
Preprint. Under review.

RELATIONAL TRANSFORMER: TOWARD ZERO-SHOT
FOUNDATION MODELS FOR RELATIONAL DATA

Rishabh Ranjan01∗, Valter Hudovernik0, Mark Znidar0, Charilaos Kanatsoulis0,
Roshan Upendra1, Mahmoud Mohammadi1, Joe Meyer1, Tom Palczewski1,
Carlos Guestrin0, Jure Leskovec0
0Stanford University, 1SAP Labs LLC
{ranjanr,guestrin,jure}@stanford.edu

ABSTRACT

Pretrained transformers readily adapt to new sequence modeling tasks via zero-
shot prompting, but relational domains still lack architectures that transfer across
datasets and tasks. The core challenge is the diversity of relational data, with
varying heterogeneous schemas, graph structures and functional dependencies. In
this paper, we present the Relational Transformer (RT) architecture, which can be
pretrained on diverse relational databases and directly applied to unseen datasets
and tasks without task- or dataset-specific fine-tuning, or retrieval of in-context
examples. RT (i) tokenizes cells with table/column metadata, (ii) is pretrained
via masked token prediction, and (iii) utilizes a novel Relational Attention mecha-
nism over columns, rows, and primary–foreign key links. Pretrained on RelBench
datasets spanning tasks such as churn and sales forecasting, RT attains strong zero-
shot performance, averaging 93% of fully supervised AUROC on binary classifi-
cation tasks with a single forward pass of a 22M parameter model, as opposed to
84% for a 27B LLM. Fine-tuning yields state-of-the-art results with high sample
efficiency. Our experiments show that RT’s zero-shot transfer harnesses task-table
context, relational attention patterns and schema semantics. Overall, RT provides
a practical path toward foundation models for relational data.1

1 INTRODUCTION

Foundation models [3; 48] have redefined natural language processing (NLP) [7] and computer
vision (CV) [9] by demonstrating the effectiveness of general-purpose architectures across diverse
domains and tasks. This success is driven by the transformer architecture [38], whose design makes
large-scale pretraining possible and yields models that are powerful and broadly transferable. An
analogous breakthrough has not yet been achieved for relational data, despite relational databases
being the dominant repository of structured enterprise information. Unlike sequences or images,
relational databases comprise multiple interconnected tables with heterogeneous columns linked
through primary–foreign key relationships. As a result, predictive signal is often scattered across
rows, columns, linked tables, and time, making model design substantially more challenging.

Despite its difficulty, designing a foundation model for relational databases is of utmost impor-
tance [39]. Such a model could adapt to new tasks and datasets via zero-shot prompting, few-shot
learning or fine-tuning, enabling accurate predictions in cold-start and expertise-, compute- or data-
constrained settings. More broadly, it would democratize the use of AI in enterprise contexts, where
relational data is ubiquitous, by providing non-experts with accessible predictive tools and offering
experts a strong initialization for further model development.

Prior work. Traditionally, tasks on relational databases have been solved using tabular models
[5; 34], which depend on manual, error-prone, and costly feature engineering [24]. The emerg-
ing area of relational deep learning (RDL) [15] addresses this challenge by developing end-to-end
models that operate directly on relational databases. Prior RDL research has explored graph neural

∗Work done, in part, as an intern at SAP Labs LLC.
1Code, models, data: https://github.com/snap-stanford/relational-transformer.

1

ar
X

iv
:2

51
0.

06
37

7v
2

 [
cs

.L
G

]
 2

2
O

ct
 2

02
5

https://github.com/snap-stanford/relational-transformer
https://arxiv.org/abs/2510.06377v2

Preprint. Under review.

Figure 1: (a) The schema specifies tables, columns, foreign keys and primary keys. The task defi-
nition is used to construct the task table, which includes labels one aims to predict (e.g., customer
churn labels). (b) The context window captures relevant information to predict the label column of
the target row, which is masked, excluding rows with later timestamps to prevent temporal leakage.
(c) Cells correspond to tokens. Token embedding comprises trainable datatype-specific encoding of
cell values and frozen language model (LM) embeddings of table/column names. Relational struc-
ture is modeled by our novel Relational Attention layers, where a cell attends to (1) cells in the same
column (column attention), (2) cells in the same row and F→P linked rows (feature attention), and
(3) P→F linked rows (neighbor attention).

networks (GNNs) [33; 4], transformers [11; 27], and hybrid models [42] that combine GNNs and
large language models (LLMs), to leverage the relational structure. However, these architectures
remain tightly coupled to specific schemas and fail to generalize to new databases. In contrast, ex-
isting tabular foundation models (TFMs) [18; 19; 23; 29; 35; 13] generalize to unseen datasets but
cannot capture the rich relational structure. An alternative is to serialize relational databases into text
formats such as XML, JSON, or CSV for processing with LLMs [43], or to flatten them into a single
joined table. However, these strategies suffer from scalability issues and distributional mismatch
with the pretraining data of LLMs and TFMs. As a result, no existing method provides a viable
backbone for building foundation models on relational databases.

Our contribution. In this paper, we introduce the Relational Transformer (RT) (cf. Fig. 1), a novel
transformer design for relational databases, that enables large-scale pretraining and zero-shot gener-
alization across diverse domains and tasks. RT introduces three key innovations. First, it represents
each database cell as a token, with embeddings constructed from its value, column name and table
name. This cell-level tokenization allows all downstream tasks to be cast as masked token predic-
tion, thereby supporting flexible and scalable self-supervised learning. Second, RT augments the
input with task-specific context via task table integration, which enables zero-shot prediction across
diverse schemas. While task rows provide “in-context labels”, our setting is not few-shot as explicit
subgraph-label pairs are not required. Finally, in RT we develop our novel Relational Attention
mechanism — column attention to model value distributions within a column, feature attention to
mix information across cells in the same row and their linked parents, and neighbor attention to prop-
agate signals along primary–foreign key relationships — along with the standard self-attention for
unrestricted pairwise interactions. Together, these mechanisms capture dependencies across cells,
rows, and tables, explicitly leveraging the structure of relational databases.

We pretrain RT on relational databases from RelBench [33] and observe strong zero-shot transfer
to new tasks on unseen datasets. For example, average zero-shot AUROC on binary classification
tasks is 90.3% of full supervised learning AUROC, and rises to 93.1% with continued pretraining

2

Preprint. Under review.

Figure 2: RT can be pretrained on data with diverse schemas and task definitions. Pretrained RT is
accurate on new datasets and tasks with zero-shot prompting. Dataset- and task-specific fine-tuning
of pretrained RT shows high learning efficiency.

on the target dataset (but not the task). For comparison, Gemma3-27B achieves only 83.7% of full
supervised learning AUROC with equivalent context information expressed as text, despite taking
107× more inference FLOPS. Further, pretrained RT shows high learning efficiency, reaching sim-
ilar performance as the second best baseline in 10–100× fewer steps / training examples. These
findings establish RT as a powerful model capable of robust zero-shot transfer in relational settings,
while enabling rapid fine-tuning when supervision is available. Our results provide strong empirical
evidence that relational databases, despite spanning diverse applications, share transferable patterns
that can be captured through pretraining. Overall, this work marks a significant step toward building
foundation models for predictive tasks on relational data, moving beyond hand-crafted features and
task-specific models to a unified approach for relational data.

2 BACKGROUND: PREDICTIVE TASKS ON RELATIONAL DATA

2.1 RELATIONAL DATABASES

A relational database (RDB) is a collection of tables linked through inter-table relationships. Each
table is composed of rows, where every row is a set of cells, one for each column in the table. We
define feature columns as the columns that contain numeric, text and datetime information, and ID
columns then define how rows are uniquely identified and connected across tables. Every table has
a primary key (P–key), and some include foreign keys (F–keys) referencing primary keys in other
tables. This induces a graph structure, where connections from foreign keys to primary keys are
denoted as F→P links, and the reverse incoming connections as P→F links (Fig. 1).

Many RDBs are temporal, with timestamp columns that record when rows are created. Temporal
information is crucial: if we want to predict whether a user will buy an item at time t, the model must
only use information available before t, otherwise it risks temporal leakage. To prevent temporal
leakage, modeling is conditioned only on rows that were created prior to the target row. Finally, the
schema of an RDB (Fig. 1) specifies the tables with their columns and datatype along with the re-
lational structure. Because schemas vary widely, pretraining requires schema-agnostic architectures
that directly incorporate multi-table structure through attention masks.

2.2 PREDICTIVE TASKS

Masked token prediction (MTP). We focus on masked token prediction, where the goal is to predict
the value of a masked cell in the database, conditioned on the rest of the observed database. A broad
class of important predictive tasks on RDBs can be framed as MTP, including (1) autocomplete tasks
and (2) forecasting tasks.

Autocomplete tasks. Here the missing or masked value belongs to a feature column that already
exists in the database. Consider the e-commerce schema with Users, Items, and Transactions tables.
An autocomplete task might involve predicting a user’s age in the Users table if the entry is missing,
or inferring the category of an item in the Items table from its textual description and price. In both
cases, the label comes from an existing feature column.

3

Preprint. Under review.

Forecasting tasks. Here, the goal is to predict something that has not yet happened. For example,
in the e-commerce setting, we want to forecast whether a given user will churn in the next month,
or predict the total revenue of a product in the upcoming quarter. Unlike autocomplete, the target
values for forecasting do not exist in the original database and must be constructed from future rows.

