knowledge. Unlike traditional methods that rely on predefined pathways or manually curated172

interaction models, C2S-Scale implicitly learns to incorporate relevant information during training. This highlights a173

fundamental strength of C2S: rather than designing bespoke architectures for specific tasks, we can provide relevant174
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Figure 7: C2S-Scale demonstrates superior single-cell question answering performance compared to state-of-the-art
(SOTA) LLMs. (A) Example QA scenario based on scRNA-seq data. (B) Overview of the GRPO framework [35],
which further refines model performance by training on preference data. (C) Empirical comparison of C2S-Scale and
SOTA LLMs on single-cell QA tasks, highlighting C2S-Scale’s advantage in domain-specific reasoning. Error bars
represent standard deviation across test set QA samples.

data, and the model autonomously determines how to utilize it. This capability extends beyond spatial reasoning and175

suggests broad applicability for integrating multimodal biological data.176

2.6 Single-Cell Question Answering (QA) through Reinforcement Learning177

QA tasks form a core part of NLP, providing a standard test to measure a model’s ability to understand information and178

apply reasoning [36, 37, 38, 39]. In biomedical research, QA tasks are particularly valuable for assessing advanced179

reasoning in domain-specific contexts, as evidenced by the development of numerous specialized QA datasets for180

medical [40, 41] and biological [42] applications. Building on this foundation, we introduce a single-cell Question181

Answering (scQA) task to assess the ability of foundation models to reason about and interpret single-cell transcriptomic182

data.183

The scQA dataset consists of two thousand question-answer pairs, each containing: (i) an associated biological context,184

(ii) relevant scRNA-seq data sampled from clusters or cell type annotations, (iii) a main question, and (iv) a final answer.185

Additionally, each answer is annotated with keywords to help evaluate response quality. To construct the dataset,186

we sample cells from scRNA-seq datasets, provide the sampled data along with associated biological manuscripts to187

GPT-4.5 [19], and prompt it to generate meaningful questions (Fig. 7A).188

After supervised fine-tuning (SFT), C2S-Scale surpasses the performance of state-of-the-art LLMs on scQA (Fig. 7C),189

demonstrating the advantages of specialized training on transcriptomic data paired with natural language. To further190

improve C2S-Scale’s question answering capabilities, we employ Reinforcement Learning (RL) [43] through Group191

Relative Policy Optimization (GRPO) to further optimize the model to generate preferred responses to questions192

(Fig. 7B). By using BioBERTScore as the reward function, we guide C2S-Scale toward producing higher-quality193

answers aligned with biological insights. Following GRPO training, C2S-Scale significantly outperforms the SFT194

baseline on the scQA dataset, highlighting the potential of RL techniques to optimize LLMs for specialized single-cell195

applications.196
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2.7 Perturbation Response Prediction197

Single-cell foundation models offer remarkable opportunities for conducting large-scale virtual perturbation experiments198

that would otherwise be infeasible or prohibitively expensive in a laboratory setting. Here, we demonstrate C2S-Scale’s199

generalization capabilities across unseen perturbations and cellular contexts, along with its broad applicability for200

modeling perturbation responses (Fig. 8A).201

Training proceeds in two stages (Figure 8C): supervised fine-tuning (SFT) to predict gene-expression profiles of202

untreated cells—including L1000 cell lines—under specified perturbation conditions, followed by online reinforcement203

learning with GRPO [35] that optimizes biologically relevant objectives. We designed the reward function to prioritize204

the accurate prediction of key gene programs of interest. This includes apoptosis for L1000 [44] and interferon response205

for Dong et al. [45]. Concretely, the reward is computed over these targeted gene subsets (Figure 8F), which focuses206

optimization while preserving full-profile generation and improves out-of-distribution generalization (Figure 8G).207

We introduce a new metric, scFID (Fig. 8B), an adaptation of the FID metric [46] widely used in computer vision to208

evaluate the realism of generated images. scFID adapts the FID metric by replacing the Inception-v3 model with a209

single-cell foundation model to embed transcriptomic data, enabling evaluation of generated cells in a representation210

space aligned with biological structure and functional gene programs. By assessing differences in this embedding space211

rather than at the level of individual genes, scFID captures higher-order variation across cell states, yielding stable212

model rankings (Fig. 8E) and aligning with distributional similarities evident in cell-state embeddings (Fig. 8D), while213

complementing expression-level metrics such as Kendall’s τ and Pearson’s r (Fig. 8G).214

C2S-Scale outperforms existing methods on the Dong et al. dataset, accurately predicting responses to unseen cytokine215

perturbations on entire gene expression profiles. It generalizes to novel combinations of cell type, cytokine, and exposure216

duration, highlighting its ability to transfer to completely new contexts not seen during training (Fig. 8E). Compared to217

baselines, C2S-Scale performs best on fully unseen combinatorial perturbations, capturing nonlinear synergistic effects.218

Quantitative results (Fig. 8F) show superior MMD, Wasserstein, and scFID scores relative to competing models. GRPO219

further reduces scFID on interferon-related genes by 16%, thereby improving biological fidelity on immune pathways220

(Fig. 8G).221

The L1000 results further underscore C2S-Scale’s versatility in modeling perturbation responses across single-cell222

and bulk transcriptomic data. We evaluate performance on apoptosis-related genes, focusing on generalization to223

unseen compound treatments. Applying GRPO yields consistent gains (Fig. 8G), improving Kendall’s τ by 9.2%224

for the 410M model and 4.9% for the 1B model, and Pearson’s r by 6.6% for the 410M model and 3.6% for the 1B225

model. Rewards are defined on phenotype-linked gene programs (e.g., apoptosis in L1000 [44] and interferon response226

[45]; Fig. 8F), which yields context-aware scores well suited for virtual screening and candidate prioritization, while227

preserving full-profile prediction and enhancing out-of-distribution generalization (Fig. 8G).228

