arXiv:2510.09580v1 [cs.Al] 10 Oct 2025

GraphMERT: Efficient and Scalable Distillation of Reliable
Knowledge Graphs from Unstructured Data

Margarita Belova margarita.bel@princeton. edu
Department of Electrical and Computer Engineering, Princeton University

Jiaxin Xiao j20800@princeton.edu
Department of Electrical and Computer Engineering, Princeton University

Shikhar Tuli stuli@alumni.princeton. edu
Department of Electrical and Computer Engineering, Princeton University

Niraj K. Jha jha@princeton.edu
Department of Electrical and Computer Engineering, Princeton University

Abstract

Researchers have pursued neurosymbolic artificial intelligence (AI) applications for nearly
three decades because symbolic components provide abstraction while neural components
provide generalization. Thus, a marriage of the two components can lead to rapid ad-
vancements in Al. Yet, the field has not realized this promise since most neurosymbolic Al
frameworks fail to scale. In addition, the implicit representations and approximate reason-
ing of purely neural approaches limit interpretability and trust. Knowledge graphs (KGs),
a gold-standard representation of explicit semantic knowledge, can address the symbolic
side. However, automatically deriving reliable KGs from text corpora has remained an open
problem. We address the above challenges by introducing GRAPHMERT, a tiny graphi-
cal encoder-only model that distills high-quality KGs from unstructured text corpora and
its own internal representations. Together, GRAPHMERT and its equivalent KG form a
modular neurosymbolic stack: neural learning of abstractions; symbolic KGs for verifiable
reasoning. GRAPHMERT + KG is the first efficient and scalable neurosymbolic model to
achieve state-of-the-art benchmark accuracy along with superior symbolic representations
relative to baselines.

More concretely, we target reliable domain-specific KGs that are both (1) factual (with prove-
nance) and (2) valid (ontology-consistent relations with domain-appropriate semantics).
When an off-the-shelf large language model (LLM), e.g., Qwen3-32B, generates domain-
specific KGs, it falls short on the reliability front due to prompt sensitivity, shallow domain
expertise, and hallucinated relations. Thus, practitioners should avoid employing LLM-
generated KGs in high-stakes domains, e.g., medicine, law, business, education, etc. On
text obtained from PubMed papers related to diabetes, our KG extraction pipeline with a
small 80M-parameter GRAPHMERT yields a KG with a 69.8% FActScore; a 32B-parameter
baseline LLM yields a KG that achieves only a 40.2% FActScore. The GRAPHMERT-
extracted KG also achieves a significantly higher ValidityScore of 68.8%, compared to an
LLM-generated baseline (43.0%), demonstrating its ability to preserve ontology alignment.
Finally, human experts can edit and audit the extracted KGs, further increasing their relia-
bility. This is nearly impossible with purely-neural representations. Hence, GRAPHMERT
enables efficient, scalable, transparent (interpretable and explainable), attributable (with
provenance), accountable (with governance), editable, auditable, and continually improv-
able state-of-the-art neurosymbolic Al

Index Terms: Hallucinations, interpretability, knowledge graphs, language models, neu-
rosymbolic methods, retrieval-augmented generation.
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1 Introduction

Artificial intelligence (AI) has long oscillated between two dominant paradigms: symbolic reasoning and
neural learning (Shavlik et al., 1991; d’Avila Garcez et al., 2002). Symbolic systems excel at explicit (rule-
based) inference, providing interpretability and strong exact reasoning. This assumes precise and consistent
symbolic abstractions. However, such systems struggle with noisy or ambiguous data. Neural approaches,
by contrast, thrive on large-scale and general-purpose pattern recognition, often outperforming hand-coded
explicit representations (Sutton, 2019). Nevertheless, neural networks operate as black boxes, offering lit-
tle transparency in their decision-making (Sharkey et al., 2025). Their representations are approximate:
ambiguous, difficult to control, and not grounded in explicit rules. Thus, each paradigm, taken alone, has
critical gaps. Neurosymbolic Al is a synthesis of the two paradigms, aiming to combine the flexibility of
neural models with the rigor and interpretability of symbolic systems. By uniting these complementary
strengths, it opens up a path toward systems capable of both scalable learning and sound reasoning — a
longstanding ambition of the field (Garcez & Lamb, 2023; Towell, 1994; d’Avila Garcez et al., 2019).

Large language models (LLMs) have generated enormous excitement, but their reasoning is ultimately prob-
abilistic and often unable to perform causal inference, opaque to humans, and prone to hallucinations,
especially during multi-step reasoning (Marcus, 2018; Ji et al., 2023). Their opaqueness raises serious con-
cerns about whether such models can be trusted (von Eschenbach, 2021; Alzubaidi et al., 2023). LLMs
trained on general text corpora may also fail to adapt to specialized domains or incorporate new knowl-
edge without undergoing expensive retraining (Zhao et al., 2025). These limitations highlight the need for
external, explicit sources of factual grounding in high-stakes use cases (Fan et al., 2024).

Unifying knowledge graphs (KGs) with LLMs could help overcome some of these limitations, as KGs offer
a natural complement (Ibrahim et al., 2024). By encoding knowledge in a structured, symbolic form of
head-relation-tail triples with explicit and verifiable relations, KGs offer interpretability, auditability, and
domain-specific depth that LLMs lack (Pan et al., 2023a). Thus, KGs can guide LLM inference and enable
robust evolution of background knowledge, while LLMs contribute flexible reasoning, efficient handling of
ambiguity through approximate inference, and serve as a natural language interface (Pan et al., 2023b). This
synergy can enable KG-guided exploration and learning, support agentic workflows driven by interaction with
an editable knowledge base, and enhance the trustworthiness of LLMs in high-stakes application domains
by reinforcing factuality and enabling immediate knowledge updates.

Yet, constructing a KG from scratch in a new domain is a notoriously arduous task (Zhong et al., 2023;
Ji et al., 2022). The process typically involves cleaning and pre-processing heterogeneous data, multi-step
knowledge acquisition, and post-processing. Ensuring that the resulting KG is reliable and factual is even
more challenging, often requiring extensive manual inspection and crowdsourcing (Wang et al., 2021). In
fields where no ground-truth KG or domain-specific benchmarks exist, this task becomes infeasible without
expert intervention. This makes existing approaches unscalable.

Given these obstacles, we propose characteristics that an effective KG construction method should provide:

1. Factuality and provenance: Triples grounded in source text with verifiable citations.

2. Validity: Adherence to ontological schema constraints, appropriate term granularity, and domain-
correct relations.

3. Automation: End-to-end extraction without expert oversight; usable by non-specialists.
4. Scalability: Robust performance as data volume and compute grow.
5. Domain generality: Principles that transfer across subject areas.

6. Global integration: Cross-document linking of concepts, not just within local spans.

We refer to KGs that are both factual and valid as reliable; hence, we classify methods that produce factual
and valid triples as reliable.



Recently, KG generation with decoder-based LLMs has become the most widely used and studied method (Xu
et al., 2024), especially for commonsense knowledge extraction (West et al., 2022). Nonetheless, we demon-
strate that LLMs are unable to construct reliable domain-specific KGs. The factuality challenge faced by
LLMs intersects with several other pressing issues, such as hallucinations, outdated knowledge, and lack of
depth in given domains (e.g., in health, law, and finance applications) (Wang et al., 2025a).

Despite their ease of use, versatility, broad knowledge coverage, and impressive general-purpose language
skills (Minaee et al., 2025), LLMs as KG constructors are known to underperform on domain-specific
datasets (Zhu et al., 2024) and are susceptible to domain-irrelevant noise in the context (Chen et al., 2024).
For example, Yang et al. (2025) highlight limitations of LLM-based KG creation in handling domain-specific
medical terms and encoding context-dependent relations beyond generic predicates. Hallucinations fur-
ther restrict text-generative approaches from producing fully accurate and trustworthy domain-specific KGs
without human validation (Ghanem & Cruz, 2025), often resulting in inclusion of fabricated facts in the
KG (Huang et al., 2025a). Since LLMs are oblivious to their training sources (Khalifa et al., 2024), prompt-
based KG distillation from an LLM’s weights does not provide source attribution and obfuscates knowledge
provenance, thus casting doubts on its reliability (Pan et al., 2023a).