Task tables. To formalize forecasting tasks, we introduce a new task table. This table stores the
forecasting labels, together with foreign keys linking to the relevant entities (e.g., user IDs or item
IDs) and a timestamp specifying the prediction horizon. For instance, a task table for churn predic-
tion might contain one row per user, indicating whether the user made a purchase within the next 30
days, with a timestamp showing the cutoff date.

3 RELATIONAL TRANSFORMER

We introduce Relational Transformer (RT, Fig. 1), a transformer architecture designed for relational
data. The design of RT is guided by three core principles: (i) effectively capture relational struc-
ture, (ii) support flexible self-supervised pretraining, and (iii) enable zero-shot generalization across
heterogeneous schemas.

3.1 INPUT REPRESENTATION

RT introduces two key innovations in input representation: (i) task table integration, where predic-
tion tasks are represented as additional tables appended to the database, and (ii) cell-level tokeniza-
tion, where each database cell is modeled as an individual token. Task table integration augments
the database input with task-specific context, enabling zero-shot predictions across diverse schemas.
Cell-level tokenization then provides a unified view of relational data, allowing all downstream tasks
to be cast as MTP and thereby supporting flexible and scalable self-supervised learning.

Task table integration. For each task, we attach a dedicated task table to the database. Only one
task table is active at a time, ensuring that sampling is task-specific. Rows from the task table serve
as seed rows for context construction, and from the model’s perspective task tables are treated as
ordinary relational tables. This allows downstream tasks to be seamlessly expressed in the same
input space as pretraining.

Context sampling. Given a seed row, RT constructs a context window of n cells by expanding
across primary–foreign key links. Following the intuition that relevant information is concentrated
in nearby hops, we apply a bounded-width breadth-first search (BFS) with three modifications: (1)
all parent rows (F→P) are always included, (2) child rows (P→F) are subsampled with a BFS-width
bound w, and (3) rows with timestamps later than the seed row are excluded to prevent temporal
leakage. Once a row is selected, all of its non-missing feature cells are added to the context. A more
detailed discussion of the sampling procedure is provided in App. C.

Cell token encoding. A cell is represented by (v, c, t), where v is the cell value, c is the column
name, and t is the table name. The value v can be numeric, boolean, datetime, or text; other modal-
ities (e.g., image) can be handled analogously to text.

• Numeric/boolean. Normalize to obtain r = (v − µc)/σc ∈ R, where µc and σc are the col-
umn mean and standard deviation computed on the training split. For booleans, this provides a
calibrated scale.

• Datetime. Convert to seconds and normalize globally: r = (v − µT)/σT , where µT and σT ∈ R
are the global mean and standard deviation of timestamps in the training split.

• Text. Embed using a frozen text encoder E text: r = E text(v) ∈ Rdtext .

Schema semantics are incorporated via a text embedding of the phrase “<column name> of
<table name>”, e.g., “price of product”, “age of user”, using E schema. The token
embedding is x = Wd r + W E schema(c, t), where Wd is datatype-specific and W is shared. For
masked cells, the value embedding Wdr is replaced with a learned mask vector md.

4

Preprint. Under review.

RT does not rely on positional encodings, as relational structure is directly captured by specialized
attention layers. While graph positional encodings [25; 21; 22; 2] could be incorporated, we leave
the architecture free of them to maintain simplicity and generality.

3.2 RELATIONAL ATTENTION

The core of RT is a novel Relational Attention mechanism in which the fundamental processing unit
is the cell token. This formulation enables flexible pretraining via MTP, and stands in contrast to
Graph Transformers [10; 30; 45], which tokenize at the row level, but can be viewed as a natural
extension of Tabular Transformers [18; 19]. By operating at the cell level, RT can explicitly model
one-to-one dependencies between attributes across rows, columns, and tables, while also supporting
zero-shot generalization across schemas. RT follows the standard transformer design, but augments
each block with Relational Attention layers that effectively encode relational structure and induc-
tive bias. Other architectural details (normalization, activations, etc.) follow the design choices of
LLaMA [37].

The main operation in RT is the scaled dot-product attention, given by:

Attention(Q,K,V;M) = Softmax
(
QK⊤ ⊙M√

dK

)
V

where, Q ∈ Rn×dK , K ∈ Rn×dK , V ∈ Rn×dV are the query, key and value matrices, n is the
context length, and⊙ denotes element-wise product. M ∈ {0, 1}n×n represents the attention mask,
controlling token-to-token visibility. M[q, k] = 1 means the q-th token can attend to the k-th token,
and M[q, k] = 0 means it cannot. For example, auto-regressive language models use a causal
attention mask, given by Mcausal[q, k] = 1{k ≤ q}, where 1{·} is the indicator function.

Relational Attention masks. Using specialized masks, we define four attention types: column,
feature, neighbor, and global. For the cell corresponding to token i, let Col(i) be its column, Row(i)
its row, and OutLinks(i) the set of rows, possibly in different tables, which are pointed to by foreign
keys of Row(i).

• Column attention. For any query token, this layer allows attention only to key-value tokens from
the same column, resulting in the mask: Mcolumn[q, k] = 1{Col(k) = Col(q)}. Column attention
helps model the distribution of values in each column.

• Feature attention. For any query token, this layer allows attention to key-value tokens from the
same row, as well as from F→P linked rows with the attention mask given by: Mfeature[q, k] =
1{Row(k) = Row(q) ∨ Row(k) ∈ OutLinks(q)}. Feature attention is equivalent to row-wise
attention after joining each table with its parent tables, and enables feature mixing for entities.

• Neighbor attention. For any query token, this layer allows attention to key-value tokens from
P→F linked rows, defined by the attention mask: Mneighbor[q, k] = 1{Row(q) ∈ OutLinks(k)}.
Neighbor attention captures information from incoming links to an entity, enabling the model to
aggregate signals from its child rows. This module acts analogously to message-passing in GNNs.

• Full attention. Finally, a standard bidirectional layer allows full pairwise interactions:
Mfull[q, k] = 1. Full attention confers the expressive power of standard Transformers, com-
plementing the relationally constrained layers above.

Taken together, the proposed attention layers provide the model with an explicit encoding of
database structure. These layers are implemented with sparse attention masks, and compiled to
efficient FlashAttention-based [6] kernels using FlexAttention [8]. The proposed transformer block
in RT is summarized in Alg. 2.

3.3 OUTPUT DECODING AND TRAINING OBJECTIVE

Cell decoders / prediction heads. An output token embedding e′ from the transformer backbone is
processed by multiple cell decoders (also called prediction heads), one for each datatype, into a cell
representation r′. The decoder to select for final prediction depends on the task type, or equivalently
on the datatype of the masked cell. Binary classification corresponds to the boolean datatype, and
regression corresponds to the numeric datatype.

5

Preprint. Under review.

Loss. Having separate decoders for different datatypes allows us to use custom loss functions for
each task type. In this work, we only mask cells in boolean or numeric columns as RelBench tasks
are either binary classification or regression. For a masked cell c with value v, representation r
(as defined in § 3.1), and decoder output r′, we apply HuberLoss(r, r′) for regression and binary
cross-entropy loss BCE(1{r > 0}, r′) for binary classification. The overall loss is the mean over
all masked cells in the batch. This formulation is used in both pretraining and fine-tuning, ensuring
consistency between objectives and contributing to sample efficiency.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and tasks. For all our experiments, we use datasets and tasks from RelBench [33]. Rel-
Bench contains 7 relational databases from diverse domains, namely, rel-amazon, rel-hm,
rel-stack, rel-avito, rel-event, rel-trial and rel-f1. Each dataset has multiple
forecasting tasks defined on it, which are either binary classification or regression. For example,
for rel-amazon, there are 4 forecasting tasks (user-churn, item-churn, user-ltv and
item-ltv), of which the first 2 are binary classification, and the last 2 are regression. We also
define autocomplete tasks, both binary classification and regression, on all datasets (App. B).

RelBench provides standardized temporal splits for tasks, as well as cutoff timestamps for the
databases. We pretrain and fine-tune only on the training splits of the tasks, using database rows
only up to the training cutoff timestamps. To pick the best checkpoints, we use the validation task
splits validation cutoff timestamps. We report the test set performance, for both learning curves and
tables. We evaluate only on the fpp:finetuniorecasting tasks, as autocomplete tasks are not part of
the standard RelBench benchmark. We skip rel-event, as it has been found to have temporal
leakage issues.

Leave-one-DB-out pretraining. The strongest setting to demonstrate transfer is when both the
dataset and task are unseen. We expect cross-dataset transfer despite disparate application domains
as databases share structural commonalities, e.g., dimension tables, fact tables, hubs and tripartite
structures [4], as well as semantic similarities, e.g., similar user behaviors when reviewing books
(rel-amazon), commenting on posts (rel-stack), attending events (rel-event), purchas-
ing clothes (rel-hm), and clicking on ads (rel-avito), which RT could learn to identify and
exploit. Due to limited number of different databases, we pretrain separately for each target dataset
on all tasks from all other datasets. We select the best validation checkpoint [31] separately for each
target task as we found significant overfitting during pretraining due to limited pretraining tasks.

Architecture details. We use a 12 layer transformer with hidden dimension 256 and 8 attention
heads per layer. We use gated MLPs with SiLU activation, as found in the Llama architecture
[37], with hidden dimension 1024. For text embeddings, we use the MiniLMv2 [40] model from
SentenceTransformers [32], which produces 384 dimensional embeddings. With this configuration,
the architecture has about 22M trainable parameters.