2.8 Immune-context virtual screening reveals a cytokine-conditional amplifier of antigen presentation229

A differentiating feature of C2S-Scale is its ability to connect complex transcriptional states across diverse biological230

contexts. To test whether C2S-Scale can uncover context-dependent determinants of immune visibility, we programmed231

a dual-context in-silico screen that predicts drug effects on MHC-I antigen-presentation programs in immune-context-232

positive versus immune-context-neutral cytokine signaling settings. Leveraging its demonstrated strength in perturbation233

response prediction, the model identified silmitasertib, a CK2 inhibitor, as one of the top candidates with a pronounced234

context split: a strong predicted increase in antigen-presentation programs in the immune-context-positive condition of235

low-level interferon (IFN) signaling (Fig. 9B; other drugs known to upregulate MHC-I highlighted in blue), but little236

to no effect in the neutral condition (Fig. 9C). We selected low-level IFN signaling as a tissue-specific regulator of237

immunity that is frequently present, but insufficient to drive maximal antigen presentation. We reasoned that enhanced238

antigen presentation in this context has the potential to drive increased T cell recognition, further IFN production, and239

positive feedback.240

Our results were notable because silmitasertib has not been reported in the literature to enhance MHC-I expression,241

highlighting the novelty of both the effect itself and its context dependence. We confirmed that interferon response,242

quantified by a rank-based score for an interferon-stimulated gene set, was elevated in the immune-context-positive243

sample, but negligible in the neutral sample (Fig. 9D). Based on both the model’s predictions and the known role244

of interferons in MHC-I regulation, we hypothesized that the compound acts as an interferon-conditional amplifier,245

lowering the response threshold to interferon rather than initiating antigen presentation de novo (Fig. 9E).246

We validated this hypothesis in two human neuroendocrine cell models that were completely unseen in C2S-Scale’s247

training data. In the first model (Merkel cell origin), silmitasertib alone did not alter HLA-A,B,C surface levels, whereas248

the combination of low-dose IFN-β and silmitasertib produced a marked increase in MHC-I mean fluorescence intensity249
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Figure 8: C2S-Scale models outperform existing methods in predicting cellular responses to unseen perturbations. (A)
Overview of the C2S-Scale perturbation prediction framework, which supports diverse perturbation types including
drugs, cytokines, and genetic knockouts. (B) Diagram of the scFID metric, computed in foundation model latent space,
analogous to FID in computer vision. (C) Prompt and response example for perturbation prediction. (D) UMAPs
comparing predicted vs. ground-truth responses for unseen perturbations across four models. Rows show: (1) all
combinatorial perturbations, (2) CD4 T cells under IFN-γ, (3) B cells under the held-out IFN-β + IL-6 stimulation.
C2S-Scale aligns closely with ground truth in all cases. (E) Benchmark metrics show C2S-Scale outperforms scGen,
scGPT, and CellOT across all evaluation criteria. (F) GRPO framework for perturbation prediction: models generate
perturbed responses and receive rewards based on gene program similarity. (G) GRPO improves over SFT on L1000
(apoptosis response) and cytokine stimulation (interferon response) tasks, with gains in Kendall’s τ , Pearson’s r, and
scFID.
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(MFI) (Fig. 9F; 13.6% increase MHC-I MFI at 10nM and 34.9% at 1000nM). The amplification effect generalized250

across interferon subtypes (IFN-γ, Fig. 9G; 24.9% increase MHC-I MFI at 10nM and 37.3% at 300nM) and was251

reproduced in a second, independent human cell model (pulmonary origin, Fig. 9H; 17.1% increase MHC-I MFI at252

10nM and 28.1% at 100nM). Notably, neuroendocrine cells were minimally represented in the training data for our253

model, with no representation of Merkel cells at all.254

This discovery of a novel cytokine-conditional amplifier of antigen presentation demonstrates C2S’s ability to perform255

high-throughput virtual screens to identify promising therapeutic candidates to validate experimentally. Additionally, it256

illustrates how C2S can reveal context-conditioned biology that is missed in context-neutral assays.257

3 Discussion258

Although artificial intelligence approaches including neural network models have achieved significant breakthroughs in259

protein structure and the prediction of molecular interactions, less progress in modeling multi-cellular tissues, pathologic260

states, and context-specific biology has been made. Principal challenges in this space include the underlying diversity,261

complexity, and pleiotropy of biological systems, which compounds across hierarchical organization from genes to262

transcriptional programs, and cells to tissues to organisms. Indeed, the semantic complexity and contextuality of263

biological systems seems unrivaled–outside of language itself. Our work introduces C2S-Scale, a family of LLMs for264

single-cell analysis that leverages the benefits of state-of-the-art LLMs out of the box. By converting transcriptomic265

profiles into “cell sentences,” C2S-Scale avoids the need for bespoke model architectures while readily integrating266

contextual information from annotations, metadata, and biological texts. This data engineering paradigm yields a267

flexible system capable of predictive and generative single-cell tasks, and our results demonstrate that scaling C2S-Scale268

up to 27 billion parameters systematically boosts performance, mirroring similar scaling phenomena observed in the269

broader field of NLP.270

Moreover, we show that C2S-Scale bridges the gap between raw transcriptomic information and natural language-271

based interpretation by supporting tasks at multiple scales, ranging from cell type annotation to entire dataset-level272

summarization. We propose new evaluation datasets for these interpretation tasks and demonstrate that LLMs trained in273

the C2S-Scale framework provide meaningful captions and summarizations of single-cell data, even in cases where274

the dataset is completely new to the model. By aligning expression data with rich textual metadata and biological275

domain knowledge, our approach highlights the potential of language-based modeling to offer biologically informed276

explanations and generate insights unavailable to purely expression-only systems.277

Context-specific decoding is a core task for both LLMs and biological systems alike. To test the ability of C2S-Scale278

to derive context-specific biological meaning, we conducted a conditional virtual screen, identifying an IFN-specific279

regulator of antigen presentation. We validated the effectiveness of silmitasertib in neuroendocrine Merkel cell and280

pulmonary cell models in which the downregulation of antigen presentation machinery is a well-established mechanism281

of resistance to immunotherapies. This success provides a blueprint for future screens targeting other complex biological282

contexts.283

We anticipate that higher-capacity models and more diverse training corpora will unlock advanced capabilities, such284

as the integration of epigenomic, proteomic, and clinical data into a single multimodal model. In parallel, increasing285

transparency and explainability in LLM decision making will be essential for building trust and accelerating adoption of286

these tools in single-cell research. Reinforcement Learning and other innovations in LLM alignment will provide a path287

forward for aligning LLMs to preferred responses in the context of biological tasks. By directly linking natural language288

and transcriptomic data, C2S sets the stage for transformative innovations in biological discovery and personalized289

medicine.290

4 Methods291

The following section details the data collection, processing, and formatting for multi-task samples, as well as the model292

architecture for Large Language Models.293

4.1 Data Collection294

To construct the C2S-Scale pretraining corpus, we assembled over 50 million single-cell transcriptomic profiles from295

human and mouse tissues. Datasets were obtained from established public repositories, including the CELLxGENE [2]296

and Human Cell Atlas [3] data portals, and span a wide range of tissues, disease states, and experimental conditions.297