Fine-tuned models demonstrate significantly higher accuracy compared to zero-shot and few-shot prompting,
exhibit enhanced extraction fidelity in the domains they are adapted to, and often produce much fewer
hallucinated facts (Ghanem & Cruz, 2025). Without fine-tuning, LLMs are inclined to leak general knowledge
obtained through pretraining, potentially overlooking vital domain-specific information. This calls into
question their usefulness in specialized domains (Yang et al., 2023). In addition, because LLMs are highly
prompt-dependent, their behavior can only be steered through prompting; without fine-tuning, prompted
outputs may not align with task requirements. However, fine-tuning of LLMs requires labeled training
data, negatively impacts generalization in heterogeneous domains, and ultimately reduces adaptability to
knowledge domains that differ from the fine-tuning set (Ghanem & Cruz, 2025).

Finally, KG extraction from text corpora with off-the-shelf LLMs is not global in the sense that the extracted
triples are confined to a single text chunk presented in the context window. Such triples are often local, i.e,
they may only reflect a spurious correlation based on co-occurrence of various terms, as opposed to global
triples obtained from the larger text corpora that can generally be deemed as universal facts. Extending
context length is not a solution to countering this problem because it is known to degrade output quality. In
particular, hallucinations become more frequent in this situation (An et al., 2024), thus affecting the model’s
capability to harness information from lengthy input contexts.

The current approaches fail to meet all six requirements for KGs we listed above (Hofer et al., 2024). A
method that satisfies all six could unlock numerous downstream applications. However, a reliable KG can
be extracted only if the data are of high quality (Rejeleene et al., 2024; Geiger et al., 2020; Wang et al.,
2023). Yet, such data are scarce. This leads us to the central question:

How can we build a reliable domain-specific KG from limited high-quality sources?

To address this challenge, we propose a novel framework, GRAPHMERT (Graphical Multidirectional Encoder
Representations from Transformers), for reliable KG extraction from small high-quality domain-specific
data. GRAPHMERT relies on an encoder-only transformer that distills a symbolic representation from its
weights. It jointly learns cross-modal representations: semantic — from a small expert-curated initial seed
KG, and syntactic — from unstructured sentence-level text by minimizing the standard masked language
modeling (MLM) and the proposed masked node modeling (MNM) losses. We automatically extract a KG
that captures factual knowledge by training GRAPHMERT on high-quality texts with a small seed KG
(e.g., 100+ triples per relation). The framework is domain-agnostic and only requires a seed KG along
with a small, high-quality, domain-specific dataset (e.g., ~ 100M tokens). To the best of our knowledge,
GRAPHMERT -powered KG extraction is the first framework that possesses all six characteristics of an
effective KG mentioned earlier:

1. Factuality and provenance: We implement triple extraction at the sentence level. One can trace
back each triple to its source sequence, thus supporting knowledge provenance. FActScore, which



quantifies the factuality of a KG (more details in Sec. 6.2), for the GRAPHMERT-generated KG
(69.8%) is much higher than that of an LLM-generated one (40.2%).

2. Validity: The resulting KG preserves the relation usage patterns imposed by the ontological structure
of the seed KG, which enhances the validity of the relations in the extracted KG relative to the LLM-
extracted baseline KG. ValidityScore, which quantifies the ontological alignment of a KG (more
details in Sec. 6.2), for our KG (68.8%) is much higher than that of the baseline (43.0%).

3. Automation: It does not need manual feature selection, rule handcrafting, or human experts in the
loop. It leverages a neural-to-symobolic converter, i.e., GRAPHMERT, to automatically and reliably
generate a KG.

4. Scalability: We obtain training data only from credible sources and the compact GRAPHMERT
(with just 80M parameters) eliminates the need for pretraining on large unverified text, making
the approach much more practical than employing expensive LLMs (with billions or trillions of
parameters). It can be scaled when provided with more data and given extra compute resources.

5. Domain generality: It relies on domain-agnostic principles. We do not hard-code any domain-specific
parameters to the proposed GRAPHMERT pipeline.

6. Global integration: It can connect global concepts across the whole dataset throughout training, in
contrast to extracting disconnected information from isolated text.

The rest of the article is organized as follows. In Sec. 2, we review different KG extraction techniques and
motivate the need for a reliable KG. In Sec. 3, we provide a brief motivational example. In Sec. 4, we give a
detailed overview of our proposed GRAPHMERT framework and its architecture. In Sec. 5, we describe the
experimental setup. In Sec. 6, we provide experimental results. In Sec. 7, we discuss the limitations of our
methodology and discuss future work. Finally, we conclude in Sec. 8.

2 Background and Related Work

In this section, we review prior research that is relevant to our work, including applications of neurosymbolic
AT and KGs. We then examine existing KG extraction methods, their limitations, and how our framework
addresses these gaps. Finally, we provide the technical background on graph transformer architectures that
is necessary to understand the remainder of this work.

2.1 Knowledge Graphs

The term “Knowledge Graph” was coined by Google in a blog (Singhal, 2012) in 2012. Google anticipated
a great potential of graph representation in web search for discerning semantic connections in vast web data
to respond to user queries. Since then, KGs have sparked a great deal of research on knowledge-aware
applications (Zhang et al., 2024a). A KG G = (V, E) can be viewed as a directed graph where nodes
V represent real-world entities and directed edges E C V X V represent relationships between them (see
Fig. 1 for a toy example). Each directed edge e = (u,v) € E connects two nodes u,v € V and encodes a
relationship r between the corresponding entities. Semantically, a KG can be thought of as a set of triples
G = (h,r,t) = (head, relation, tail), where head and tail denote two KG entities connected by a directed
relation. For example, in Fig. 1, (Metformin, TREATS, Type 2 Diabetes) (note the implied directionality in
the representation) is one of the triples in the toy KG.

2.2 Importance of KGs in Neurosymbolic Al

Reasoning is the defining challenge in neurosymbolic AI. Researchers have long struggled to combine the
efficiency of neural learning with the rigor and interpretability of symbolic inference (Zhang et al., 2021).
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Figure 1: A toy KG example from the medical domain.

2.2.1 The Representation Dilemma: Neural or Symbolic?

Traditional Al research overwhelmingly associates reasoning with purely symbolic systems, such as expert
systems (van Melle, 1978; Lindsay et al., 1993) or logic-based AI (McCarthy, 1980; Colmerauer & Roussel,
1996). For decades, this paradigm shaped Al practice under the premise that human intelligence could be
reduced to formal logic operating on symbols (Newell & Simon, 1976; Haugeland, 1985). Symbolic methods
offer clarity and structure by explicitly encoding rules over discrete concepts (Newell & Simon, 1976) and
are reliable, given suitable abstractions. The symbolic approach governed the AT field till the 90s, when its
drawbacks became evident: Symbolic systems struggle with ambiguity, contextualization, and the fluidity
of real-world knowledge (Harnad, 1990). In addition, computational complexity limits scalability of systems
that are already prone to brittleness: Complete symbolic grounding of a knowledge base leads to a worst-case
combinatorial explosion (Chen & Suen, 1994).

In contrast, neural approaches rely on multidimensional embeddings as their representations and approximate
knowledge grounding through gradient-based learning over a continuous parameter space (LeCun et al.,
2015). They are robust against outliers and inaccuracies in data, and scale learning and inference well (Hitzler
et al., 2022). Modern deep learning (DL) excels in domains such as image classification (Krizhevsky et al.,
2012) and machine translation (Bahdanau et al., 2016). Neural systems are efficient learners but forfeit
transparency: Their decision pathways remain opaque and lack the verifiable interpretability of symbolic
inference (Tran et al., 2025). They tend to memorize, thus undermining reliable generalization beyond
observed facts, especially in out-of-distribution domains. Furthermore, while probabilistic and approximate
inference accommodates ambiguities, it yields imprecise logical inference.

A fundamental trade-off is apparent: Symbolic reasoning offers precision and interpretability but lacks
scalability, while neural reasoning is scalable and flexible but lacks transparency. The central question
remains: Which representation best fits a given task? Tasks that involve complex, high-volume, and noisy
data, particularly those centered on pattern recognition, primarily favor neural DL systems. In contrast,
symbolic forms are best suited to problems that require human interpretability or necessitate verifiable
reasoning, e.g., in critical decision-making domains (Rudin, 2019). Tasks that require explainability or
involve abstract symbolic data structures (Wolfram Research Inc.) naturally favor symbolic systems, which
are inherently self-explanatory (Hitzler et al., 2022). For instance, graph-based symbolic reasoning reduces
many queries to reachability checks, yielding verifiable answers. Due to these complementary advantages
and limitations, researchers are increasingly focused on neurosymbolic integration (Tran et al., 2025) for
complex AT challenges that cannot be solved by either approach individually.