Training details. We pretrain RT for 50k steps at a context length of 1024, with a batch size of 256,
AdamW optimizer with weight decay 0.1, and a peak learning rate of 10−3, with linear warmup from
zero for the first 20% of training, and linear decay to zero for the remainder. One each downstream
task, we fine-tune for 33k steps with the same context length, batch size and optimizer as above, but
with a constant learning rate of 10−4 and no weight decay. One pretraining (fine-tuning) run takes
around 2 hours (1.5 hours) on 8×A100 GPUs at BFloat16 precision, with a training throughput of
around 8 batches/second or 2M tokens/second.

Baselines. We compare RT against schema-agnostic methods, which can be pre-trained on diverse
databases, and schema-specific ones, which cannot. Schema-agnostic baselines include Griffin [41],
pretrained and fine-tuned with the same setup as RT and matched in parameter count, and LLM,
where we prompt Gemma3 [36] models with instructions followed by a text-serialized database
subgraph identical to that used for RT [43]. Schema-specific baselines include RDL-GNN [33],
which encodes rows into node vectors via tabular encoders and aggregates across tables with GNN
layers, RelLLM [42], which combines GNN encoders with LLMs in a retrieval-augmented frame-

6

Preprint. Under review.

100 101 102 103 104

Fine-tuning steps + 1 (batch_size = 256)

55

60

65

70

75

80

Te
st

 A
UR

OC
 (%

)
70.8

68.5

0-shot

Binary Classification (mean over 5 downstream tasks)

Pretrained RT (ours)
Untrained RT (ours)
Untrained RDL-GNN
Pretrained Griffin
Untrained Griffin

100 101 102 103 104

Fine-tuning steps + 1 (batch_size = 256)

0

10

20

30

40

Te
st

 R
2 (

%
) 29.0

17.7

0-shot
Regression (mean over 4 downstream tasks)

Figure 3: Test set learning curves up to 32k fine-tuning steps (8M training examples, including
repetitions). Averaging is done over tasks which do not show overfitting. X-axis is on log-scale.
The first point on each curve is the zero-shot performance. Target datasets and tasks are unseen
during pretraining. Pretraining data is same for both RT and Griffin. Pretrained RT is best overall,
and untrained RT catches up towards the end.

work, RelGNN [4] and RelGT [11] (latter 2 are in App. D). Finally, the non-neural EntityMean
baseline predicts the mean of past target-entity labels in the context window.

4.2 LEARNING EFFICIENCY

The key promise of pretraining is efficient adaptation to new datasets and tasks. Adaptation can
be via zero-shot prompting, few-shot learning or fine-tuning. Since we pretrain only on a hand-
ful of different databases, we focus on efficient fine-tuning in this work. Remarkably, we see the
emergence of zero-shot abilities in RT, which we compare with relevant baselines in § 4.3.

Setup. In Fig. 3, we show learning curves for supervised fine-tuning on downstream tasks for
RT (pretrained and untrained), RDL-GNN (untrained), and Griffin (pretrained and untrained). We
average the curves over tasks which do not show overfitting. For all these models, we use the same
fine-tuning setup as described above. Full fine-tuning results for all tasks, are in App. D

Observations. Our first observation is that RT exhibits strong zero-shot performance, demonstrating
effective transfer from pretraining to unseen databases and tasks. While Griffin also benefits from
zero-shot transfer, RT consistently outperforms it. The pretrained RT consistently maintains the
gap in performance based on its strong initialization and is only caught up by the untrained RT and
RDL-GNN on classification tasks after extensive fine-tuning. Notably, fine-tuning from a pretrained
checkpoint shows a small dip in performance in the very early steps, which we conjecture might be
due to the model transitioning from a zero-shot, in-context-labels- and semantics-driven regime to
a data-driven prediction regime. Finally, while RDL-GNN initializes faster than untrained RT, the
latter overtakes it after few training steps (2 on classification and ≈ 100 on regression).

Table 1: Zero-shot test AUROC (%) for 10 binary classification tasks. Higher is better. Random/-
majority baseline is 50.0. For RelLLM we use their own prompt construction. Other baselines have
equivalent database subgraphs. Gemma and RelLLM additionally include dataset and task descrip-
tions, as well as natural language instructions. The target task is never seen during pretraining.

Target DB ∈ pretraining? → Maybe No Yes

Dataset ↓ Task ↓ Gemma Gemma Gemma Entity
Mean Griffin RT

(ours)
Rel

LLM Griffin RT
(ours)

Parameter count → 4B 12B 27B 0 22M 22M 3B 22M 22M

rel-amazon item-churn 62.1 55.0 42.1 73.0 69.0 70.9 64.1 71.9 73.3
rel-amazon user-churn 58.1 54.7 50.5 64.4 62.3 64.0 60.1 64.1 66.1
rel-avito user-clicks 54.5 59.5 59.8 44.7 45.9 59.5 62.3 45.9 60.9
rel-avito user-visits 60.1 57.9 62.7 60.7 60.7 61.8 56.2 62.2 62.6
rel-f1 driver-dnf 56.2 54.6 75.8 75.4 57.7 81.2 71.8 57.7 81.2
rel-f1 driver-top3 84.6 90.5 91.4 85.0 82.5 89.3 70.6 81.8 89.3
rel-hm user-churn 59.8 47.1 48.7 64.4 60.2 62.8 56.0 60.4 63.3
rel-stack user-badge 79.1 79.8 80.0 66.2 73.5 80.1 62.1 82.3 81.1
rel-stack user-engage 65.9 67.8 78.0 83.5 77.5 75.7 69.5 89.4 86.9
rel-trial study-out 52.6 57.4 57.2 50.0 51.0 51.8 59.0 57.2 54.6

Mean AUROC → 63.3 62.4 64.6 66.7 64.0 69.7 63.2 67.3 71.9

7

Preprint. Under review.

4.3 ZERO-SHOT PROMPTING

Table 2: Zero-shot test R2 (%) for 8 regression tasks.
Higher is better. Global mean baseline is 0.0. Setup is
same as Table 1. LLM baselines are poor (App. G.2).

Target DB ∈ pretraining? → No Yes

Dataset ↓ Task ↓ Entity
Mean Griffin RT

(ours) Griffin RT
(ours)

rel-amazon item-ltv 54.2 20.1 33.2 20.1 35.4
rel-amazon user-ltv 19.9 20.6 36.4 24.4 39.7
rel-avito ad-ctr 3.4 2.4 4.5 2.4 7.7
rel-f1 driver-pos 38.2 −0.7 54.7 4.6 58.4
rel-hm item-sales 1.8 2.7 14.0 2.5 30.4
rel-stack post-votes 43.7 27.4 32.4 27.1 32.7
rel-trial site-succ −6.4 1.4 5.2 2.6 3.5
rel-trial study-adv −0.5 −2.5 2.1 −2.5 3.4

Mean R2 → 19.3 8.9 22.8 10.1 26.4

Setup. In Tabs. 1 and 2, we report zero-
shot results. The target task is always un-
seen. We report results for when the tar-
get dataset is also unseen, as well as after
doing some continued pretraining on the
target dataset. For RT and Gemma, we
construct the input context using our sam-
pling algorithm. For Griffin, we adapt its
sampling procedure to include rows from
task tables, making it consistent with our
approach and enabling zero-shot capabili-
ties. For RelLLM we use their own prompt
construction. Both RelLLM and Gemma
baselines are additionally provided with
textual task descriptions and instructions.

Observations. RT demonstrates non-trivial zero-shot performance on all tasks. On classification,
it attains the best average AUROC and is the only method to consistently beat the entity mean
baseline. On regression, where LLM baselines fail to provide meaningful predictive accuracy, RT is
the only model to consistently achieve positive R2 and significantly surpass the EntityMean baseline
on average.

5 ABLATION STUDIES

Here we ablate various context window and architecture components of RT, seeking to understand
their role enabling zero-shot transfer and contrasting that with their impact on supervised fine-tuning.

5.1 CONTEXT WINDOW ABLATIONS

Setup. In Table 3, we investigate the impact of shuffling column and table names, removing past task
rows which refer to the target entity (self labels in short) and removing task rows from from other
entities (other labels). We use the same pretrained checkpoints as in § 4. We provide a breakdown
of self and other labels in 1024 cell contexts in Tab. 9.

Observations. We find that zero-shot transfer is driven primarily by the model’s ability to lever-
age past labels of the target entity. From EntityMean baseline results in § 4, we know that RT is
learning more complex functions than averaging self labels. Fig. 4 investigates whether the model
learns other transferable patterns besides self label ones. The positive transfer regions in the plots
establish that this is indeed the case, but self labels do constitute the dominant share of transfer from
pretraining even during initial steps of finetuning. Second, we find that the model indeed leverages
table/column names for zero-shot transfer, as wrong names lead to consistent degradation. After
full fine-tuning, context ablations have little effect, except that removing self labels significantly
degrades performance on regression tasks.

Table 3: Mean AUROC (%) and R2 (%)
on ablating context window components
for classification (clf) and regression (reg)
tasks. Individual numbers are in App. E.

Ablated ↓ Zero-shot Fine-tuned

clf reg clf reg

none 70.1 22.8 77.2 33.2
col names 69.5 20.5 77.5 33.2
self labels 53.8 −5.5 77.1 26.7
other labels 70.6 22.9 77.4 31.0

100 101 102 103

Fine-tuning steps + 1

70

75

80

Te
st

 A
UR

OC
 (%

)

100 101 102 103

Fine-tuning steps + 1

0

20

40

Te
st

 R
2 (

%
)

With self labels (pretrained)
No self labels (pretrained)

No self labels (untrained)
+ve transfer without self labels

Figure 4: Pretrained RT shows transfer even without
self labels. Setup is same as in Fig. 3.