Each dataset was accompanied by author-provided metadata, such as cell type and tissue annotations, donor information,298
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Figure 9: Immune-context virtual screening identifies a cytokine-conditional amplifier of antigen presentation. (A)
Schematic of a dual-context virtual screen that predicts drug effects on immune visibility (MHC-I program) in
immune-context-positive (primary human samples with endogenous interferon signaling) versus immune-context-
neutral (isolated cell) settings. (B) Ranked predictions in the immune-context-positive screen nominate silmitasertib, a
CK2 inhibitor, among top candidates to increase antigen-presentation programs (highlighted in red). Selected positive
controls known to upregulate MHC-I are highlighted in blue. (C) Silmitasertib shows a context split, with a strong
predicted effect in the immune-context-positive setting and negligible effect in the immune-context-neutral setting. (D)
Interferon response was quantified by a rank-based score of a curated interferon-stimulated gene set (see Methods).
Each point is one sample; bars = mean±SEM; ****, P < 0.0001 (Wilcoxon test). (E) Hypothesis: the compound is
an interferon-conditional amplifier that lowers the response threshold for STAT1/IRF1 and thereby amplifies MHC-I
upregulation. (F) Experimental validation in an unseen cell type shows no effect of CK2 inhibition alone and marked
HLA-A,B,C upregulation in the presence of low-dose IFN-β (n=3 independent experiments; points = replicates; bars =
mean±SD.; two-sided tests with multiple-comparison correction). (G) The amplification holds with IFN-γ, indicating
robustness across interferon subtypes. (H) The same interferon-conditional amplification is observed in a second,
independent human cell model, supporting generality.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2025. ; https://doi.org/10.1101/2025.04.14.648850doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.14.648850
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - OCTOBER 10, 2025

developmental stage, and associated study identifiers. Where available, supplementary textual resources, including299

paper abstracts and study descriptions, were also retained.300

Raw scRNA-seq data were processed using standard preprocessing pipelines, including quality control, library size301

normalization, and log-transformation, following established conventions [47]. For each dataset, the transcriptomic302

profiles were converted into cell sentences, and the accompanying annotations were preserved to construct natural303

language prompts. This resulted in a multimodal corpus linking expression profiles with textual descriptors of biological304

context. A complete list of datasets included in the corpus is provided in Supplementary Table 1.305

4.2 Cell Sentence Transformation306

To adapt high-dimensional single-cell gene expression data into a format compatible with natural language processing,307

we converted expression profiles into textual representations termed “cell sentences.” For each cell, let X ∈ RD be the308

expression vector, where Xk denotes the normalized expression value of gene k in that cell. The cell sentence for X is309

constructed by rank-ordering the genes within a cell by their expression levels and taking the K most highly expressed310

genes. If S is a list of indices from 1 to D sorted in descending order based on expression level in X , then311

cell sentence(X) := “gene(S[1]) gene(S[2]) . . . gene(S[K])”.

The gene names are in natural language, forming a sentence interpretable by language models (exemplified in Fig. 2).312

Under this framework, there is no need to extend or modify the vocabulary of the language model, and it allows any313

LLM architecture to tokenize gene names according to their existing vocabulary. This has two primary benefits: (i)314

by avoiding architectural modifications, the C2S framework is immediately applicable to any LLM architecture or315

innovation, and (ii) the LLM is able to recognize gene names and associate prior knowledge about that gene obtained316

during self-supervised pretraining on natural language data, which has been shown to be significant for large-scale317

pretrained LLMs [21].318

The cell sentence transformation into textual sequences retains the underlying biological information by preserving319

the rank-order of gene expression. We find there is a strong linear relationship (in log space) between a gene’s rank in320

the cell sentence and the (normalized) expression level, validating the fidelity of this transformation. This relationship321

is shown in Supplementary Fig. 10 for two scRNA-seq datasets. A linear model fitted between rank and original322

expression can predict the original gene expression values given a gene’s rank with R2 = 0.85, demonstrating that323

minimal information is lost during conversion to cell sentences. This interchangeability allows us to utilize the strength324

of LLMs in natural language processing while retaining the ability to convert back to gene expression vectors for325

traditional single-cell analysis methods. The parameters of the linear model for each scRNA-seq dataset used during326

training are saved to enable reversible transformation from cell sentences back to expression values during inference.327

4.2.1 Multi-Task Prompt Formatting.328

C2S-Scale was designed to operate in natural language, enabling a broad range of predictive and generative tasks329

in single-cell analysis. These tasks include cell type and tissue annotation, multi-cell generation, and dataset-level330

interpretation. The complete list of pretraining tasks, together with their inputs and outputs, is provided in Table 1.331

Prompts were constructed by combining the cell sentence representation of one or more cells with task-specific natural332

language instructions. For predictive tasks, the input prompt included a cell sentence and an instruction, and the output333

corresponded to the metadata label of interest. For example, in the cell type annotation task, the input consisted of the334

cell sentence and the instruction “Predict the cell type of this cell”, and the output was the corresponding cell type label.335

For generative tasks, this structure was inverted: metadata conditions were provided in the input prompt, and the model336

was trained to generate one or more cell sentences in response.337

Metadata included in natural language prompts encompassed cell type, tissue annotations, perturbation conditions,338

disease states, and text from associated studies or abstracts, thereby providing additional biological context. This339

framework enables C2S-Scale to interpret instructions, integrate biological knowledge, and generalize across diverse340

applications.341

4.3 C2S-Scale architecture and pretraining342

4.3.1 Input representation343

C2S-Scale employs large language models (LLMs) based on the Transformer architecture [8] to model cell sentences in344

natural language. Input sequences are represented as high-dimensional embeddings suitable for processing by neural345

networks. Each word in a cell sentence corresponds to a gene name, which is first tokenized using the pretrained346
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tokenizer associated with the backbone model. This approach avoids the introduction of new vocabulary and maintains347

compatibility with the LLM’s pretraining knowledge.348

Tokenized gene names are mapped into vector representations through an embedding layer trained alongside the model.349

These embeddings capture semantic properties of genes informed both by their biological context and by the pretrained350

model’s prior knowledge. Positional encodings are added to preserve the rank order of genes within each cell sentence,351

allowing the model to learn dependencies across expression-ranked sequences.352

4.3.2 Attention mechanism353

The central component of the Transformer is the self-attention mechanism [48, 8], which enables the model to compute354

pairwise relationships between tokens. For single-cell tasks, this allows the model to dynamically prioritize genes that355

are most informative for a given context, such as lineage-defining markers for classification or perturbation-responsive356

genes for prediction. The attention mechanism also extends naturally to metadata tokens (e.g. cell type, tissue, disease357

state), enabling the model to integrate gene expression with contextual information in a shared representation.358