2.2.2 KG with Neural Network: Unifying the Representations

In many tasks, the solution is not to pit symbolic and neural approaches against each other but to combine
them in hybrid, modular systems. Neural networks discover statistical patterns through gradient descent;
symbolic layers then manipulate extracted structure efficiently (Garcez & Lamb, 2023). This integration en-
ables knowledge extraction from neural models. Within such a neurosymbolic framework, KGs can naturally
serve as symbolic memory and rule repositories. Coupled with neural networks, they provide modularity and
cross-representation translation. KGs may handle tasks better suited to symbolic representation, mitigating
the weaknesses of implicit neural reasoning. Moreover, when a KG is distilled directly from a neural network
itself, it provides a transparent view of the learned representations of the model, fostering trust and enabling
cross-domain transfer. By decoupling learning (implicit, neural) from reasoning (explicit, symbolic), KGs
address interpretability, verifiability, and factuality gaps in modern Al systems that are dominated by neural
approaches (Besold et al., 2017).

2.2.3 KG Applications in Neurosymbolic Frameworks

KGs with high-quality expert knowledge enable a range of downstream applications.

Explicit reasoning and knowledge transfer: Symbolic inference over KGs is efficient and inter-
pretable (Cheng et al., 2024). For instance, retrieving all drugs (d) that (1) target a protein (p) associated
with Type 2 Diabetes and (2) are approved by the FDA, expressed as the conjunctive query:

3 p, d (associated_with(p, Type_2_Diabetes) A targets(d,p) A approved_by(d, FDA)) (1)

Explicit rules can also be transferred across related domains. Neural reasoning complements this by lever-
aging KG embeddings to exploit graph structure while ignoring explicit constraints, enabling it to handle
ambiguity and subtle semantic variations (Zhang et al., 2021).

Reliability in critical fields: In sensitive domains, auditable and editable KGs can serve as a persistent
knowledge base: Facts can be inspected, verified, and updated directly (Pan et al., 2023a). LLMs, by contrast,
embed knowledge implicitly in parameters, making tracing and verification difficult (Akyurek et al., 2022),
and are prone to hallucinations (Huang et al., 2025b). Updating LLMs is resource-intensive, requiring fine-
tuning or retrieval-augmented generation (RAG), and resolving contradictions demands complex methods
such as context-aware decoding. Verification of generated content against a factual KG minimizes the
risk of inaccuracies or hallucinations (Luo et al., 2024; Hron et al., 2024). Furthermore, a KG offers the
“ability to forget”: Information can be erased if required by legal regulations or upon user request. By
contrast, removing knowledge from LLM requires complex interventions and sophisticated strategies that
risk catastrophic unlearning (Si et al., 2023), raising concerns about access to harmful content, user privacy,
and copyright violations (Tian et al., 2024).

RAG factuality and scalability: To enhance factuality, RAG can be replaced with GraphRAG (Edge
et al., 2024). In standard RAG, answer accuracy depends heavily on the relevance and quality of retrieved
text. This often fails when information is buried in long passages or scattered across documents. Further,
vector-based RAG depends on textual embeddings that may fail to correlate semantically similar concepts
dispersed in spatiotemporally disparate sources. KGs provide an anchoring structure for LLMs to maintain
context, and make evidence clear, verifiable, and lightweight for efficient retrieval. This improves scalability
and lowers generation costs. Recent work by Rao et al. (2024) shows GraphRAG outperforming vector
RAG and HybridRAG (Sarmah et al., 2024) on arXiv datasets, demonstrating superior factual accuracy and
reasoning. These results highlight GraphRAG’s potential, especially for tasks requiring multi-hop reasoning
and sustained context understanding.

Reinforcement learning: KGs are effective for policy-guided walks in reinforcement learning with logical
rules (Uddin et al., 2025; Liu et al., 2021), as they encode explicit relations and allow rule-based constraints
on transitions. This structured setting maintains logical consistency and supports optimal path learning.
By contrast, using unstructured text as the environment leads to noisy and inconsistent transitions, making
rule-aware exploration more challenging.



Interpretability of neural network decisions: Extracting a KG from a model, which externalizes
neural associations into explicit, structured relations, unveils acquired knowledge (Swamy et al., 2021). It
maps hidden representations onto human-understandable concepts, enabling tracing of predictions, post-
hoc explanation, and auditing. Unlike raw embeddings or hidden activations, which remain opaque, KGs
provide a symbolic layer for inspecting reasoning chains, thus bridging neural representations with semantic
knowledge.

Discoveries: KGs uncover hidden insights by linking concepts, which appear unconnected, through explicit
graph paths. This connectivity underpins applications such as recommendations, where relevant entities are
suggested based on graph neighborhoods, and analogical discovery, where cross-domain parallels emerge
through reasoning over paths. Unlike unstructured text or embeddings, KGs provide verifiable relations,
enabling trustworthy discoveries. In biomedicine, for example, a path like drug — protein target — pathway
— disease can reveal repurposing opportunities, such as a hypertension drug acting on pathways implicated
in diabetes.

2.3 KGs for Domain-specific Superintelligence

In the near future, a natural scarcity of high-quality text sources may impede the scalability of ever-larger
LLMs, necessitating a paradigm shift that favors smaller language models with domain-specific expertise.
This would shift focus from general-purpose artificial general intelligence to domain-specific superintelligence:
from breadth to depth.

Superintelligence (Bostrom, 2014), an entity whose intelligence surpasses human capability and may diverge
from anthropomorphic reasoning, could excel in task-specific reasoning, generate disruptive insights, and
exceed human-level creativity (Szocik et al., 2020). A recent study by Dedhia et al. (2025) illustrates
one path toward this goal by translating multi-hop KG paths to composite natural language statements,
effectively linking knowledge depth to KG path length. They demonstrate how to boost reasoning ability
in a chosen domain using a high-quality domain-specific KG: fine-tuning a small language model based on
deep, multi-hop KG knowledge. The longer the paths used for fine-tuning, the better their reasoning — a
key property for domain-specific superintelligence. Seen from this perspective, conventional text datasets
resemble one-hop knowledge: They only touch the surface and thus produce models that elicit surface-level
understanding. In this context, a high-quality, domain-specific KG that explicitly encodes the wealth of
knowledge through concise and unambiguous semantic relationships serves as a powerful tool for unlocking
deeper intelligence. Such a structured knowledge simplifies learning of meaningful semantic representations,
particularly where models would otherwise be overwhelmed with the syntactic complexity of lengthy yet less
informative sentences. This indicates that a scalable method for automatic extraction of high-quality KGs
would open up a path to scalable superintelligence.

2.4 Existing KG-extraction Methods

Next, we briefly review existing KG-extraction methods. For further details, we direct the reader to a
comprehensive review on KG construction (Zhong et al., 2023). We discuss the following categories: (1)
task-specific natural language processing (NLP) methods, (2) triple embedding-based, and, the most recent,
(3) generative, or LLM-based, which we discuss in greater detail, given its current prominence.

Given the growing attention to LLM-driven KG construction (Zhu et al., 2024), we further differentiate KG
extraction from KG generation, to clarify their respective advantages, limitations, and application scopes.
We classify methods where an LLM plays a pivotal role in the KG construction pipeline, either generating
triples conditioned on input texts or distilling knowledge from model weights, under the category of KG
generation. We refer to all other approaches as KG extraction.

2.4.1 Task-specific NLP Methods Scale Badly

Early rule-based information extraction systems demanded heavy feature engineering and domain expertise.
Modern pipelines sequentially chain machine learning components—named entity recognition, coreference



resolution, and relation extraction (Jaradeh et al., 2023)—often relying on structured or semi-structured
data (Hofer et al., 2024). These systems require sophisticated text preprocessing heuristics (Rao et al.,
2024), e.g., as in the case of conditional random fields. Long short-term memories and convolutional neural
networks introduce locality bias. Another drawback is that errors propagate over the pipeline. Overall, these
methods can be accurate, but are very labor-intensive, not fully automatic, and hard to scale.