8

Preprint. Under review.

Table 4: Ablation studies on the attention layers of RT. R2 (%) for 8 regression tasks. Higher is
better. Global-mean baseline is 0.0. col, feat, nbr, full denote that column-, feature-, neighbor-,
full- attention layers are absent respectively. Total parameter count is kept constant by increasing
the number of layers. Shading is proportional to difference from the none column. Classification
numbers (App. F) show minor differences.

Dataset ↓ Task ↓ Zero-shot Fine-tuned

Ablated attention → none col feat nbr full none col feat nbr full

rel-amazon item-ltv 33.2 5.6 29.8 33.2 44.9 36.8 34.5 34.7 32.9 33.3
rel-amazon user-ltv 36.4 6.5 30.4 34.6 35.0 47.4 47.7 45.6 46.3 46.4
rel-avito ad-ctr 4.5 -1.4 9.2 8.5 5.3 4.5 -7.1 16.6 2.1 10.6
rel-f1 driver-pos 54.7 36.9 37.6 49.4 50.1 51.6 51.4 42.0 48.9 39.5
rel-hm item-sales 14.0 11.0 4.9 10.5 13.9 39.0 38.1 34.8 37.0 39.6
rel-stack post-votes 32.4 28.7 29.2 31.2 30.8 36.5 37.2 35.9 36.9 36.4
rel-trial site-succ 5.2 4.7 7.9 6.7 4.9 6.4 4.7 8.8 6.7 7.9
rel-trial study-adv 2.1 3.0 1.6 1.8 5.1 43.4 43.0 39.0 40.3 48.4

Mean R2 → 22.8 11.9 18.8 22.0 23.7 33.2 31.2 32.2 31.4 32.7

5.2 RELATIONAL ATTENTION LAYER ABLATIONS

Setup. In Tab. 4, we report the effect of removing column, feature, neighbor, or full attention layers
on regression tasks. Classification tasks (App. F) showed minor differences. We maintain the overall
parameter count by increasing the number of transformer blocks.

Observations. Column attention has the highest impact on zero-shot transfer. However, on fine-
tuning the impact is less pronounced, and the impact of feature and neighbor attention is more
significant. Removing full attention has the least impact in both zero-shot and fine-tuned settings,
even significantly improving the results on some tasks, perhaps surprisingly.

6 RELATED WORK

GNNs [15; 33; 4], graph transformers [27; 11; 12], and hybrid GNN-LLM models [42] have been
proposed for relational deep learning, but these methods are schema-specific and lack transferability
across databases. Wydmuch et al. [43] investigate predictive modeling with LLMs, yet this ap-
proach reduces the relational database to a sequence and is constrained by small context windows
that are not tailored to relational structure. Tabular foundation models [18; 29; 23; 35; 19] demon-
strate the benefits of pretraining and in-context learning, but are confined to single-table settings
and cannot capture multi-table relational structure. The most related efforts are KumoRFM [16]
and Griffin [41]. KumoRFM cannot operate in zero-shot settings and its technical details remain
undisclosed. Griffin aggregates at the row level before GNN-based propagation. In contrast, RT
introduces a schema-agnostic, cell-level architecture with Relational Attention masks, enabling pre-
training on diverse databases and robust zero-shot transfer. See App. A for an expanded discussion.

7 DISCUSSION AND CONCLUSION

It is striking that pretraining on only 6 datasets yields such strong zero-shot transfer on completely
unseen datasets, especially considering that the 7 datasets in RelBench are quite diverse. Our abla-
tion studies in §5 have uncovered the following key components which enable zero-shot transfer, in
the order of importance: (1) time-series forecasting from past task table rows for the target entity,
(2) attending over columns with the help of Relational Attention to generalize to new column dis-
tributions, (3) attending over features, both in the same table and in parent tables, with the help of
Relational Attention to generalize to new entity types, (4) schema semantics from table and column
names, (5) in-context learning from task table rows for other entities.

Limitations of RT include inability to handle recommendation or link prediction tasks. Further, it
does not incorporate the names of primary-key and foreign-key columns, which often carry useful
semantics. RT also does not disambiguate between different foreign key columns: for instance, in
a product table with both buyer id and seller id as foreign keys to the user table, the
model cannot distinguish which user bought and which sold the product. Extending RT to handle
such cases, and more generally to support link prediction, remains an important direction for future

9

Preprint. Under review.

work. Finally, more advanced cell encoders can be explored, including graph positional encodings,
to enhance performance for supervised fine-tuning settings in large-data regimes.

To conclude, we introduced the Relational Transformer (RT), a general architecture that advances
foundation models on relational data. RT introduces three key innovations: (i) cell-level tokenization
that unifies diverse predictive tasks as masked token prediction, (ii) Relational Attention layers that
explicitly capture and generalize column, row, and foreign–primary key structures, and (iii) task ta-
ble integration that enables zero-shot prediction across heterogeneous schemas. Through pretraining
on diverse databases, RT achieves strong zero-shot transfer, rapid fine-tuning, and state-of-the-art
results on classification and regression tasks. These advances demonstrate that relational databases
share transferable patterns and position RT as a foundation for general-purpose relational modeling.

ACKNOWLEDGEMENTS

We thank Matthias Fey, Harshvardhan Aggarwal, Vijay Prakash Dwivedi, Michael Bereket, Marcel
Roed, Joshua Robinson, Martin Jurkovic, Fengyu Li, Justin Gu, Zoe Ryan, Sam Thelin, Johannes
Hoffart, Maximilian Schambach, Andrew Pouret, Viswa Ganapathy, Tassilo Klein and Mark Li for
help with this research. We thank SAP Labs LLC for supporting this research.

REFERENCES

[1] Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja,
Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller,
et al. Towards foundational models for molecular learning on large-scale multi-task datasets.
In The Twelfth International Conference on Learning Representations, 2024.

[2] Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing
graph transformers via positional encodings. In International Conference on Machine Learn-
ing, pp. 4103–4139. PMLR, 2024.

[3] Rishi Bommasani et al. On the opportunities and risks of foundation models, 2022. URL
https://arxiv.org/abs/2108.07258.

[4] Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. RelGNN: Composite message pass-
ing for relational deep learning. In Forty-second International Conference on Machine Learn-
ing, 2025.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 785–794, 2016.

[6] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in neural information process-
ing systems, 35:16344–16359, 2022.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

[8] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention:
A programming model for generating optimized attention kernels, 2024. URL https://
arxiv.org/abs/2412.05496.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[10] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

10

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2412.05496
https://arxiv.org/abs/2412.05496

Preprint. Under review.

[11] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I. Kanatsoulis,
Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer, 2025. URL
https://arxiv.org/abs/2505.10960.

[12] Vijay Prakash Dwivedi, Charilaos Kanatsoulis, Shenyang Huang, and Jure Leskovec. Rela-
tional deep learning: Challenges, foundations and next-generation architectures. In Proceed-
ings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2,
pp. 5999–6009, 2025.

[13] Dmitry Eremeev, Gleb Bazhenov, Oleg Platonov, Artem Babenko, and Liudmila
Prokhorenkova. Turning tabular foundation models into graph foundation models, 2025. URL
https://arxiv.org/pdf/2508.20906v1.

[14] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

[15] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph repre-
sentation learning on relational databases. In Forty-first International Conference on Machine
Learning, 2024.

[16] Matthias Fey, Vid Kocijan, Federico Lopez, Jan Eric Lenssen, and Jure Leskovec. Kumorfm:
A foundation model for in-context learning on relational data, 2025.

[17] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards
foundation models for knowledge graph reasoning. In The Twelfth International Conference
on Learning Representations, 2024.

[18] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A trans-
former that solves small tabular classification problems in a second. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[19] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
tabular foundation model. Nature, 637(8045):319–326, 2025.

[20] Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36:16302–16317, 2023.

[21] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and
Pan Li. On the stability of expressive positional encodings for graphs. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[22] Charilaos I Kanatsoulis, Evelyn Choi, Stephanie Jegelka, Jure Leskovec, and Alejandro
Ribeiro. Learning efficient positional encodings with graph neural networks. In The Thir-
teenth International Conference on Learning Representations, 2025.

[23] Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. Carte: Pretraining and transfer for
tabular learning. In International Conference on Machine Learning, pp. 23843–23866. PMLR,
2024.

[24] Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba, Udayan Khu-
rana, Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and Horst Samulowitz. Auto-
mated data science for relational data. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 2689–2692. IEEE, 2021.

[25] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron,
and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learn-
ing. In The Eleventh International Conference on Learning Representations, 2022.

11

https://arxiv.org/abs/2505.10960
https://arxiv.org/pdf/2508.20906v1

Preprint. Under review.

[26] Aliakbar Nafar, K Brent Venable, and Parisa Kordjamshidi. Learning vs retrieval: The role
of in-context examples in regression with large language models. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1: Long Papers), pp. 8206–8229, 2025.

[27] Jakub Peleška and Gustav Šı́r. Transformers meet relational databases, 2024. URL https:
//arxiv.org/abs/2412.05218.

[28] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024.
URL https://arxiv.org/abs/2402.05862.

[29] Jingang QU, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. TabICL: A tabular
foundation model for in-context learning on large data. In Forty-second International Confer-
ence on Machine Learning, 2025.

[30] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[31] Rishabh Ranjan, Saurabh Garg, Mrigank Raman, Carlos Guestrin, and Zachary Lipton. Post-
hoc reversal: Are we selecting models prematurely? Advances in Neural Information Process-
ing Systems, 37:91460–91491, 2024.