4.3.3 Model architecture359

C2S-Scale adopts a decoder-only Transformer design [19], chosen for its capacity to model sequential data and support360

generative tasks. The architecture consists of a stack of Transformer blocks, each containing a multi-head self-attention361

layer followed by a position-wise feedforward network. Residual connections and layer normalization are applied362

throughout to stabilize optimization and facilitate scaling to billions of parameters. This modular structure allows the363

model to capture long-range dependencies in gene expression data while remaining computationally efficient.364

4.3.4 Pretraining objective365

The model is pretrained with a next-token prediction objective [49], in which the model learns to predict the next366

token in a sequence given all preceding tokens. Applied to cell sentences, this involves predicting the next gene in the367

rank-ordered expression list, optionally conditioned on metadata tokens. This autoregressive formulation encourages368

the model to capture the hierarchical organization of gene expression programs and to integrate biological context369

during generation.370

In contrast to masked-token objectives such as those used in Geneformer [5], which predict randomly masked genes371

in non-linguistic sequences, the autoregressive objective aligns naturally with downstream generative applications.372

Training the model in this way conditions it to produce coherent, biologically meaningful outputs for tasks such as cell373

generation, dataset-level interpretation, and question answering.374

4.3.5 Training Setup375

Pretraining was carried out on the C2S-Scale corpus of more than 50 million single-cell transcriptomes with associated376

metadata and textual annotations. A multi-task learning framework was used to jointly optimize across the pretraining377

tasks described in Table 1, enabling the model to integrate transcriptomic and contextual information.378

The C2S-Scale 410M-parameter and 1B-parameter models were trained on one Nvidia A100/H100 GPU with the379

Transformers library (version 4.46.3) [50] and PyTorch (version 2.4.1) [51] on a High Performance Computing (HPC)380

cluster running Red Hat Enterprise Linux release 8.10. Models larger than 1B parameters were trained on 256 TPU v4s381

using the Jax library. We used a starting learning rate of 1e-5 with linear decay and weight decay of 0.01.382

4.4 Scaling Evaluation383

To evaluate scaling behavior in C2S-Scale models, we benchmarked models ranging from 410 million to 27 billion384

parameters, based on the Gemma 2 [52] and Pythia [53] architectures. We assessed performance on a held-out set of 500385

test samples spanning multiple single-cell tasks listed in Table 1, including cell type annotation, dataset interpretation,386

and conditional sample generation tasks. Both fully fine-tuned and LoRA fine-tuned variants [54] were evaluated to387

assess scaling behavior under different computational budgets.388

Performance was measured using BERTScore [22] between generated and reference outputs for predictive tasks such as389

cell type annotation and dataset interpretation, providing a semantic measure of response quality. Let the reference390

output be x = ⟨x1, . . . , xk⟩ and the generated output be x̂ = ⟨x̂1, . . . , x̂l⟩, where tokens are represented by contextual391

embeddings. Pairwise similarity between tokens is given by the cosine similarity s(xi, x̂j) =
x⊤
i x̂j

∥xi∥∥x̂j∥ . BERTScore392

recall, precision, and F1 are then defined as393
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Table 1: Pretraining task inputs and outputs for C2S-Scale multi-task training. For multi-cell tasks, multiple cells are
sampled from the same donor sample with the same tissue label.

Task name Type Input information Target output Metric

Single cell language modeling Single-cell – Single cell sentence Overlap %
Cell type annotation Single-cell Single cell sentence Cell type BertScore
Conditional cell generation Single-cell Cell type of one cell Single cell sentence Overlap %
Multiple cell language modeling Multi-cell – Multiple cell sentences Overlap %
Tissue sample annotation Multi-cell Multiple cell sentences Tissue label BertScore
Sample cell type(s) annotation Multi-cell Multiple cell sentences Cell types of multiple cells BertScore
Conditional sample generation (tissue) Multi-cell Tissue annotation Multiple cell sentences Overlap %
Conditional sample generation (cell type) Multi-cell Cell types of multiple cells Multiple cell sentences Overlap %
Conditional sample generation (abstract) Multi-cell Paper abstract Multiple cell sentences Overlap %
Natural language interpretation Multi-cell Multiple cell sentences Paper abstract BertScore
Gene set enumeration Gene set Gene set name List of genes in gene set Overlap %
Gene set naming Gene set List of genes in gene set Gene set name BertScore

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

s(xi, x̂j), PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

s(xi, x̂j),

FBERT =
2PBERT RBERT

PBERT +RBERT
.

This formulation captures semantic similarity even when exact lexical matches are absent. Unless otherwise noted, all394

reported BERTScore values correspond to the F1 variant.395

For generative tasks such as conditional cell generation, we evaluated outputs by measuring gene overlap between396

generated and target cell sentences. This metric captures the proportion of ground truth genes recovered in the generated397

output, providing a direct measure of transcriptomic fidelity. Let Gref denote the set of genes in the reference cell398

sentence and Ggen the set of genes in the generated cell sentence. Gene overlap is defined as399

Overlap(Ggen, Gref) =
|Ggen ∩Gref |

|Gref |
.

4.5 Post-training methods400

4.5.1 Supervised fine-tuning401

C2S-Scale was adapted to downstream applications through supervised fine-tuning on labeled datasets. Fine-tuning402

used the same autoregressive next-token prediction objective as pretraining, with prompts formatted to match each task.403

For example, a prompt might consist of a cell sentence followed by the instruction “Predict the tissue of origin for this404

cell:”, and the model was trained to output the corresponding metadata label.405

Parameter-efficient strategies were used to limit overfitting and reduce compute cost. Low-Rank Adaptation (LoRA)406

and lightweight adapter layers updated only a small subset of parameters, while the majority of pretrained weights407

remained frozen. This design allowed rapid task-specific adaptation with modest data requirements.408

4.5.2 Reinforcement learning alignment409

Reinforcement learning (RL) was used to further align model outputs with biological accuracy and interpretability. We410

employed Group Relative Policy Optimization (GRPO), a policy-gradient method that incorporates task-specific reward411

signals directly into parameter updates [43, 35].412

The supervised fine-tuned model (policy πθ) generated multiple candidate outputs o = (o1, . . . , o|o|) for each input413

prompt q. Each token ot was assigned probability πθ(ot | q, o<t), where o<t denotes the prefix. Rewards ri were414

assigned to each candidate sequence oi using automated evaluation metrics such as BERTScore [22] and domain-specific415

scores for tasks like perturbation response prediction.416

Proximal Policy Optimization (PPO) maximizes a clipped surrogate objective, which requires estimating per-token417

advantages At using a value function:418
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JPPO(θ) = Eq∼P (Q), o∼πθold

 1

|o|

|o|∑
t=1

min

(
πθ(ot | q, o<t)

πθold(ot | q, o<t)
At, clip

(
πθ(ot | q, o<t)

πθold(ot | q, o<t)
, 1− ϵ, 1 + ϵ

)
At

) ,

where πθold is the policy from the previous iteration, At is the advantage at step t, and ϵ is the clipping threshold.419

Maintaining a critic to estimate At increases computational cost and can destabilize training.420

GRPO replaces the value function with a group-relative baseline. For each prompt q, the model samples G candidate421

outputs {o1, . . . , oG} with associated rewards {r1, . . . , rG}. Relative advantages are defined by normalizing rewards422

across the group:423

r̃i =
ri −mean(r)

std(r)
, Âi,t = r̃i ∀t ∈ oi.