2.4.2 Triple Embeddings are Local, Closed-domain, and Miss Long-range Dependencies

An embedding-based approach seeks to train ML methods on KGs to capture semantic and structural
patterns of the graph into embeddings by optimizing a scoring function. Embeddings enable the model
to predict missing links (triple completion) and estimate the likelihood of new relations (link prediction;
Cheng et al. 2024). However, this approach suffers from several limitations, including selection bias, lack
of scalability, brittleness to KG errors, and limited external/world knowledge (Xia et al., 2025). Because
most KG embedding models operate on local triple patterns, they struggle to compose long multi-hop
chains, handle negation, or respect ontological constraints — particularly when relations are n-ary, qualified
(e.g., temporal, provenance), or context-dependent. They also assume a largely closed-world, static graph:
Cold-start entities/relations and evolving KGs typically require expensive retraining or ad-hoc heuristics,
and performance degrades under distribution shift. More concretely, embedding-based approaches face the
following limitations.

Sparsity, limited information, and vocabulary: The scale of the largest publicly available KGs, e.g.,
Wikidata (118M+ entities), PubGraph (385M+ entities; Ahrabian et al. 2023), is of the order of 10® entities.
The scale is incompatible with text corpora sizes: In 2024, top-tier LLMs reported up to 10'3-token training
datasets (Villalobos et al., 2024), and the pretraining corpora of leading projects can collectively surpass
700TB (Liu et al., 2024b).

Insufficient utilization of semantic information: Learning an embedding representation that incorpo-
rates equally good graph structural and semantic information remains challenging. This is an active research
frontier itself. Multiple efforts are targeted at developing architectures and approaches that produce em-
beddings that are not overly localized (Rao & Wang, 2023), incorporate multiple relation types (Lu et al.,
2023), and better integrate contextual (including semantic) information for improved reasoning (Shi et al.,
2025). This suggests that embedding methods are useful in task-specific applications based on KGs, but on
their own, fall short in extending KGs.

Generalizability: Embedding methods do not generalize well across different KGs. Each KG is charac-
terized by its own set of relations, attributes, and ontology, making it impossible or impractical to unite
many KGs for training. In practice, embeddings entangle schema-specific signals (relation vocabularies, type
hierarchies, qualifier formats). Hence, representations learned on one KG transfer poorly to another with
different ontologies or naming conventions. Cross-KG use then requires costly alignment steps — entity
linking, relation mapping, and negative-sampling redesign — and even after alignment, out-of-vocabulary
entities/relations and schema drift often degrade performance (Chen et al., 2023b).

2.4.3 LLM-based KG Generation is Not Reliable

With the tremendous success of LLMs on all kinds of NLP tasks, modern research on KG extraction is
skewed towards extracting relational knowledge from LLM weights using prompts (Zhu et al., 2024; Carta
et al., 2023; Li et al., 2025; Gupta et al., 2025). The widespread adoption of LLMs can be attributed
to their versatility across tasks, adaptability to diverse domains, and ease of use, which together make
them attractive as general-purpose Al systems. LLMs capture relational knowledge unevenly: They are
more accurate for some types (e.g., commonsense or hierarchical ‘is-a’ links) and less accurate for others
(e.g., detailed encyclopedic facts or multi-hop traversal relations; Pan et al. 2023a). In addition, a range of
inherent drawbacks raises concerns about the use of LLMs for reliable domain-specific KG generation. The
drawbacks we discuss next appear to be intrinsic to generative methods of KG construction.



LLMs are brittle with respect to prompts: Instruction fine-tuning does not fully address this prob-
lem (Zhou et al., 2024). KG extraction with prompts is biased towards prompt structure (Cao et al., 2021).
LLMs are sensitive to task-framing: answer consistency can shift with small syntactic changes (Hagstrom
et al., 2023), with slight prompt variations (Mousavi et al., 2024; Wang et al., 2024a), and even with respect
to basic logical constraints (Ghosh et al., 2025). Retrieval augmentation can mitigate inconsistency and
knowledge-cutoff issues (Shuster et al., 2021), but introduces new failure modes: conflicts between retrieved
evidence and LLM’s parametric knowledge (Zhang et al., 2025; Zeng et al., 2025), imperfections in retrieval
and ranking (Jin et al., 2024), and weak relevance estimation, resulting in incorrect utilization of the retrieved
knowledge (Wang et al., 2024e).

LLMs hallucinate: Beyond reproducibility, LLMs hallucinate outputs that are nonsensical or unfaithful
to the provided source content (Ji et al., 2023; Zhang et al., 2024b; Li et al., 2024). Hallucinations persist
regardless of model size or training data scale (Shuster et al., 2021). The current consensus is that hallucina-
tions are an inherent, unavoidable property of LLMs. Some scholars formally show that, from the theoretical
viewpoint, hallucinations may be innate to probabilistic generative methods (Xu et al., 2025). All methods
to strengthen LLM reasoning, such as chain-of-thoughts with self-consistency, fine-tuning, augmented gen-
eration, and greedy decoding, improve accuracy, but are unable to eliminate nontrivial hallucinations (Kim
et al., 2025). In the context of KG generation, LLMs struggle with inverse inference (the “reversal curse”):
They may learn (A, is-a, B) yet fail to infer the inverse relation (Berglund et al., 2024), undermining triple
extraction in domains where inverse relations are common and semantically critical.

LLMs are not factually accurate: Factuality and hallucination are distinct: Factuality errors occur
when a model fails to learn or apply factual knowledge accurately, whereas hallucinations are ungrounded or
unfaithful content relative to the provided source (Wang et al., 2024f). As demonstrated in our motivating
example (Sec. 3), even state-of-the-art models can return factually divergent answers to equivalent queries.
Because models acquire factual knowledge during pretraining and can add more via continued pretrain-
ing (Chang et al., 2025), rigorous dataset cleaning is essential. Yet, verifying or synthesizing high-quality data
at the LLM scale is infeasible in practice, creating a fundamental size-quality trade-off (see Sec. 2.5). No cur-
rent LLM offers the factuality needed for trust. Even the most advanced commercial systems make significant
factual errors, which spike on rare entities and remain less factual than humans (Min et al., 2023), with mis-
takes persisting even in search-augmented tools (Mehrotra & Marchman, 2024). Consequently, any method
that relies on LLMs needs robust verification. In high-stakes domains (e.g., medicine (Thirunavukarasu
et al., 2023), autonomous driving, aeronautics, and cybersecurity), verification alone is insufficient: Outputs
must also be interpretable and explainable for decision-makers. However, today’s LLMs provide little insight
into their decision rationale (Madsen et al., 2024; Ye & Durrett, 2022; Bowman, 2023), falling short of the
guarantees these applications demand.

2.5 Impact of Data Quality and Dataset Size

Prior work shows that state-of-the-art LLM capabilities emerge only when model size, dataset scale, and
compute reach sufficient magnitude (Brown et al., 2020; Kaplan et al., 2020; Wei et al., 2022). As a result,
modern pretraining corpora often favor scale over domain fidelity. Given LLM propensity to memorization,
flawed data sources with misinformation and biases are a primary driver of hallucinations (Huang et al.,
2025b). Domain adaptation with fine-tuning (Hu et al., 2022) can improve factuality and coherence, but risk
catastrophic forgetting and cross-domain interference (Wang et al., 2024d); continued pretraining adapts
knowledge more smoothly to a target domain, but demands substantial additional data. In medicine, re-
searchers warn that scarcity of diverse, high-quality data at the scale required by LLMs leads to a “garbage
in, garbage out” dynamic and remains a key barrier to clinical LLM deployment (Thirunavukarasu et al.,
2023). Compounding this, large-scale public text corpora lack established cross-verification mechanisms.
Privacy and copyright concerns restrict access to private datasets for training purposes (Pereira et al., 2022;
Wang et al., 2024b). In cases where models are trained on closed-source training data that are not accessible
for scrutiny, the lack of transparency blocks the public’s ability to conduct a thorough investigation (Nguyen
et al., 2024).



As a response to the limited availability of verified sources (Gandhi et al., 2024; Wang et al., 2024c) and
unaffordable training costs, a growing line of work seeks to maximize LLM performance with less data,
emphasizing the quality-quantity trade-off. The NLP field’s post-GPT-3 trajectory (Brown et al., 2020), pri-
oritized ever-larger unlabeled web corpora, arguably underweighting data quality. Recent efforts formalize
data-quality criteria (Zheng et al., 2025) and show that small, high-quality datasets can outperform substan-
tially larger but unvalidated corpora (Iskander et al., 2024); likewise, compact models trained on carefully
curated, domain-specific text sometimes surpass frontier general-purpose models on in-domain tasks (Kadosh
et al., 2024; Chen et al., 2023a).

Our approach also advocates for “data quality first”: We contend that high-quality data — not the sheer
volume of data — is crucial to creating a reliable KG.