[32] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3982–3992, 2019.

[33] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark
for deep learning on relational databases. Advances in Neural Information Processing Systems,
37:21330–21341, 2024.

[34] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Infor-
mation Fusion, 81:84–90, 2022.

[35] Marco Spinaci, Marek Polewczyk, Johannes Hoffart, Markus C. Kohler, Sam Thelin, and Tas-
silo Klein. Portal: Scalable tabular foundation models via content-specific tokenization, 2024.
URL https://arxiv.org/abs/2410.13516.

[36] Gemma Team and Google DeepMind. Gemma 3 technical report, 2025. URL https://
arxiv.org/abs/2503.19786.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Ro-
driguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[39] Liane Vogel, Benjamin Hilprecht, and Carsten Binnig. Towards foundation models for rela-
tional databases [vision paper]. In NeurIPS 2022 First Table Representation Workshop, 2022.

[40] Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. Minilmv2: Multi-head
self-attention relation distillation for compressing pretrained transformers. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2140–2151, 2021.

[41] Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, and Muhan
Zhang. Griffin: Towards a graph-centric relational database foundation model. In Forty-second
International Conference on Machine Learning, 2025.

12

https://arxiv.org/abs/2412.05218
https://arxiv.org/abs/2412.05218
https://arxiv.org/abs/2402.05862
https://arxiv.org/abs/2410.13516
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2302.13971

Preprint. Under review.

[42] Fang Wu, Vijay Prakash Dwivedi, and Jure Leskovec. Large language models are good rela-
tional learners, 2025. URL https://arxiv.org/abs/2506.05725.

[43] Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in rela-
tional databases with llms, 2024. URL https://arxiv.org/abs/2411.11829.

[44] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and
Stan Z Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In The
Eleventh International Conference on Learning Representations, 2023.

[45] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877–28888, 2021.

[46] Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M Bronstein, and
Jian Tang. Fully-inductive node classification on arbitrary graphs. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

[47] Qifang Zhao, Weidong Ren, Tianyu Li, Hong Liu, Xingsheng He, and Xiaoxiao Xu. Graphgpt:
Generative pre-trained graph eulerian transformer. In Forty-second International Conference
on Machine Learning, 2025.

[48] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben
Yan, Lifang He, et al. A comprehensive survey on pretrained foundation models: A history
from bert to chatgpt. International Journal of Machine Learning and Cybernetics, pp. 1–65,
2024.

13

https://arxiv.org/abs/2506.05725
https://arxiv.org/abs/2411.11829

Preprint. Under review.

A RELATED WORK

Relational deep learning (RDL). Fey et al. [15] introduced an end-to-end framework for predictive
modeling on relational databases using neural networks. At its core, RDL represents a database as
a relational entity graph: a temporal, heterogeneous graph where each table is a node-type, each
row an individual node, and every primary-foreign key relationship an edge. Initial approaches
applied heterogeneous graph neural networks directly to these relational entity graphs [33], and
more recently, advanced message-passing approaches have been proposed to enhance the efficiency
of GNNs on relational data [4]. Transformers have emerged as a way to improve upon the GNN
message-passing paradigm. Peleška & Šı́r [27] and Dwivedi et al. [11] propose transformer-based
architectures that achieve better performance than GNNs on relational data. An review of RDL
architecture can be found in [12]. A key limitation, however, is that these architectures are schema-
specific, which prevents pretraining and fine-tuning on diverse database structures. Our Relational
Transformer, by design, is schema-agnostic, enabling it to learn from and be directly applied to new,
unseen database structures. This design principle allows our architecture to demonstrate foundation
model-like capabilities, similar to those recently shown in tabular learning.

Tabular foundation models (TFMs). Recent advancements in tabular foundation models have
demonstrated significant promise, exhibiting capabilities such as in-context learning [18; 29] and
efficient fine-tuning [23]. These efforts have explored both supervised [18] and self-supervised [35;
23] pretraining on real [23] or synthetic [18; 29] data. Extending tabular foundation models to rela-
tional data is non-trivial, because not only are there multiple tables, but rows in one table are linked
to rows in another by foreign-primary key links. We take inspiration for the universal cell encoder-
s/decoders from PORTAL [35], which has a similar handling of column names and text/numeric/-
datetime data types. We also take inspiration from the TabPFNv2 [19] transformer architecture,
which uses stacked layers of row-wise and then column-wise attention, except that we also have
all-pair attention and use attention masks to capture foreign-primary key links.

Relational foundation models (RFMs). While tabular foundation models can, in principle, be ap-
plied to relational datasets, they fail to account for the rich, multi-table structure of real-world data.
To address this limitation, recent works have begun to develop dedicated relational foundation mod-
els. For instance, Fey et al. [16] propose a relational foundation model based on graph-transformers
and in-context learning, demonstrating both zero-shot and fine-tuning capabilities. However, their
solution is not open-sourced, and the exact pretraining procedure has not been released. Sepa-
rately, Wang et al. [41] design a novel architecture pretrained on a mixture of tabular and relational
datasets, showing that fine-tuning improves downstream task performance. Their model, however,
differs significantly from our own; it first aggregates information within each table and then utilizes
graph neural networks to propagate that information between tables. In contrast, our model uses a
cell-level representation of the entire database and employs attention masks to directly represent the
foreign-key structure. This allows our approach to reason directly over the relational database in its
native, cell-based format, offering a more granular and unified understanding.

Pretrained models for graphs. Pretrained graph learning models have shown strong success in
molecular domains. For example, MoleBERT [44] introduces masked atom modeling and triplet-
masked contrastive learning to pretrain GNNs for both node-level and graph-level tasks relevant to
drug discovery. Beaini et al. [1] scale pretraining by curating massive multi-task molecular datasets
with billions of labels, showing that combining quantum and biological data improves low-resource
tasks. Beyond molecules, [20] introduced a novel pretraining framework that leverages prompt-
based graph representations to enable in-context learning on graphs. GraphAny [46] develops a
zero-shot node classification framework, grounded in linear least-squares principles, that general-
izes across graphs with disjoint feature and label spaces by leveraging LinearGNN ensembles and
inductive attention. ULTRA [17] targets knowledge graph reasoning, learning universal relational
representations that transfer zero-shot to unseen knowledge graphs. Finally, GraphGPT [47] casts
graphs as reversible token sequences via Eulerian paths, enabling transformer-based generative pre-
training that scales with model size.

Graphs and Large Language Models. A growing line of research investigates how large lan-
guage models can be adapted to reason over graph-structured and relational data. [14; 28] explore
parameter-efficient encoders that converts graphs into soft prompts for frozen LLMs, showing that
performance strongly depends on the choice of graph serialization and structure encoding. [43] in-

14

Preprint. Under review.

vestigate predictive modeling directly on relational databases with LLMs, demonstrating that careful
schema-aware prompt design improves over naive text flattening. Building on this idea, [42] propose
Rel-LLM, a hybrid architecture that combines GNN encoders with LLMs in a retrieval augmented
generation framework. These works highlight the potential of combining graph or relational en-
coders with LLMs, but they are often limited by small context windows and are not tailored to
relational databases. In contrast, our proposed Relational Transformer directly encodes multi-table
structure via attention masks, offering a fully end-to-end solution that can operate either indepen-
dently or alongside large language models.

B AUTOCOMPLETE TASKS

Definition. Autocomplete tasks are defined as masked cell prediction on feature columns that
already exist in the database. Unlike forecasting tasks, they do not require constructing additional
task tables. The input sequence to the model is constructed in the same way as for forecasting tasks,
preserving the relational structure and temporal order, but sampling starts from the masked database
row.

Task selection. All autocomplete tasks were selected manually by inspecting the database schema.
For each task, we also identify potential sources of information leakage and discard these columns
on the fly when building the input sequence.

Task overview. Tables 5 and 6 list all classification and regression autocomplete tasks, respec-
tively, together with label distributions (classification) and summary statistics (regression).

Table 5: Autocomplete classification tasks with distributions of observed non-missing labels (pro-
portions in parentheses). When applicable, the positive/negative value mapping is provided.

Dataset Table Column Pos./Neg. values Non-missing Positive (prop.) Negative (prop.)

rel-amazon review verified N/A 20 862 040 14 493 882 (0.69) 6 368 158 (0.31)

rel-avito SearchInfo IsUserLoggedOn N/A 2 579 289 827 095 (0.32) 1 752 194 (0.68)

rel-stack postLinks LinkTypeId 1 vs 3 103 969 89 076 (0.86) 14 893 (0.14)

rel-trial
studies has dmc t vs f 234 467 79 850 (0.34) 154 617 (0.66)

eligibilities adult t vs f 273 160 251 581 (0.92) 21 579 (0.08)

eligibilities child t vs f 273 160 51 899 (0.19) 221 261 (0.81)

rel-event event interest not interested N/A 15 398 514 (0.03) 14 884 (0.97)

Table 6: Autocomplete regression tasks with summary statistics of observed non-missing labels
(rounded to two decimals).

Dataset Table Column Non-missing Min Max Median Mean

rel-amazon review rating 20 862 040 0.0 5.0 5.0 4.39

rel-f1

results position 15 207 1.0 33.0 7.0 7.97

qualifying position 9 815 1.0 28.0 11.0 11.24

constructor results points 12 290 0.0 66.0 0.0 3.86

constructor standings position 13 051 1.0 22.0 7.0 7.27

rel-hm transactions price 15 453 651 0.0 0.51 0.03 0.03

rel-trial studies enrollment 271 866 0.0 188 814 085.0 60.0 3 975.83

rel-event users birthyear 36 715 1900.0 1999.0 1991.0 1988.74

C RELATIONAL TRANSFORMER IMPLEMENTATION DETAILS

Sampling cells for the context window. In § 2, prediction tasks such as forecasting and autocom-
pletion are framed as predicting a masked cell in the appropriate row (the seed row). We sample

15

Preprint. Under review.