The GRPO objective is424

JGRPO(θ) = Eq,{oi}G
i=1

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL(πθ ∥πref)

)]
,

where πref is the frozen SFT model and β controls the KL regularization strength.425

GRPO eliminates the critic network, reduces memory requirements, and yields stable optimization at scale. When426

trained with biologically relevant reward functions, C2S-Scale refined its predictions and aligned generative behavior427

with biological ground truth.428

4.6 Downstream Tasks429

4.6.1 Cell type annotation430

For the cell type annotation task, we fine-tuned the model to predict cell type labels on an immune tissue dataset [55],431

pancreas dataset [56], and a lung dataset [16]. We used 80% of cells from each dataset for training and reserved 20%432

for evaluation. C2S-Scale was provided with a cell sentence and a natural language prompt, such as “Predict the cell433

type of this cell:”. C2S-Scale was fine-tuned for this task using the same next-token prediction objective [49] as the434

pretraining step, predicting cell type labels in natural language. Other scFMs were fine-tuned using prediction heads on435

top of the pretrained transformer weights in accordance with the recommended strategies for each model.436

4.6.2 Cell generation437

For cell generation tasks, we fine-tuned the model to unconditionally or conditionally generate cell expression on the438

immune tissue and lung datasets. The model was given a natural language prompt containing relevant metadata for439

conditional generation, or no information in the case of unconditional generation, and was tasked with generating a cell440

sentence of K genes representing the expression of the cell under that condition. For instance, to conditionally generate441

a B cell, the model might be given a prompt such as: "Generate a list of 1000 genes in order of descending expression442

which represent a Homo sapiens cell of cell type B cell."443

4.6.3 Cell embedding444

For cell embedding, we used C2S-Scale foundation models (e.g. C2S-Scale 1B) trained on the C2S multimodal corpus445

to embed cells without any dataset-specific fine-tuning. To embed cells, we first formatted input prompts for C2S-Scale446

in the same manner as in cell type prediction tasks. However, instead of decoding token predictions, we took the last447

hidden state from the last layer of the C2S-Scale model, and average pooled the latents in order to form our embedding448

of the input prompt. We note that this procedure can be done for multi-cell contexts as well as contexts that involve449

different metadata and condition components in natural language prompts, making C2S-Scale a diverse embedding450

model for transcriptomic and language inputs.451
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4.6.4 Single-cell bulk integration452

Multimodal integration is essential for capturing the complexity of biological systems, as different data modalities453

provide complementary perspectives on cellular function. Each modality has its own strengths and limitations: some454

offer high resolution at the cost of sparsity, while others provide broader coverage but lack single-cell detail. Therefore,455

models that can integrate modalities can provide a more complete and robust understanding of cellular behavior,456

improving both interpretability and predictive power in biological analysis.457

To assess this, we designed a simple single-cell and bulk RNA seq integration task. Using a single-cell lung tissue458

dataset [16], we constructed pseudo-bulk samples by aggregating over donor, cell type, and batch. For each pseudo-bulk459

sample, we randomly sampled ten single-cell samples from the same conditions to construct pairs. We embedded460

each single-cell and pseudo-bulk sample individually using each model and computed the cosine similarity between461

the paired single-cell and bulk samples. Following [57], we used the “fraction of samples closer than the true match”462

(FOSCTTM) to evaluate the performance of each model. A FOSCTTM of 0 corresponds to a perfect model (the cosine463

similarity of matched pairs is higher than any other pair), whereas a FOSCTTM close to 0.5 means the cosine similarity464

between the matched pairs is about as good as the cosine similarity between random pairs.465

4.6.5 Cluster captioning466

To generate the cluster captioning dataset, we selected 30 scRNA-seq datasets and performed standard preprocessing,467

clustering, and differential expression analysis. We then prompted GPT-4o [19] to generate five captions for a cluster468

based on the cell type, tissue type, organism, disease, top three differentially expressed genes, and the full text of the469

associated paper. This resulted in a total dataset of 1,723 captions from 345 distinct clusters. To produce the final470

training data, we randomly sampled two cells from a cluster to construct the training prompt, and a caption from that471

cluster as the target. The C2S-Scale models were fine-tuned using supervised fine-tuning with a next-token prediction472

learning objective with a learning rate of 1 × 10−5, weight decay of 0.01, and a batch size of 64. All models were473

evaluated on the same holdout test set consisting of clusters unseen in the training data.474

4.6.6 Dataset interpretation475

For the dataset-level interpretation task, we created two test sets for dataset-level interpretation: (i) a training distribution476

dataset interpretation test set, where scRNA-seq data and paper abstracts come from 613 of the scRNA-seq datasets477

gathered from CELLxGENE [2] as a part of the C2S-Scale training corpus, and (ii) an out-of-distribution (OOD)478

evaluation set where the papers and data are completely unseen by the C2S-Scale model. By evaluating dataset-479

level interpretation on scRNA-seq studies from both the training corpus and out of distribution data, this serves as a480

challenging generalization benchmark for writing meaningful interpretations of scRNA-seq data.481

Each dataset interpretation sample was created by sampling between 5 and 20 cells from the same tissue and donor in a482

given scRNA-seq dataset, and formatting a prompt with the multi-cell context that tasked the model with generating a483

biological abstract summary to describe the data. The ground truth for the abstract summary of the data was obtained by484

taking the abstract of the paper associated with the scRNA-seq study; to create more diversity in the biological abstracts485

seen across samples, we create 500 variations of each dataset abstract using GPT-3.5-Turbo-1106, to prevent the model486

from simply memorizing a few hundred dataset abstracts. For each multi-cell context, we choose one of the abstract487

summaries as the ground truth target summary. Example abstract summaries can be found in Fig. 11.488