2.6 GraphRAG

Retrieval-augmented generation: RAG enhances the capabilities of LLMs by connecting them to ex-
ternal data sources. In a typical RAG system, a user’s query is used to retrieve relevant documents or
text chunks from a large corpus. This retrieved information is then combined with the original query into
a prompt for the LLM, which generates a response grounded in the provided context (Ram et al., 2023).
This approach is particularly effective when the knowledge base is too large to fit within the LLM context
window. The most common retrieval method, vector RAG, involves embedding the text corpus into a vector
space and retrieving chunks that are semantically closest to the query vector (Gao et al., 2024). However,
this approach struggles with queries that require a holistic understanding of the entire dataset.

GraphRAG: To strengthen standard retrieval, many systems incorporate KGs. GraphRAG (Edge et al.,
2024) leverages the inherent modularity of KGs to support global sense-making in two stages: indexing and
querying. In the indexing stage, an LLM builds an entity-level KG from source documents, then partitions
the graph into a hierarchy of nested communities based on the density of connections between entities. The
LLM then produces bottom-up summaries for each community, yielding a hierarchical summary tree that
aggregates local insights into global ones. In the querying stage, GraphRAG extracts a subgraph based on the
pre-generated community summaries and the query, and uses that subgraph as context to generate answers.
With its hierarchical design, GraphRAG reports improvements over conventional vector-based RAG (Edge
et al., 2024).

Using GraphRAG for KG evaluation: The global sense-making capability of GraphRAG also enables a
unique method for evaluating the quality of the KG and benchmarking it across various tasks. The accuracy
of the answers to user queries is directly dependent on the coverage, validity, and factuality of the KG. A
poorly constructed KG (e.g., one with incomplete entities or incorrect relationships) results in fragmented,
inaccurate, or nonsensical responses. Therefore, by assessing the quality of GraphRAG’s output to queries,
one can indirectly measure the quality of the KG itself.

2.7 Graph Attention Networks

The transformer architecture (Vaswani et al., 2017) has established itself as the de facto standard for NLP
tasks. Self-attention lets a transformer model long-range dependencies in parallel, dramatically speeding
up training compared to their predecessors. Their stackable blocks enable scaling to billions of parameters.
Due to their scalability and unprecedented versatility on language tasks, transformers currently dominate
the NLP field. Yet, the native transformer self-attention module handles only sequential input.

2.7.1 Graph Transformer Architecture

To enable training of a transformer on graphical input, the graph structure must either be encoded into the
input or the attention module must be modified. We do both: (1) encode relation embedding into input
graph sequences (see Sec. 2.7.2) and (2) modify attention weights to reflect spatial distance in input graphs
(see Sec. 4.2). To implement our model, we take inspiration from Graphormer (Ying et al., 2021) but design
alternative graph encodings tailored to language tasks as well.
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2.7.2 Hierarchical Graph Attention Networks

To incorporate semantic relations into GRAPHMERT, we combine a generic transformer architecture with
a hierarchical graph attention network (H-GAT; Xu et al. 2021; Nathani et al. 2019). H-GAT fuses relation
embeddings into semantic graph nodes before passing the graph sequences to the transformer layers. The
original H-GAT architecture hierarchically combines intra-relation and inter-relation attention to derive
node embeddings by aggregating the embeddings of the neighbors of the graph node. To tailor H-GAT to
our input (i.e., chain vocabulary graphs that we describe later), we discard the unnecessary inter-relation
representations and use the simplified architecture with token embeddings instead of graph node embeddings.

In the GRAPHMERT implementation, given a triple < h,r,¢ > — head, relation, tail, where head and tail
are represented by {hq,.., Ay} and {t1,..,t,} at the token level, for any given tail token ¢; we have:

e{") = LeakyReLU (a,T [W,t; | W,k ]). 2)
where W, is a learnable relation embedding matrix, a, is a learnable relation embedding, and LeakyReL.U
is an activation function.

xp(el”
ey = ble) (3)

T S ew(ey))

Then the final node embedding for the tail token is given by:

az(;-) = softmax; (

t; = ol W,h;. (4)
j=1

Thus, the new tail token t; fuses the relation embedding via W, and a, with its initial tail token embedding
t; and all head token embeddings {hi, ..., hy }-

3 Motivational Example

What follows is a motivating example to demonstrate the importance of reliability in our proposed pipeline.
To do this, we design a simple “reverse test” using Unified Medical Language System (UMLS; Boden-
reider 2004) triples. First, we sample a ground-truth triple from UMLS: (chronic kidney disease,
has_finding_site, kidney structure) [SNOMED CT United States Edition vocabulary in UMLS lists
kidney structure as the only finding site for chronic kidney disease (CKD)]. Next, we manually create a
sequence that implies a weak connection between CKD and cerebellar gray matter abnormalities (so that
it is appropriate for the associated_with relation, i.e., (chronic kidney disease, associated_with,
cerebellar gray matter) would be an ontologically appropriate triple). We craft this sequence so that
it reflects recent medical studies on brain imaging in patients with CKD (Xiao et al., 2024), which show
indirect abnormalities in the cerebellar gray matter. Even with this indirect correlation, the logical triple
should remain (chronic kidney disease, has_finding_site, kidney structure), as found in UMLS.

Next, we prompt strong general-purpose LLMs (Gemini 2.5 Pro, Claude Sonnet 4.5, GPT-5, and Grok
4) to infer the triple from the sentence. Despite fluent rationales, these models frequently hallucinate
relations or return ontologically invalid outputs, yielding triples that are non-factual or misaligned with
UMLS constraints. Their outputs seem to show spurious correlations instead of semantic connections. In
contrast, our GRAPHMERT model, trained as detailed in the following sections, recovers the correct UMLS
triple from the same sentence. This example underscores that adhering to biomedical ontologies matters:
Terms like “gray matter” should be used with an associated_with relation rather than being miscast with
finding_site; structure-aware training is essential for preventing such errors. This is only possible with
the proposed GRAPHMERT pipeline.
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Prompt. Please complete the following medical KG triple (head, relation, tail):
(chronic kidney disease, has_finding site, ...)

based on the sequence:

Chronic kidney disease (CKD) is a renal disorder. However, neuroimaging cohorts of people with CKD
have reported subtle, group-level abnormalities within the cerebellar gray matter. Studies note modest
reductions or regional alterations in cerebellar gray-matter volume, cortical thickness, and diffusion met-
rics. These observations are heterogeneous and not diagnostic, yet they place observable findings at the
cerebellar gray matter in CKD. Thus, CKD may be associated with cerebellar gray-matter changes.

Different LLMs produced mostly wrong answers to this triple-generation query:

Gemini 2.5 Pro: (chronic kidney disease, has_ finding_ site, cerebellar gray matter)

The provided text explicitly states that neuroimaging studies “place observable findings at the cerebellar gray
matter in CKD.”

Claude Sonnet 4.5: Based on the provided sequence, the medical KG triple should be completed as:
(pediatric chronic kidney disease (pckd), has_ finding_ site, kidney)

Reasoning:
The primary and defining finding site for chronic kidney disease is the kidney itself, as explicitly stated in
the passage: “Chronic kidney disease (CKD) is a renal disorder” While the passage does discuss secondary
neuroimaging findings in the cerebellar gray matter, these are described as:

e Subtle and group-level abnormalities

o Heterogeneous observations

o Not diagnostic

e Modest and regional alterations

In contrast, the kidney is the primary pathological site where CKD occurs by definition. The cerebellar changes
represent associated findings or potential complications, but they are not the primary finding site of the disease
entity itself. For medical knowledge graphs, the has_ finding_ site relation typically indicates the primary anatom-
ical location where the disease process occurs, which for CKD is definitively the kidney. If you needed to represent
the cerebellar findings, that would be better captured with a different relation such as has_associated_ finding or
may__affect, rather than has_ finding_ site.

GPT-5: Based on the medical knowledge graph triple format and the provided sequence, the completed triple
would be: (chronic kidney disease, has_finding_ site, cerebellar gray matter)

This is based on the text where chronic kidney disease (CKD) is associated with observable findings in the
cerebellar gray matter, specifically mentioning reductions in cerebellar gray-matter volume, cortical thickness,
and diffusion metrics.