Algorithm 1: Sampling the context window of Relational Transformer. We use a modified
Breadth-First Search (BFS) algorithm, with accommodations for relational-specific considera-
tions, such as F→P links and temporal constraints.
Input: seed row s, context length L, width bound w, and, for each row r in the database:

non-missing feature cells C(r), P→F neighbors NP→F(r), F→P neighbors NF→P(r)
and timestamp T (r)

Output: the set of database cells C in the context window
C ← {}, F ← {s} // F is the frontier of rows to explore
while |C| < L ∧ F ̸= {} do

/* select a row to explore; R is the set of candidates */
R← {r ∈ F | r was added via an F→P link} // F→P linked rows
if R = {} then

R← argminr∈F HOPDISTANCE(r, s) // rows closest to s

r ← RANDOMSELECT(R) // pick a row at random
F ← F \ {r} // remove row from frontier
if r has been visited then continue else mark r as visited

/* visit row */
C ← C ∪ C(r) // add cells to context
F ← F ∪NF→P(r) // add F→P neighbors to frontier
N ← {q ∈ NP→F(r) | T (q) ≤ T (s)} // filter P→F neighbors by time
N ← RANDOMSAMPLE(N,w) // pick ≤ w P→F neighbors at random
F ← F ∪N // add P→F neighbors to frontier

return C

the context window independently for each training/testing example, so there is always a unique
seed row for context construction. Given the seed row and context length L, a suitable algorithm
should select the cells most relevant to predicting the masked cell. Since relevance requires strong
models to estimate accurately, we use a simple heuristic guided by the intuition that most relevant
information lies within a few hops of the seed row when following F→P and P→F links, and that
lower hops are more informative than higher hops.

We treat rows as the sampling unit: once a row is selected, all its non-missing feature cells (i.e.,
cells not from primary- or foreign-key columns) are included in the context. After the seed row,
other rows are added using a bounded-width BFS across F→P and P→F links, with the follow-
ing modifications: (1) F→P links are immediately followed; (2) the traversal stops when the total
number of cells reaches the context length; (3) unvisited rows at the same depth from the seed row
are sampled uniformly; and (4) rows with timestamps greater than the seed row’s timestamp are
skipped (temporal constraint). The algorithm is summarized in Alg. 1. We use a fast, optimized
Rust implementation to prevent on-the-fly sampling from slowing training.

In Alg. 1, F→P and P→F links are treated asymmetrically. The number of F→P links from a row is
limited by the number of foreign-key columns in that table, and each parent row typically contains
important features (e.g., a transaction row links to user and product). Conversely, P→F
links can have unbounded degree; informative signals from P→F links often arise via aggregation,
with diminishing returns from including many children. Thus we prioritize F→P links (followed
immediately without subsampling) and subsample P→F links by enforcing a width bound w (i.e.,
follow at most w children from any row).

C.1 DISCUSSION

RT preserves the natural symmetries of relational data. In particular, the architecture is invariant to
permutations of rows, columns, and tables, providing an inductive bias that improves generalization.
This contrasts with LLM-based approaches for relational data, which are often highly sensitive to
prompt order and formatting. Permutation invariance has been a key driver of success in prior graph
neural networks, and respecting such symmetries has also shown benefits for large language models.

16

Preprint. Under review.

We also discuss role of the specialized attention layers in determining the expressive power of RT.
For empirical evidence, see § 5.

Column attention. Removing column attention does not reduce expressivity, since global attention
can emulate it. In particular, some global heads can learn to restrict attention to tokens from the
same column by exploiting table and column name embeddings in their query–key construction.

Feature attention. Feature attention is the only mechanism that explicitly groups cells into rows.
While neighbor attention provides partial information,cells in the same row attend to the same set
of neighbors, it cannot uniquely disambiguate rows, especially in tables without incoming foreign
keys.

Neighbor attention. Similar to column attention, neighbor attention is not strictly required for ex-
pressivity, as feature and global attention together can simulate its effect. Feature attention exposes
F→P links, which global attention can then leverage to infer P→F relationships.

Full attention. Without full attention, information can only propagate one hop per layer, limiting
expressivity to local message passing. By contrast, full attention enables long-range interactions in
a fixed number of layers, independent of database or graph diameter.

We leave the full theoretical characterization of RT’s expressive power to future work.

D SUPERVISED FINE-TUNING RESULTS

In this section, we present detailed supervised fine-tuning results. Figures 5 and 6 show per-task
learning curves for classification and regression tasks, respectively. We then provide additional full
fine-tuning results in Section D.1, analyzing the effect of pretraining in high-resource settings and
comparing RT against both schema-specific and schema-agnostic baselines.

60

70

Te
st

 A
UR

OC
 (%

)

rel-amazon/user-churn
4.7M examples

60

70

rel-hm/user-churn
3.9M examples

60

80

rel-stack/user-badge
3.4M examples

60

80

rel-stack/user-engagement
1.4M examples

60

70

80

rel-amazon/item-churn
2.6M examples

101 103

55

60

65

Te
st

 A
UR

OC
 (%

)

rel-avito/user-visits
87K examples

101 103

55

60

65

rel-avito/user-clicks
59K examples

101 103

Fine-tuning steps + 1 (batch_size = 256)

60

70

rel-trial/study-outcome
12K examples

101 103

60

70

80

rel-f1/driver-dnf
11K examples

101 103

60

80

rel-f1/driver-top3
1.4K examples

Pretrained RT
Pretrained Griffin

Untrained RT
Untrained Griffin

Untrained RDL-GNN

Figure 5: Per-task test set learning curves on classification tasks for up to 32k fine-tuning steps (8M
training examples, including repetitions). X-axis is on log-scale.

D.1 SUPERVISED LEARNING IN HIGH-RESOURCE SETTINGS

Setup. In Table 7, we report results from full-dataset fine-tuning, using up to several million train-
ing examples and continuing until convergence (tens of thousands of steps). We compare against
schema-specific baselines (RDL-GNN, RelGNN, and RelGT), which cannot be pretrained, as well
as schema-agnostic baselines (RelLLM and Griffin). For RT and Griffin, we evaluate both untrained
and pretrained initializations to assess the impact of pretraining. For all methods, the best check-

17

Preprint. Under review.

0

10

20

30

40
Te

st
 R

2 (
%

)

rel-hm/item-sales
5.5M examples

0

10

20

30

40

50

rel-amazon/user-ltv
4.7M examples

0

10

20

30

40

50

rel-amazon/item-ltv
2.7M examples

0

10

20

30

40

rel-stack/post-votes
2.5M examples

101 103

5

0

5

10

Te
st

 R
2 (

%
)

rel-trial/site-success
150K examples

101 103

Fine-tuning steps + 1 (batch_size = 256)

0

10

20

30

40

rel-trial/study-adverse
43K examples

101 103

0

20

40

60

rel-f1/driver-position
7.5K examples

101 103

5

0

5

10

15

20

rel-avito/ad-ctr
5.1K examples

Pre-trained RT
Pre-trained Griffin

Untrained RT
Untrained Griffin

Untrained RDL-GNN

Figure 6: Per-task test set learning curves on regression tasks for up to 32k fine-tuning steps (8M
training examples, including repetitions). X-axis is on log-scale.

point is selected based on validation set performance. For RelGNN, RelGT, and RelLLM, we use
the original training setups and hyperparameters. For Griffin, we increase the model size and update
the sampling and pretraining procedures to be consistent with RT.

Observations. The pretrained RT achieves the best performance on average, achieving the highest
mean AUROC and R2. On classification, it is outperformed on certain tasks by RelGNN, RelGT and
RelLLM, but it is important to note that these methods utilize custom setups for each task, whereas
RT uses a single unified hyperparameter setup across all experiments. On regression, pretrained
RT ranks best on average, substantially outperforming the second-best method across most tasks.
Overall, RT matches or exceeds the performance of schema-specific baselines while maintaining
a general, schema-agnostic design, showing that generalization does not come at the expense of
fine-tuning performance.

E CONTEXT CONSTRUCTION ABLATIONS

In Section 5.1, we introduced ablations of the context window to analyze the emergence of zero-
shot performance. Here, we provide the full results of that study. Specifically, we systematically
remove or perturb individual context components and report their effect on both zero-shot transfer
and supervised fine-tuning performance.

Setup. In Table 8, we report results when shuffling column and table names, removing past labels
from the target entity, or removing labels from other entities. For zero-shot evaluation, the ablations
are applied directly to the sampled context used as input. For fine-tuning, models are trained to
convergence with the same modified contexts. In addition, Table 9 provides statistics on the number
of label cells (mean ± std. dev.) included in a context window of length 1024 under our sampling
procedure (Alg. 1).

Observations. We find that zero-shot transfer primarily arises from the presence of past labels of
the target entity. Removing these labels causes the largest drop in performance, whereas removing
labels from other entities has a smaller effect. Shuffling column and table names also harms transfer,
highlighting the importance of semantic signals from schema metadata. In the fine-tuning setting,

18

Preprint. Under review.

Table 7: Supervised fine-tuning results. Models are trained on the full training set until convergence,
with checkpoint selection based on validation performance. RT achieves the best mean AUROC and
R2 across tasks, surpassing both schema-specific (cannot be pretrained) and schema-agnostic (can
be pretrained) baselines.