To create the training corpus distribution dataset interpretation test set, we first gathered held-out abstract generation489

samples from the training corpus. These are multi-cell contexts and samples which the model had not seen during490

training since they were a part of held-out validation and test sets of the C2S-Scale corpus, however since each dataset491

only contains one abstract, the held-out samples will still contain similar information to training set abstract generation492

samples that the model has seen. We sampled 5 held-out abstract generation samples from 613 datasets gathered from493

CELLxGENE [2], yielding a total test set of 3065 dataset interpretation samples.494

For the out-of-distribution dataset interpretation test set, we constructed new abstract generation samples by incor-495

porating two new datasets from CELLxGENE that were either published recently (after the initial C2S-Scale corpus496

gathering period) or verified to not be a part of the C2S-Scale training corpus: (i) a pancreas tissue [56] and a human497

retina [58] dataset. We constructed 200 samples from each dataset, again creating 50 variations of the abstract of each498

dataset to again provide more diversity in summary language.499

4.6.7 Spatial niche prediction500

For the spatial niche prediction task, we used the CosMx Spatial Molecular Imager Human Liver dataset [32], which501

provides annotated spatially-resolved single-cell data from both normal and hepatocellular carcinoma liver tissues from502
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two different donors. This dataset encompasses over 800,000 single cells across a total of approximately 180 mm2 of503

liver tissue, with expression measured on a set of 1,000 curated genes. The dataset was processed to filter out genes504

expressed in fewer than three cells and cells expressing fewer than 50 genes. It was then normalized to a total count of505

1× 104 and the base 10 logarithm was applied. Spatial coordinates were saved to define neighborhoods and facilitate506

spatial analyses. We define a neighborhood to be a radius of 0.02 pixels (approximately 20 µm), chosen to maximize507

the number of cells we can fit into the model’s context. The dataset was split into training and test sets based on spatial508

coordinates to prevent spatial leakage between sets.509

To train C2S-Scale on spatial and multi-cellular relationships, we designed the following tasks:510

1. Niche label prediction: Given a cell sentence for a single cell, predict the niche label annotation for that cell.511

2. Conditional Neighbor Generation: Given multiple cell sentences from a neighborhood, generate a novel cell512

sentence that would belong to the same neighborhood.513

3. Spatial neighborhood prediction: Given multiple cell sentences, predict whether these cells come from the514

same neighborhood.515

4. Same niche prediction: Given multiple cell sentences, predict whether all of these cells have the same niche516

label or different niches.517

To construct prompts, cell sentences were randomly sampled from the appropriate data split. Multi-cell contexts were518

created by taking all cells in the sampled cell’s neighborhood for positive samples, or an equivalent number of randomly519

sampled cells outside the neighborhood as negative samples. The data contained 19,754 training samples and 3,968 test520

samples.521

Additionally, to enhance the model’s understanding of cell communication, we included gene interaction metadata from522

CellPhoneDB [33] and BioGRID [34]. We restricted the data to only retain interactions involving the 1,000 genes in the523

CosMx data, and also only to genes coding for extracellular proteins (determined using MatrixDB [59]). We included524

5,822 interaction samples from CPDB and 2,334 from BioGRID.525

Models were evaluated on a held-out test set comprising 3,968 samples. Performance was measured as mean prediction526

accuracy across the spatial neighborhood prediction tasks. To compare models, paired differences in prediction527

outcomes were assessed using McNemar’s test with continuity correction, which evaluates whether two classifiers differ528

significantly in their error distributions when applied to the same test set. Significance was reported as p-values from529

McNemar’s test, with values below 0.05 considered statistically significant.530

4.6.8 Question answering531

We used the GPT-4.5 model to generate question-answer pairs from three sections of each manuscript (abstracts,532

discussions, and results) as well as data sampled from that study. Each scRNA-seq study contributed 20 QA pairs, for a533

total of approximately 1600 QA pairs used for SFT. We conduct SFT with a learning rate of 1× 10−5 and 100 warmup534

steps.535

Following SFT, we applied GRPO to further refine answer quality. To create the GRPO training set, we collected an536

additional 600 samples from unseen studies, with each sample prompting the SFT model to generate 32 candidate537

answers. We then used BioBERT to compute a reward score for each candidate answer against the ground truth answer538

provided by GPT-4.5, capturing its biological plausibility. These BioBERT-derived scores served as the primary reward539

signals, guiding the GRPO update step and optimizing model parameters to favor biologically accurate, contextually540

relevant responses. For GRPO training, we set β = 0.03 and use a learning rate of 5× 10−7. Finally, we evaluated the541

GRPO-refined model on a new test set derived from unseen studies, and compare its performance against a commonly542

used LLM, as illustrated in Fig. 7.543

4.6.9 Perturbation prediction544

The Dong et al. dataset [45] dataset includes immune cells exposed to individual and combinatorial cytokines, with545

each cell annotated by type, stimulation, and exposure length – yielding 133 conditions. We retained the 5000 most546

highly variable genes and evaluated models in the scGPT embedding space [4] using maximum mean discrepancy547

(MMD), Wasserstein distance, and scFID (Section 4.7). This embedding-based evaluation provides more meaningful548

comparisons than expression-level metrics, which can be skewed by a small number of genes with extreme values.549

The training of C2S models for the Dong et al. dataset followed a structured two-stage process to effectively predict550

responses to unseen cytokine stimulations. The test dataset featured three tiers of held-out perturbations with increasing551

difficulty: (1) a completely excluded combinatorial perturbation (interferon-β + IL-6), (2) one perturbation entirely552
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held out for each cell type across both chronic and acute conditions (B: interferon-III, CD4 T: interferon-γ, CD8 T:553

interferon-α2, Dendritic: interferon-β (no chronic cells), NK: IL-6), and (3) one perturbation excluded in either chronic554

or acute conditions for each cell type while the other condition remained in training (B: acute interferon-β, CD4 T:555

acute interferon-β + interferon-γ, CD8 T: chronic TNF-α, NK: chronic interferon-III). In the first stage, the model556

was fine-tuned using supervised learning on both cell sentence generation and natural language label prediction, where557

it simultaneously predicted all three labels—cell type, perturbation, and exposure—ensuring it learned bidirectional558

relationships between conditions and gene expression. This fine-tuning stage was conducted for 3–4 epochs using the559

Hugging Face Trainer on a single H100 GPU.560

The second stage employed GRPO to refine perturbation response generation. For the Dong et al. dataset, the reward561

was computed as the negative mean squared error between generated and ground truth cells, randomly paired under the562

same condition labels and embedded using scGPT. GRPO training used 32 generated responses and 32 real cells per563

prompt, and was conducted on 4 H100 GPUs for 3 epochs. The interferon subset used for GRPO was defined as the564

union of the MSigDB [60] interferon-α and interferon-γ hallmark gene sets, intersected with the highly variable genes565