Grok 4: Based on the medical knowledge graph triple format and the provided sequence, the completed triple
would be: (chronic kidney disease, has_ finding_ site, cerebellar gray matter)

The triple (chronic kidney disease, has_ finding_ site, cerebellar gray matter) is completed based on the provided
sequence, which states that neuroimaging studies of chronic kidney disease (CKD) patients have identified subtle
abnormalities in the cerebellar gray matter, such as reductions in volume, cortical thickness, and diffusion metrics.
The relation “has_ finding_ site” indicates the anatomical location where these abnormalities are observed, making
“cerebellar gray matter” the appropriate tail entity.
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Next, based on the top 20 predicted tokens from our model with top-5 softmax probabilities of 0.789, 0.173,
0.01, 0.003, 0.003, our pipeline yields “kidneys” (with Gemini 2.5 Pro as a helper LLM), which corresponds
to the UMLS gold answer:

GraphMERT:
structure, kidney, system, function, renal, disease, heart, kidneys, of, physiology, arterial, underlying, pancreas,
organ, impaired, health, cerebrovascular, pathophysiology, injury, morphology

Gemini 2.5 Pro reasons over GraphMERT triple candidates:

1. Analyze the Input:

Sequence: The text describes Chronic Kidney Disease (CKD) as a “renal disorder,” indicating its primary location
is the kidneys. It also explicitly mentions that in people with CKD, neuroimaging has found “abnormalities
within the cerebellar gray matter.”

2. Generate Potential Tails:
The most obvious and primary finding site for a “renal disorder” is the kidneys.
The token list contains kidneys. This is a very strong candidate.

I can also form renal system from the tokens renal and system. This is also correct but is more general than
kidneys. Specificity is preferred.

3. Verify and Filter Tails:
Candidate 1: kidneys

e Factual: Yes, CKD is a disease of the kidneys.

e Supported by sequence: Yes, the text calls CKD a “renal disorder.”

e Valuable & Specific: Yes, it pinpoints the primary organ affected. It is specific and not vague.
e Uses only candidate tokens: Yes, “kidneys” is in the list.

e Conclusion: This is a high-quality, factual tail.

The text also mentions findings in the “cerebellar gray matter” I can look for tokens to  con-

struct this. Cerebrovascular is available, and structure is available. I could potentially
form cerebrovascular structure. However, the cerebellum 1is not primarily a vascular struc-

ture, and this tail is very general and not as precise as the information in the text (“cerebel-
lar gray matter”). More importantly, the key tokens cerebellar and gray matter are missing. Therefore,

I cannot accurately represent this secondary finding site.

4. Final Decision: The best and most directly supported tail I can construct from the given tokens is
kidneys. While the text mentions other sites, the provided tokens do not allow for their accurate
creation.

As we noted above, there is an indirect correlation between CKD and cerebellar gray matter in the source
sentence; however, it does not imply the triple suggested by most of the LLMs in their responses. This
illustrative case reinforces recent evidence that LLMs regrettably answer based on word correlations in
language rather than honing in on the semantic meaning of text and vernacular syntax, making them
surprisingly brittle (Li et al., 2020). Recent works also show that, despite the high accuracy on various
language tasks, when examined more closely, LLMs are only learning surface-level information, such as word
overlap, perplexity, sentence lengths, etc., and not the underlying task at hand (Durmus et al., 2022). Taken
together, the example above and the additional results we present later make us skeptical about deploying
these models in high-stakes use cases for constructing reliable, domain-specific KGs.

4 GraphMERT KG-extraction Framework

This section introduces the KG extraction pipeline and the GRAPHMERT architecture. It also introduces
an LLM-based KG generation method that is used to obtain the baseline KG.
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Figure 2: Overview of the GRAPHMERT framework. It is trained on the fusion of syntactic and semantic
examples (IT) and augments syntactic data with semantic tails (I); an LLM helps determine the linguistic
structure of tails proposed by GRAPHMERT (III). (I): Chain graph (Ic) combines syntactic knowledge from
text corpora (Ib) with semantic examples and relations from a seed KG (Ia): Roots hold syntactic knowledge
(in orange), sparse leaves hold semantic examples (in blue), and edges encode semantic relations (purple
arrows). (II): GRAPHMERT is trained on chain graphs to align semantic examples with their syntactic
context (ITa). It then predicts novel semantic token completions for chain graphs without injections, using
their syntactic information as context (IIb). (IIT): An LLM combines raw semantic token completions from
GRAPHMERT into grammatically well-formed triple tails, producing complete triples. After filtering them
by similarity to the source syntactic context and dropping duplicate triples, we obtain the final KG.

One of the earliest studies on relational factual knowledge extraction from pre-trained encoder-only models
used cloze-style prompts, as discussed by Petroni et al. (2019). E.g., “John Lennon plays [MASK]” to
complete (John Lennon, Personlnstrument, 7). Later work showed that such a prompt-based retrieval is
heavily biased toward prompt syntax rather than factual content (Cao et al., 2021). For instance, Garcia-
Silva et al. (2023) report that BERT (Devlin et al., 2019) completes the above example with “guitar, piano,
drums, himself, harmonica,” where syntactically plausible but non-factual predictions like “drums” rank
high and, surprisingly, more specific prompts, such as “John Lennon plays instrument [MASK],” produce
irrelevant outputs like “here, there, too, himself, onstage.”

These shortcomings stem from the syntactic form of the prompt overshadowing the factual knowledge of the
model, which is mostly semantic. Our key innovation overcomes this obstacle by implanting relations into an
encoder via graph attention and training relation embeddings in a dedicated semantic space under the unified
MLM 4 MNM objectives. Our approach directly teaches the model relational knowledge abstracted away
from prompt syntax. In parallel, GRAPHMERT learns the syntactic structure too and leverages syntactic
information as a context for semantic knowledge.

A high-level overview of the pipeline is shown in Fig. 2. GRAPHMERT is a multi-directional encoder-
only transformer. To complete a triple, it predicts a masked tail (a node in the KG, hence MNM). Just
like typically text-based encoder-only models, GRAPHMERT also learns syntactic representations from text
corpora via the MLM learning objective (Devlin et al., 2019). To enable an encoder-only extraction, we
create a new textual data format that encapsulates semantic triples and engineer GRAPHMERT to work in
this space.

4.1 Syntactic and Semantic Spaces: Merging Semantic Triples and Syntactic Text into a Unified
Graphical Format

In essence, GRAPHMERT performs syntactic-to-semantic knowledge conversion during prediction. The
sentences in the dataset represent the syntactic space. The KG triples represent the semantic space that
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Figure 3: Chain graph. Roots are in orange, leaves are in blue. Conceptual representation (A, B): term
level, each circle is a term. Actual representation in training (C): token level, each square is a token. Each
term can be multi-token. (A) No injections, all leaves are empty. (B) One root node has a leaf term. (C)
Token-level representation for the 3-leaf case. Here, the leaf in (B) is encoded with a maximum of three
tokens and padded to the maximum length if needed. Root term comprises two tokens, and tail term also
comprises two tokens that are connected to the first root token.

includes semantic relations. To enable knowledge form conversion, we propose leafy chain graph encoding
that unifies the semantic and syntactic representations into a joint representation (see Fig. 3) in which chain
graph roots lie in the syntactic space and leaves, along with their relations, lie in the semantic space. As we
demonstrate later, leaves play a crucial role in training semantic relation embeddings.

Leafy chain graphs follow a regular structure, which enables sequential encoding of the graphical information.
All chain graphs have a fixed number of root nodes; the number of leaves per root node is also fixed. Leaves
of the same root are connected, introducing a shortest-path linkage between them. All edges are undirected
(the directionality of relations is implied in the architecture).

To create a unified representation for the training data, we parse the dataset into chain graphs with <pad>
tokens in all leaf positions, keeping only root nodes non-empty. Next, we populate the empty leaves with
semantic nodes and their relations from the seed KG in a separate pipeline step, as detailed in Sec. 4.3.
Thereafter, the dataset consists of leafy chain graphs with a regular structure. Most leaf nodes are pads,
while some contain semantic tail tokens from the seed KG. This regularity in graphical input informs and
simplifies the choice of graph encodings in GRAPHMERT, as discussed further in Sec. 4.2.1.

4.2 GraphMERT Architecture and Training

The core architectural challenge in graph transformer design lies in encoding graphs into a sequential input
for attention-based learning, in order to enable robust graphical representations. We discuss this in the next
two subsections.