Dataset Task Train
set size
(sorted)

Cannot be pretrained Can be pretrained

RDL
GNN

Rel
GNN

Rel
GT

Rel
LLM Griffin Griffin RT

(Ours)
RT

(Ours)

pretrained? → No No No Yes No Yes No Yes

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon user-churn 4.7M 70.7 71.0 70.4 71.9 70.0 69.4 70.5 70.8
rel-hm user-churn 3.9M 69.4 70.9 69.3 70.5 68.3 68.0 69.9 70.5
rel-stack user-badge 3.4M 88.9 89.0 86.3 89.6 87.0 87.0 88.5 88.7
rel-stack user-engage 1.4M 90.6 90.8 90.5 91.2 89.8 90.4 90.0 90.2
rel-amazon item-churn 2.6M 82.8 82.6 82.5 83.4 81.1 79.9 83.2 83.4
rel-avito user-visits 87K 66.1 66.2 66.8 67.0 65.0 62.6 65.0 65.2
rel-avito user-clicks 59K 63.1 68.2 68.3 66.7 63.0 64.7 63.6 59.0
rel-trial study-out 12K 68.6 71.2 68.6 71.0 68.9 64.6 68.6 68.2
rel-f1 driver-dnf 11K 72.5 75.3 75.9 77.2 74.5 66.7 78.7 84.2
rel-f1 driver-top3 1.4K 80.9 85.7 83.5 82.2 82.5 78.7 82.7 91.9

Mean AUROC → 75.4 77.1 76.2 77.1 75.0 73.2 76.1 77.2

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-hm item-sales 5.5M 21.8 22.1 22.6 nan 31.1 30.4 45.7 39.0
rel-amazon user-ltv 4.7M 21.9 17.9 17.5 nan 30.7 32.9 47.9 47.4
rel-amazon item-ltv 2.7M 3.7 3.5 3.4 nan 23.4 25.2 31.5 36.8
rel-stack post-votes 2.5M 17.9 12.2 13.1 nan 41.8 42.7 37.1 36.5
rel-trial site-succ 150K 4.0 −9.5 −28.8 nan 6.8 −2.4 −8.8 6.4
rel-trial study-adv 43K 18.8 19.7 17.0 nan 11.2 18.2 41.3 43.4
rel-f1 driver-pos 7.5K 7.6 20.7 12.4 nan 29.9 0.6 33.7 51.6
rel-avito ad-ctr 5.1K 18.3 15.6 18.4 nan 5.9 8.4 −1.5 4.5

Mean R2 → 14.3 12.8 9.4 nan 22.6 19.5 28.4 33.2

classification performance is largely robust to these ablations, but regression tasks consistently ben-
efit from access to past labels of the target entity.

F ARCHITECTURE ABLATIONS

In Section 5.2, we introduced ablations of the relational attention layers to assess their contribution
to zero-shot transfer and fine-tuning performance. Here, we present the detailed results of that study.
Specifically, we remove individual attention layers—column, feature, neighbor, or full/global—and
analyze their effect across regression tasks, while classification results (showing minor differences)
are provided in App. F.

Table 10 shows the full Relational Attention layer ablations. We observe no clear patterns in the
zero-shot setting, but during finetuning removing any layer results in a decrease in performance,
except on the user-clicks task, where the model is prone to overfit.

19

Preprint. Under review.

Table 8: Ablation study of context construction. To explain the zero-shot performance we remove
column names, past labels from the target entity and labels from other entities. To assess how much
task-relevant information is lost, we repeat the same ablations in the fine-tuning setting. Shading
indicates the performance difference relative to the full context (none column).

Dataset ↓ Task ↓ Zero-shot Fine-tuned

Ablated from context → none col
names

self
labels

other
labels none col

names
self

labels
other
labels

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 71.0 48.1 72.2 83.4 83.3 83.4 83.2
rel-amazon user-churn 63.9 63.9 55.2 64.2 70.8 70.4 70.8 70.6
rel-avito user-clicks 59.5 58.5 55.0 59.7 59.0 60.8 61.0 60.1
rel-avito user-visits 61.8 61.2 49.9 62.1 65.2 65.1 64.4 65.3
rel-f1 driver-dnf 82.0 81.7 50.3 82.0 84.2 84.3 83.6 84.3
rel-f1 driver-top3 89.1 86.5 74.3 89.1 91.9 91.8 89.7 91.7
rel-hm user-churn 62.8 60.0 54.5 62.9 70.5 70.6 70.2 70.7
rel-stack user-badge 80.0 79.2 54.8 82.4 88.7 88.9 88.8 88.8
rel-stack user-engage 77.1 80.1 41.9 77.2 90.2 90.1 90.2 90.2
rel-trial study-out 54.5 53.2 54.5 54.6 68.2 69.0 68.8 68.9

Mean AUROC → 70.1 69.5 53.8 70.6 77.2 77.5 77.1 77.4

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-amazon item-ltv 33.2 33.0 -2.8 33.1 36.8 34.7 28.0 35.1
rel-amazon user-ltv 36.4 33.6 -5.7 36.1 47.4 47.2 21.9 37.6
rel-avito ad-ctr 4.5 5.7 -3.6 4.5 4.5 4.9 -5.2 4.3
rel-f1 driver-pos 54.7 50.3 -31.9 54.7 51.6 52.3 54.7 54.1
rel-hm item-sales 14.0 9.2 -2.8 14.7 39.0 39.5 33.6 39.3
rel-stack post-votes 32.4 27.5 -0.7 32.8 36.5 35.9 34.9 37.2
rel-trial site-succ 5.2 3.2 1.5 5.1 6.4 8.3 8.7 2.5
rel-trial study-adv 2.1 1.3 2.1 2.1 43.4 42.4 37.0 38.1

Mean R2 → 22.8 20.5 -5.5 22.9 33.2 33.2 26.7 31.0

Table 9: Breakdown of “in-context labels” sampled by Alg. 1. Context length is 1024 cells. Numbers
are (mean± std. dev.; both rounded to the nearest integer). Target entity, e.g., user, item, etc., is the
one for which prediction is desired. Labels refer to unmasked cells from the target column. Other
entities are reached via graph traversal. Multiple labels are possible for the same entity as the tasks
are temporal.

Dataset Task Target entity
labels

Other entity
labels

Unique
labeled entities

Binary Classification Tasks

rel-amazon user-churn 4 ± 4 1 ± 5 2 ± 3
rel-hm user-churn 6 ± 4 0 ± 0 1 ± 0
rel-stack user-badge 7 ± 6 3 ± 6 1 ± 1
rel-amazon item-churn 8 ± 7 2 ± 6 2 ± 3
rel-stack user-engagement 16 ± 10 10 ± 10 3 ± 1
rel-avito user-visits 2 ± 2 0 ± 0 1 ± 0
rel-avito user-clicks 1 ± 1 0 ± 0 0 ± 1
rel-trial study-outcome 0 ± 0 0 ± 0 0 ± 0
rel-f1 driver-dnf 19 ± 14 0 ± 0 1 ± 0
rel-f1 driver-top3 17 ± 11 0 ± 0 1 ± 0

Regression Tasks

rel-hm item-sales 39 ± 13 0 ± 3 1 ± 1
rel-amazon user-ltv 4 ± 4 1 ± 5 2 ± 3
rel-amazon item-ltv 9 ± 8 2 ± 6 2 ± 3
rel-stack post-votes 16 ± 10 4 ± 14 2 ± 2
rel-trial site-success 1 ± 2 0 ± 1 1 ± 1
rel-trial study-adverse 0 ± 0 0 ± 0 0 ± 0
rel-f1 driver-position 14 ± 10 0 ± 0 1 ± 0
rel-avito ad-ctr 1 ± 1 0 ± 0 0 ± 1

20

Preprint. Under review.

Table 10: Ablation studies on the attention layers of RT on classification tasks. col, feat, nbr,
full denote that column-, feature-, neighbor-, full- attention layers are absent respectively. Total
parameter count is kept constant by increasing the number of layers. Shading is proportional to
difference from the none column.

Dataset ↓ Task ↓ Zero-shot Fine-tuned

Ablated attention → none col feat nbr full none col feat nbr full

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 60.8 73.0 70.8 71.5 83.4 83.3 83.1 82.2 83.2
rel-amazon user-churn 63.9 63.2 62.8 62.9 63.1 70.8 70.7 70.4 69.3 70.3
rel-avito user-clicks 59.5 63.0 62.0 58.7 61.5 59.0 62.1 64.9 62.4 63.3
rel-avito user-visits 61.8 60.9 62.9 62.7 60.6 65.2 65.6 65.3 64.6 65.0
rel-f1 driver-dnf 82.0 79.4 77.1 81.4 81.9 84.2 83.8 82.2 81.1 82.2
rel-f1 driver-top3 89.1 87.5 85.1 88.0 89.3 91.9 92.0 85.9 90.4 90.2
rel-hm user-churn 62.8 66.1 65.8 65.6 64.4 70.5 69.8 70.1 69.4 70.1
rel-stack user-badge 80.0 79.4 82.0 79.7 81.2 88.7 89.2 88.9 88.1 88.8
rel-stack user-engage 77.1 78.2 80.9 79.1 83.1 90.2 90.0 89.5 89.2 90.0
rel-trial study-out 54.5 59.4 54.8 58.6 54.8 68.2 66.6 66.5 68.3 67.1

Mean AUROC → 70.1 69.8 70.6 70.8 71.1 77.2 77.3 76.7 76.5 77.0

Table 11: Pretraining with multi-cell masking. Masked cells contribute to the loss. The target cell
is always masked. Other cells are masked with probability P(mask). NP denotes no pretraining.
Shading is proportional to difference from the P(mask) = 0.0 column.