(HVGs) from the dataset, resulting in 95 genes.566

To benchmark against other perturbation response models, we included scGen, CellOT, and scGPT. For scGen, we567

used the pertpy library [61] to generate perturbation predictions. For CellOT, we followed the standard procedure568

but replaced the encoder with the pretrained encoder from scGen. For scGPT, we added linear encoders for cell type,569

perturbation, and exposure, projecting binary vectors into dense vectors, and then added these embeddings to each gene570

token embedding before forwarding them through the model.571

For the L1000 dataset [44], we trained on the 978 landmark genes following quantile normalization. We paired untreated572

and treated samples by matching the cell line name. To evaluate generalization, we selected 50 perturbations with fewer573

than 1,000 total samples and held out half the cell lines in each perturbation as test data. We used Kendall’s τ as the574

reward function during reinforcement learning, as it properly accounts for tied ranks. This is especially important for575

L1000 where non-expressed genes share the same lowest rank. SFT was conducted using a batch size of 2 and gradient576

accumulation of 32, with a learning rate of 1e-4. Training ran on a single H100 GPU for 3,500 steps (approximately577

one epoch, though not all data is seen due to dataset size). For GRPO, the model was trained with a batch size of 8 and578

gradient accumulation of 4. We generated 24 responses per prompt. The learning rate was set to 1e-6 with a beta value579

of 5e-3. Training was distributed across 4 H100 GPUs—three for model training and one for vLLM-based response580

generation. GRPO ran for approximately 3,000 steps over 3 epochs, although as with SFT, the model likely saw less581

than a full epoch due to data scale.582

For evaluation, we computed metrics differently across datasets. For the Dong et al. [45] dataset, we computed583

maximum mean discrepancy (MMD), Wasserstein distance, and scFID for each unique combination of condition labels584

(cell type, cytokine, and exposure duration), and averaged these values across all combinations to obtain the final metric.585

For the L1000 dataset [44], we computed Pearson’s r against the Level 3 gene expression values and Kendall’s τ on the586

ranks of the gene expression values for each test sample individually and then reported the average across all samples.587

Kendall’s τ measures rank correlation between two ordered lists. Given n genes, we consider all 1
2n(n− 1) possible588

gene pairs. For any pair of genes (i, j), if their relative order (which gene is ranked higher) is the same in both the589

generated output and the ground-truth ranking, the pair is concordant; if their relative order is reversed, the pair is590

discordant. Tied pairs (where the genes share the same rank in either list) are handled by assigning them the same value.591

Kendall’s τ is then defined as592

τ =
nc − nd

1
2n(n− 1)

,

where nc and nd denote the number of concordant and discordant pairs, respectively. In our application, the ranks of the593

978 L1000 landmark genes are derived from the generated output of the model, where the cell sentence places genes594

in descending expression order (e.g., GeneT GeneA GeneS GeneW . . . ). Genes not present in the model’s output are595

assumed to share the lowest possible rank (e.g., if 950 genes are generated, the remaining 28 share rank 951). The same596

ranking convention is applied to the L1000 ground-truth sample, where unexpressed genes also share the last rank.597

Kendall’s τ is then computed between these two ranked lists, yielding a rank-based correlation that is robust to tied598

ranks and sparse expression. Only the apoptosis genes from the MSigDB hallmark set that were present in the L1000599

landmark gene list were used during GRPO, totaling 40 genes.600

4.7 Single-Cell Fréchet Inception Distance601

The scFID is an adaptation of the FID [46] tailored for evaluating generative models in single-cell transcriptomics.602

While the traditional FID employs the Inception v3 model [62] to extract features from images, scFID utilizes scGPT603

[4] as its foundation model to embed single-cell gene expression profiles. Notably, scFID is flexible and can incorporate604
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any suitable foundation model for embedding. The scFID quantifies the similarity between the distributions of real and605

generated single-cell embeddings by assuming that these distributions are multivariate normal (Gaussian). Under this606

assumption, the scFID computes the Wasserstein distance between the two Gaussian distributions, providing a measure607

of how closely the generated data resembles the real data in the embedding space.608

Mathematically, given two sets of single-cell embeddings—one from real cells and one from generated cells—scFID is609

defined as:610

scFID = ∥µr − µg∥22 + tr
(
Σr +Σg − 2 (ΣrΣg)

1
2

)
where:611

• µr and µg are the mean vectors of the real and generated cell embeddings, respectively,612

• Σr and Σg are the covariance matrices of the real and generated cell embeddings, respectively,613

• tr denotes the trace of a matrix.614

To evaluate generative model performance across various conditions, we computed the scFID for each unique com-615

bination of test labels—such as specific cell types, perturbations, and exposure durations—and then averaged these616

individual scFID values.617

4.8 Virtual Screen Setup618

Datasets We analyzed drug responses in both primary tumor samples and an immortalized cell line in order to capture619

effects across distinct immune environments. The immune-context-positive data comprised bulk RNA-seq from a pan-620

cancer atlas [63], which includes 364 tumor specimens spanning 12 cancer types. Cells were sorted by flow cytometry,621

and we restricted our analysis to the “tumor” compartment, yielding 162 bulk samples. As an immune-context-neutral622

system, we used the Merkel cell WAGA cell line, as it was not part of the training data for the model. We obtained data623

from GEO [64], containing 4,199 cells. For the single-cell data, standard preprocessing was applied, including removal624

of genes expressed in fewer than three cells, removal of cells with fewer than 50 counts, normalization to a total count625

of 104 per cell, and log1p transformation.626

To quantify type I interferon activity across bulk tumour samples and single cells, we computed a rank-based analytical627

z-score for a curated interferon-stimulated gene (ISG) set. For each expression profile, all detected genes were ranked628

by expression level. The mean rank of the ISG set was then compared to the null expectation of randomly distributed629

ranks using a two-sample Wilcoxon test.630

Compound library The screening library was derived from the L1000 resource, which catalogs over 30,000 small631

molecules. Because our goal was to prioritize compounds that could feasibly be validated, we filtered this set using632

GPT-o3 to predict commercial availability. This step produced a working library of 4,266 drugs.633

Perturbation inference Drug perturbations were simulated using our C2S-Scale perturbation response prediction634

model. Each bulk tumor sample was perturbed in silico with every drug in the library three times, for a total of N = 486635

samples per drug. For the WAGA cell line, 20 representative cells were each perturbed 20 times with every drug for a636

total of N = 400 samples per drug. Replicates corresponded to independent forward passes through the model, with637

stochastic sampling at a temperature of 0.3 to introduce variability across predictions.638