4.2.1 GraphMERT Architecture with Graph Encodings

The proposed GRAPHMERT F(z, ), x: chain graph input, #: trainable parameters, is a RoBERTa-style (Liu
et al., 2019) encoder-only transformer integrated with H-GAT, trained with the MLM + MNM objective.
Fig. 4 illustrates the GRAPHMERT architecture. Our choice of graph encodings is informed by the regularity
of the input graph: The input consists of chain graphs with a fixed number of root and leaf nodes. Therefore,
to describe the input graph class, node encoding, semantic leaf relation encodings, and spatial distances
between node pairs are sufficient. Though common in graph transformers, degree and sparsity encodings
offer little value in our setup. The two core components of GRAPHMERT that encapsulate graph encoding
are the input embedding layer and the attention decay mask.
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Figure 4: Main GRAPHMERT architectural components. GRAPHMERT is a RoBERTa transformer with
two modifications. (I) In the embedding layer, H-GAT encodes semantic triples. (IA) There are leaves
connected to a root node; hence, the node feature is equal to the token embedding. (IB) There are leaves
connected to a root node; H-GAT fuses leaves, relations, and head embeddings resulting in fused node feature.
(IT) In the attention layers, attention weights are multiplied by a function that exponentially decreases with
pairwise distance. They encode graph relations and graph distance, respectively. The input is either a node
feature or a fused node feature.

The embedding layer processes input nodes, concretely, root nodes along with their leaves, and semantic
relations for each injected leaf node. For every injected triple, its head (multi-token) lies in the root space
and its tail (also multi-token) lies in the leaf space. The embedding block fuses every leaf token embedding
with its relation and all its head tokens via H-GAT (see Sec. 2.7.2):

t; =1; +H-GAT(ti,T,{h1,..,hm}), (5)
dim(t}) = dim(t;),

where ¢; is the tail token embedding, h; is the head token embedding, and dim is the embedding dimension.
The derived embedding replaces the initial leaf embedding, effectively encoding the whole semantic triple
into the leaf embedding space, as shown in Fig 5. During training, masking leaf nodes enables the training
of relation embeddings with backpropagation, as shown in Fig. 6.

The attention decay mask encodes the spatial distance between graph nodes. The core idea is that attention
between two nodes should decrease with respect to their distance. Following Gradformer (Liu et al., 2024a),
we use an exponential function with base 0 < A < 1 and the shortest path in the exponent. To adjust Grad-
former’s exponential mask for vocabulary sequence graphs that experimentally need a smoother attention
decay with respect to the shortest path, we introduce a square root in the exponent.
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Figure 6: Relation embedding training. The sequence with updated leaf embeddings is passed to the trans-
former layers. The masked nodes (both roots and leaves) contribute to the loss calculation. For masked
leaves, the gradient flows back to them through H-GAT, updating the relation embeddings.

The shortest path for every node pair is calculated using the Floyd-Warshall algorithm:

sp(i, j) € RV*N N = number of input nodes (6)

The exponential decay mask is an N x N matrix defined as:

Fsp(i, j)) & NCELUW D7) 0 < X < 1 (7)
GELU = z®(z),

®(z) — Gaussian cumulative distribution function,

where p is a learnable parameter and X is a hyperparameter. For sp(i,j) < p, the activation function,
GELU (Hendrycks & Gimpel, 2023), zeroes the exponent, making the mask close to zero for nodes with the
shortest path less than or equal to the learned p. Finally, we multiply the attention weights A € RV*N by
the mask elementwise, effectively incorporating spatial distance in the attention mechanism.

A=Acf, AcRVN (8)

The exponential mask is shared across all attention layers.
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4.2.2 GraphMERT Training

As explained earlier, we represent each sentence as a leafy chain graph G whose root nodes are text tokens,
and graft semantic leaf nodes from a seed KG onto entity /mention spans via relation edges. GRAPHMERT
jointly pretrains using MLM over syntactic tokens and MNM over semantic leaves: We randomly select
spans in either space and train the model to reconstruct the missing words and/or KG leaves. This setup
couples the transformer’s token encoder with the H-GAT relation encoder so that the surface form and KG
semantics align during pretraining.

Lvm(®) == (logpe (z¢ |G\ar,uns,) + Lsso (z |G\M9UMT)), (9)
teM,

Lyvnm(0) = — Z log po (ge |G\, unt, ) (10)
teM,

L(0) = Lvem(0) + pLynm(0), (11)

where = denotes the input token sequence; G is the text chain graph augmented with KG leaf nodes; M, and
M, are the masked text and leaf spans, respectively; z; is a masked token target; g, is a masked semantic
leaf target (as a leaf-span explained below); Lspo(x+) is span boundary loss on M, (explained below);
denotes all model parameters (transformer + H-GAT); and p > 0 balances the two losses (we use p = 1).
Both objectives use span-wise masking.

In GRAPHMERT, H-GAT is responsible for training semantic relation embeddings. Dropout on relation
embeddings prevents overfitting on scarce semantic examples. In parallel, transformer attention trains the
remaining network parameters, attending jointly to tokens from both the syntactic and semantic spaces.
GRAPHMERT is trained with a span-masking schema. Empirically, span masking tightens alignment among
the top-k tokens predicted within a single leaf. Later, better-aligned tokens result in more nuanced com-
binations when constructing complete tails. We discuss the top-k predicted token combination stage in
Sec. 4.4.

From the syntactic stream, we exactly follow the span masking implementation, which sums regular masked
objective with span boundary loss of SpanBERT (Joshi et al., 2020). In the semantic space, however, we
introduce a modification: Whenever a leaf span is selected (with a standard MLM/MNM probability of
0.15), we mask all the leaf tokens rather than sampling span length from the geometric distribution, which
could mask a leaf subset for a given root. In other words, M, and M, follow different masking schemas.
The rationale for this stems from backpropagation. Relation embeddings must receive gradients from the
entire tail so that they can capture its full meaning, not just fragments from individual tokens. Since the
semantic meaning of a relation manifests only across the complete tail expression, masking the whole leaf
ensures that gradients reflect the whole semantic unit.

4.3 High-quality Text Sources and Dataset Preprocessing for GraphMERT Training

Our framework focuses on domains with stringent factuality requirements. The compact GRAPHMERT
model makes it feasible to train exclusively on limited expert-verified open-source texts. This approach
takes an essential step toward reliable KG extraction: Data cleaning reduces hallucinations and training on
scientific corpora can substantially limit domain-specific errors (Li et al., 2024). Reliance on expert-verified
data prevents importing spurious facts from vast, tainted corpora.

Data quality requirements apply equally to the seed KG. The seed KG is a set of domain-specific triples that
serve as initial relation examples for the model. As the full training set in the semantic space, the seed KG
defines the relation set for the extracted KG. Its quality, therefore, is of utmost significance in training of
robust semantic relation embeddings in GRAPHMERT. A seed KG can be obtained from an external source,
provided that it satisfies the following two conditions:

1. It contains clean, domain-specific data.
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2. It has a sufficiently diverse vocabulary.

Condition (1) provides the foundation for learning accurate relation embeddings and Condition (2) prevents
relation embedding overfitting on a small set of tokens. To obtain a domain-specific seed KG that meets
these requirements, we suggest either selecting a relevant, well-curated external KG or generating one (see
Sec. 4.5), followed by thorough cleaning.

After obtaining a KG, we apply a similarity filter to it against the training data (see Sec. 4.3.1), which
ensures alignment with the target domain [Condition (1)] and identification of the triples most relevant to
the context (see Sec. 4.3.2). The algorithm for selecting the best matches, described in Sec. 4.3.3, addresses
vocabulary diversity [Condition (2)]. This algorithm selects triples from the external KG to position them
within the semantic space in the chain graphs, given the potential spots for triple heads within the syntactic
space. For domain-specific head discovery in the dataset, we use a helper LLM.

4.3.1 Entity Linking

Although GRAPHMERT is applicable to any domain-specific text corpora, we leverage biomedical knowl-
edge in the UMLS to develop a multi-stage process to link entities discovered in the text to concepts in
UMLS. This process ensures that identified entities are mapped to standardized Concept Unique Identifiers
(CUIs), facilitating the subsequent retrieval of structured information from the UMLS KG. We combine both
embedding similarity and string similarity.

Stage 1: Embedding-based candidate retrieval: The initial stage aims to rapidly identify a set of
potential candidate concepts from the vast UMLS ontology. This is achieved by representing both the
discovered source entities (queries) and the target UMLS entities in a shared high-dimensional vector space.

We use SapBERT (Lim & Kim, 2022), an encoder-only language model specifically pre-trained on biomedical
knowledge from UMLS, which is able to capture the nuanced difference between biomedical terms. Each
discovered head entity and every UMLS entity is processed through SapBERT to produce a unique vector
embedding.