Dataset ↓ Task ↓ Zero-shot Fine-tuned

P(mask) → 0.0 0.2 0.4 0.0 0.2 0.4 NP

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 70.5 72.1 83.4 83.0 82.9 83.2
rel-amazon user-churn 63.9 62.6 62.9 70.8 70.7 70.6 70.5
rel-avito user-clicks 59.5 61.5 61.1 59.0 62.3 62.2 63.6
rel-avito user-visits 61.8 63.0 63.2 65.2 65.5 65.5 65.0
rel-f1 driver-dnf 82.0 80.9 76.7 84.2 81.7 77.7 78.7
rel-f1 driver-top3 89.1 89.8 87.6 91.9 91.0 91.2 82.7
rel-hm user-churn 62.8 60.5 62.3 70.5 69.9 69.9 69.9
rel-stack user-badge 80.0 79.1 77.9 88.7 88.3 88.7 88.5
rel-stack user-engage 77.1 75.0 73.6 90.2 90.1 90.0 90.0
rel-trial study-out 54.5 55.1 55.2 68.2 70.2 68.2 68.6

Mean AUROC → 70.1 69.8 69.3 77.2 77.3 76.7 76.1

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-amazon item-ltv 33.2 9.3 13.2 36.8 37.0 30.9 31.5
rel-amazon user-ltv 36.4 25.8 16.4 47.4 49.0 49.6 47.9
rel-avito ad-ctr 4.5 8.0 10.8 4.5 3.6 1.9 −1.5
rel-f1 driver-pos 54.7 46.8 42.4 51.6 50.1 47.7 33.7
rel-hm item-sales 14.0 10.0 6.2 39.0 50.7 53.5 45.7
rel-stack post-votes 32.4 33.5 32.3 36.5 39.9 38.5 37.1
rel-trial site-succ 5.2 1.4 3.0 6.4 7.1 6.6 −8.8
rel-trial study-adv 2.1 0.5 −1.8 43.4 47.3 46.8 41.3

Mean R2 → 22.8 16.9 15.3 33.2 35.6 34.4 28.4

21

Preprint. Under review.

G BASELINE IMPLEMENTATIONS

G.1 LLM PROMPT CONSTRUCTION

Large language models (LLMs) are evaluated under the same information regime as our relational
transformer (RT): input to both is constructed from the same context subgraph produced by our
sampling algorithm (Alg. 1). In this graph, nodes correspond to database rows and edges represent
F→P and P→F links. We serialize the sampled entity graph into JSON, which encodes relational
structure.

Serialization procedure. We begin with the subgraph produced by the sampler. Serialization
starts at the task node, which specifies the prediction timestamp and links directly to the target entity
for which the label is to be predicted. From this target entity, we traverse the relational graph using
both F→P and P→F links. Each visited row is merged into the existing record in the case of F→P
link or further serialized and appended as a new entry to the list of linked entities in the case of P→F
link.

Prompt components. Each prompt follows a fixed four-part structure: (i) a short dataset descrip-
tion; (ii) a description of the prediction task; (iii) the serialized graph context (a JSON of table–row
objects) including the prediction timestamp t0; and (iv) a concise instruction specifying the expected
output (“yes” or “no”). Dataset and task descriptions are adapted from prior work [33].

Full prompt example.
You are a strict prediction assistant. Follow the instructions exactly.
Database
Name: Stack Exchange
Description: Stack Exchange is a network of question-and-answer websites on different topics,
where questions, answers, and users are subject to a reputation award process. The reputation
system allows the sites to be self-moderating. The database includes detailed records of

activity
including user biographies, posts and comments (with raw text), edit histories, voting, and
related posts. In our benchmark, we use the stats-exchange site.
Task
Name: user-badge
Description: This task is to predict if this user will receive a new badge in the next 3

months or not.
Input
- Database serialization starting from the target instance, expanding context by including

rows
reached via f2p (foreign to primary) and p2f (primary to foreign) relationships.

- The first timestamp in the sequence denotes the prediction time t0.
Database serialization for the target entity
{

"timestamp": "2021-01-01T00:00:00",
"UserId": 211098,
"Id": 211098,
"AccountId": 12827220.0,
"DisplayName": "Shashwat Tiwary",
"Location": null,
"ProfileImageUrl": null,
"WebsiteUrl": null,
"AboutMe": null,
"CreationDate": "2019-09-15T05:33:35.413000",
"add_badges": [
{"Id": 383629, "UserId": 211098, "Class": 3, "Name": "Editor", "TagBased": false,
"Date": "2019-09-15T07:40:23.563000"}

],
"add_user-badge": [
{"timestamp": "2020-10-01T00:00:00", "UserId": 211098, "WillGetBadge": "no"},
{"timestamp": "2020-04-02T00:00:00", "UserId": 211098, "WillGetBadge": "no"},
...
{"timestamp": "2019-10-03T00:00:00", "UserId": 211098, "WillGetBadge": "no"}

]
}
Output
- Output exactly one word on a single line: yes or no.
- No units, no punctuation, no spaces, no commas, no extra text, no extra symbols, no new

lines.
Make your prediction for the target entity at t0 using database serialization,
database description, and task description.

22

Preprint. Under review.

In-context labels. Due to the nature of our sampling algorithm, past (unmasked) labels from the
target column can remain in the serialized JSON. For example, in the user-badge task (see full
prompt above), the nested entries under add user-badge constitute such in-context labels. More
details on the occurrence and distribution of these labels are provided in Table 9.

G.2 REGRESSION RESULTS WITH LLM BASELINES

In addition to classification, we evaluated zero-shot regression with LLMs of varying sizes un-
der the same RT information regime. Across eight regression tasks, performance was consistently
poor—smaller models even failed to produce stable numerical outputs under strict prompting. We
attribute this to unconstrained number generation and a context not optimized for LLM regression.
Prior work shows that carefully selecting and formatting in-context examples can substantially im-
prove results [26]. Given these limitations, we do not report detailed regression metrics.

G.3 GRIFFIN

To ensure a fair comparison with Griffin, we scale its hidden dimension from 512 to 728, resulting
in a comparable parameter count to RT (22.8M vs. 22.3M). We also match the training setup by
adopting both the leave-one-database-out and continued pre-training regimes. However, since the
Griffin implementation does not support joint training on forecasting and autocomplete tasks, we
restrict it to forecasting tasks only.

Table 12: Zero-shot R2 (%) for 8 regression tasks. Higher is better. Global mean baseline is 0.0.
Setup is same as Table 1.

Target DB ∈ pretraining? → Maybe No Yes

Dataset ↓ Task ↓ Gemma Gemma Gemma Entity
Mean Griffin RT

(ours)
Rel

LLM Griffin RT
(ours)

Parameter count → 4B 12B 27B 0 22M 22M 3B 22M 22M

rel-amazon item-ltv < −9 < −9 < −9 54.2 20.1 32.5 − 20.1 32.2
rel-amazon user-ltv < −9 < −9 < −9 19.9 20.6 36.9 − 24.4 38.3
rel-avito ad-ctr < −9 < −9 −8.2 3.4 2.4 4.5 − 2.4 8.0
rel-f1 driver-pos 35.2 43.4 52.4 38.2 −0.7 52.4 − 4.6 58.7
rel-hm item-sales < −9 < −9 < −9 1.8 2.7 14.0 − 2.5 30.9
rel-stack post-votes < −9 < −9 < −9 43.7 27.4 33.9 − 27.1 35.0
rel-trial site-succ < −9 < −9 < −9 −6.4 1.4 4.5 − 2.6 5.1
rel-trial study-adv < −9 < −9 −7.1 −0.5 −2.5 2.6 − −2.5 3.1

Mean R2 → < −9 < −9 < −9 19.3 8.9 22.7 − 10.1 26.4

H RELATIONAL TRANSFORMER BLOCK

Algorithm 2 illustrates the architecture of a single Relational Transformer Block. This block consists
of a series of attention mechanisms: a column attention layer, a feature attention layer, a neighbor at-
tention layer, and a global attention layer, each with its own specific relational inductive bias. These
Relational Attention layers are followed by a feed-forward network (MLP) for further processing.

Algorithm 2: A transformer block in RT.

Input: input token representations X ∈ Rn×d

Output: output token representations X ∈ Rn×d

X← X+ NORM(MHA(X;Mcolumn))

X← X+ NORM(MHA(X;Mfeature))

X← X+ NORM(MHA(X;Mneighbor))

X← X+ NORM(MHA(X;Mfull))
X← X+ NORM(MLP(X))
return X

23

	Introduction
	Background: Predictive Tasks on Relational Data
	Relational Databases
	Predictive Tasks

	Relational Transformer
	Input representation
	Relational Attention
	Output Decoding and Training Objective

	Results
	Experimental setup
	Learning efficiency
	Zero-shot prompting

	Ablation Studies
	Context Window Ablations
	Relational Attention Layer Ablations

	Related Work
	Discussion and Conclusion
	Related Work
	Autocomplete tasks
	Relational Transformer implementation details
	Discussion

	Supervised Fine-Tuning Results
	Supervised learning in high-resource settings

	Context Construction Ablations
	Architecture Ablations
	Baseline Implementations
	LLM Prompt Construction
	Regression results with LLM baselines
	Griffin

	Relational Transformer Block