Scoring of antigen-presentation programs Antigen-presentation activity was quantified by calculating enrichment639

scores for each perturbed profile. We applied single-sample gene set enrichment analysis (ssGSEA) with the “Class I640

MHC mediated antigen processing and presentation” gene set from MSigDB [60], using the Python package gseapy641

(v1.1.8) with parameters sample_norm_method=‘rank’ and weight=0. Scores were aggregated across replicates for642

each drug and normalized to the interval [−1, 1]. As a complementary metric, we also computed the average log-fold643

change for HLA-A,B,C, which produced results consistent with ssGSEA (Supplementary Fig. 12).644

Top-ranked drugs were examined for prior evidence of involvement in antigen-presentation pathways. Manual inspection645

was used to flag compounds not previously reported in the literature, and these were prioritized for further analysis.646

4.9 Experimental Validation of Interferon-Conditional Effects647

To validate the interferon-conditional effects predicted in silico, we performed experiments in two tumor-derived cell648

lines: MDK-knockout WAGA (Merkel cell carcinoma, MCC) and DMS153 (small cell lung cancer, SCLC). Cells649

(600,000–2,500,000 cells/ml) were treated with Silmitasertib at the indicated concentrations for 24 hours, followed by650
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stimulation with 2 U/ml human IFNβ (PBL Assay Science, cat. #11415) or 2 U/ml human IFNγ (PBL Assay Science,651

cat. #11500) for an additional 24 hours. In parallel, dose–response assays were performed by titrating IFNβ across a652

range of 0.5–200 U/ml to characterize sensitivity to interferon signaling.653

After treatment, cells were harvested and stained for surface expression of major histocompatibility complex class I654

molecules HLA-A,B,C (clone W6/32, BioLegend). Live tumor cells were gated using Zombie Aqua fixable viability655

dye (BioLegend) to exclude dead cells prior to analysis by flow cytometry using the CytoFLEX S running CytExpert 2.4656

(all Beckman Coulter). All assays were performed in three independent biological replicates. For statistical comparisons,657

a two-way Brown–Forsythe and Welch ANOVA was applied, followed by Dunnett’s T3 correction for multiple testing.658

4.10 Data Availability659

A list of HCA and CELLxGENE datasets used for pretraining is provided in Supplementary Table 1. Spatial transcrip-660

tomic data for the niche prediction task was obtained from CosMx [32]. Publicly available interaction databases were661

acquired from [33, 34, 59]. For the perturbation prediction task we used transcriptomic data from L1000 [44] and from662

[45]. For the virtual screen we used primary tumor data from [63] and cell line data from [64]. Model weights are663

available on Hugging Face.664

4.11 Code Availability665

Code for model training is publicly available at: https://github.com/vandijklab/cell2sentence666
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7 Supplementary866

7.1 Limitations867

7.1.1 Addressing Limitations of Causal Attention in Gene Expression Modeling868

While our approach demonstrates strong empirical performance in modeling single-cell gene expression using autore-869

gressive language models, we acknowledge that causal attention’s inherent unidirectionality—favoring high-to-low870

gene expression dependencies—could theoretically limit the modeling of true causal biological interactions that flow871

from low- to high-expression genes. However, we contend that this constraint does not significantly impede our872

objectives and can be mitigated through several complementary strategies. First, our approach aligns with successful873

paradigms from vision-language models, where arbitrary tokenization orders paired with causal attention still achieve874

state-of-the-art performance [65]. Similar to hybrid vision architectures that combine causal and non-causal attention875

layers, our framework could incorporate indirect bidirectional context through auxiliary reasoning tokens or non-causal876

gene interactions.877

Multi-cell context and reasoning as a corrective mechanism The model’s reasoning capabilities provide additional878

corrective potential. Emerging evidence from language modeling demonstrates that explicit reasoning steps can879

compensate for causal attention limitations [66, 67, 68]. In our context, intermediate tokens representing biological880

pathways or gene interactions enable iterative prediction refinement, effectively circumventing strict unidirectionality.881

Furthermore, our multi-cell training framework enables implicit bidirectionality—low-expression genes in one cell can882

influence high-expression genes in the following cell, approximating bidirectional attention across a multi-cell context.883

Correlation, not causation It is important to emphasize that our model is designed to capture predictive correlations884

over inferring causal gene relationships. This mirrors natural language processing, where autoregressive models885

successfully capture statistical correlations despite occasional misalignment between word order and true causal886

relationships (e.g. passive constructions) [69, 70]. Our results confirm that expression correlations provide sufficient887

predictive power for key biological analysis tasks.888

Architectural enhancements Looking forward, we propose three architectural enhancements to further mitigate889

this limitation: (1) bidirectional attention by partitioning gene sequences, (2) variable gene ordering during training890

to induce order invariance, and (3) hybrid attention architectures blending causal and non-causal attention layers.891

While our current approach already demonstrates that sequential modeling of gene expression—despite lacking natural892

ordering—leverages pretrained LLMs without requiring custom architectures, these enhancements aim to further893

improve biological fidelity and predictive power.894

In summary, while causal attention restricts bidirectionality within individual cells, its ability to capture correlations895

aligns with our predictive objectives. The combined effects of multi-cell context, reasoning mechanisms, and prospective896

architectural improvements position this approach as a robust foundation for single-cell analysis, with multiple pathways897

available for extending its biological fidelity.898

7.1.2 Hallucination and Interpretability899

A known challenge with large language models is their tendency to generate plausible but incorrect outputs, often900

referred to as hallucinations. While our benchmarking focuses on structured biological tasks with ground-truth labels,901

more open-ended interpretation tasks—such as abstract generation or cluster captioning—may be susceptible to such902

errors. Developing domain-specific safeguards, such as biological fact-checking mechanisms or constrained decoding903

strategies, remains an important direction for improving interpretability and reliability in high-stakes settings.904
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Figure 10: C2S allows for conversion from expression information into cell sentence format with minimal information
loss. Using a linear model fitted between rank and original expression, cell sentences can be converted back to
expression accurately.

Figure 11: Example abstract summaries from scRNA-seq datasets collected from CELLxGENE [2].
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Figure 12: Predicted effects of silmitasertib on MHC-I antigen presentation in immune-context-positive (left) and
immune-context-neutral (right) screens. Each point represents a compound, plotted by the average predicted log-fold
change of HLA-A,B,C versus the corresponding significance level. Silmitasertib is highlighted in red. Results are
consistent with the primary scoring approach using the antigen-presentation gene set (see Methods).
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