To efficiently search through millions of UMLS entity embeddings, we employ an Approximate Nearest
Neighbor (ANN) algorithm. ANN constructs a pre-computed index of the UMLS embeddings, enabling
highly efficient retrieval of the top-k most similar vectors for a given query vector. For each discovered
entity, we use this method to retrieve the top 10 UMLS candidates based on the cosine similarity of their
embeddings.

Stage 2: Fine-grained filtering with string matching: The top candidates from embedding-based
retrieval are then subjected to a more rigorous filtering process based on string similarity. We use character-
level 3-grams (char-3grams) as a robust string comparison. Each entity name is represented as a set of
char-3grams, which can be easily compared with others using standard set-based similarity metrics. We
compute Jaccard similarity between the 3-gram sets of the source entity and each of the 10 candidate
entities:

_ lanB|
TAB) = A B 1An B

A candidate entity is confirmed as a valid link only if its Jaccard similarity score is greater than the threshold.
The threshold is set to 0.5 based on manual inspection. The entities that successfully pass both stages are
considered the final Linked UMLS Entities and are used for the following task.

4.3.2 Contextual Triple Selection

Following the entity linking stage, each input sequence is associated with a set of UMLS concepts. While
these links grant access to the structured knowledge within UMLS, a single concept can be involved in
hundreds of triples, many of which may be irrelevant to the specific context of the source text. Therefore, a
crucial subsequent step is to identify and select only the most contextually relevant triples for each sequence.
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Figure 7: Data preparation for GRAPHMERT. To find the most relevant triples, we perform semantic
similarity matching of triples to dataset sequences. The triple head should almost literally match one of
the entities discovered in Step (I); from them, we pick the top triples whose tails are semantically close to
the sequence. All matched triples are subject to the injection algorithm (IIT), which selects the top-scoring
triples and limits the number of equivalent triples. The injected triples together comprise a seed KG.

We perform this selection using an embedding-based relevance-ranking procedure. For each sequence, we
begin by retrieving the complete set of triples from the UMLS KG where any of the linked entities from that
sequence appear as the head entity. We compute a semantic relevance score for each triple with respect to
the original input sequence. We exclude triples with undesired relations from the search: relations that are
not useful to have in the KG (see Table Al in Appendix A).

Specifically, each retrieved triple, consisting of a head, relation, and tail, is transformed into a linearized
sentence by concatenating its components with spaces. We encode both the original input sequence and
the sentence formed by each triple into high-dimensional vectors using the Gemini embedding model, text-
embedding-004, and use cosine similarity as the semantic relevance score. For each linked entity, we rank its
associated triples by their semantic relevance scores and retain the top 40 triples. The resulting contextually
filtered set of triples is then used in the subsequent injection process.

4.3.3 Seed KG Injection

The KG injection algorithm prepares a GRAPHMERT-compatible dataset of leafy chain graphs by selecting
relevant triples from an external KG source (potentially, limited in size) based on their similarity score to the
input sequence, thresholded with a hyperparameter «.. At the same time, the algorithm maintains diversity
in the injected relations and semantic vocabulary. All triples selected by the algorithm comprise the seed
KG. In this process (see Fig. 7), triples are mapped to the chain graph semantic space: The head is placed at
a root node and the tail at the root’s leaf node. Critically, the injected triples must be contextually relevant
to the sequence. This aligns transformer attention with H-GAT during training on the chain graphs, as both
attend to the semantic and syntactic spaces simultaneously; otherwise, the attention layers would get a noisy
signal from extraneous tokens. Furthermore, because both H-GAT and transformer attention jointly train
GRAPHMERT relation embeddings, alignment between leaf and root tokens enables vocabulary transfer
from the syntactic root space into the semantic leaf space. This process forms integrated representations
that support the retrieval of novel tails from a shared embedding space during prediction.
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Why do we need an injection algorithm? A naive strategy would be to inject the top-scoring triple
for each head out of all the matched ones. We now demonstrate why a triple with the best similarity to a
sequence may be suboptimal for both (a) populating the semantic space and (b) GRAPHMERT training.

(a) Limitations for the semantic space: Similarity matching favors frequent terms in the dataset
(Zhou et al., 2022). Hence, triples with common domain-specific keywords in tails score highly across many
sequences. As a result, a small set of triples achieves high similarity scores across a large number of sequences.
If only top matches were to be chosen, these ubiquitous tails would dominate the semantic space, suppressing
rarer but semantically valuable tails that introduce novel terms into the semantic space. The scoring is also
biased towards classificatory relations like isa or inverse_isa, since they often restate the head (e.g.,
(fibrosing interstitial lung diseases, isa, fibrosis of lung) in a biomedical KG). Such close textual matches
contribute little new information.

(b) Limitations for GraphMERT training: Over-injecting frequent tokens leads to a skewed training
distribution. If the semantic space vocabulary is dominated by a few tokens, relation embeddings overfit on
them, causing GRAPHMERT to predict a narrow token subset. Likewise, certain relations, e.g., “isa” and

“inverse__isa,” would dominate the limited spots for injected triples, suppressing all other relations. Thus,
GRAPHMERT will be undertrained on the other relations.

Design goals: To address these limitations, we design the injection algorithm around three goals:

1. Eliminate low-relevance matched triples.
2. Select one triple (“inject”) per head out of all matched with the sequence.

3. Diversify injected relations by balancing examples across all relations.

Goal (1) can be satisfied by thresholding similarity scores. However, Goals (2) and (3) cannot be enforced
independently: Selecting only the top match achieves (2) but undermines (3), amplifying certain top-scored
relations, such as “isa”. The algorithm must enforce (2) and (3) jointly, balancing contextual relevance with
relation diversity. The proposed KG injection algorithm iteratively drops undesired triples from all matched
triples in two interleaving phases: first, by maximizing the score; second, by maximizing the diversity of
relations. The surviving triples are “injected” into the semantic space and comprise the seed KG. We defer
the description and implementation details to Appendix B.

4.4 GraphMERT Pipeline for Knowledge Graph Extraction

We distill internal GRAPHMERT representations from the trained GRAPHMERT into explicit graph triples
by adding leaf nodes. Using purely-MNM prediction, we distill semantic knowledge directly from GRAPH-
MERT weights, conditioned on a sequence from which we want to extract a triple. The role of a sequence
in our framework is analogous to the role of a prompt in LLM-based KG generation, but our prediction is
unambiguous and deterministic.

Fig. 8 shows the execution order of the framework components. Fig. 9 illustrates the first pipeline step.
Starting with the syntactic corpus (no KG injections), we sample head (h) spans from the syntactic space
(root nodes) and assign an outgoing relation (r). We then create the corresponding tail slot (¢, leaf) for
the chosen relation and initialize it with masks. We then ask the model to predict the masked tail (leaf)
conditioned on the head, relation, and the rest of the sequence. The top-k predictions for each masked leaf
yield k& candidate tokens, which serve as building blocks for tails of each head-relation pair (h,r). Next, a
helper LLM combines predicted tail tokens into coherent phrases, followed by a cleaning step. We further
filter the generated triples by computing semantic similarity between each triple and its source sequence,
discarding those with a score below the user-defined similarity check threshold . GRAPHMERT may predict
a tail that connects a head with a semantically related concept across the training corpus, and hyperparameter
[ regulates the fraction of such triples in the output. A higher § yields fewer but more sequence-specific
triples, often explicitly included in the text. A lower 8 allows for broader, more general (yet semantically
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Figure 9: Prediction of triple tails. The trained GRAPHMERT predicts the top k tokens for a masked leaf

and the chosen relation, resulting in a set of raw triples with the same head.

related) triples that may not be explicitly mentioned in the sequence. However, if 3 is set too low, the output
becomes flooded with triples that merely restate general truths, reflecting statistically dominant statements

in the training dataset.

The surviving (h,r,t) triples expand the KG with novel facts. Importantly, each prediction is traceable
to its source sequence, while at the same time accumulating knowledge distilled from the entire training
corpus. This global knowledge accumulation contrasts with RAG methods, which remain local to retrieved

documents. Further, RAG is a post-hoc data attribution mechanism, unlike ours.

22



Role of the helper LLM: The laborious (grammatical) part of the work is carried out with help from an
LLM and the essential (triple extraction) part done with GRAPHMERT. In this pipeline, the helper LLM
performs three auxiliary tasks: discovering head entities, selecting relations for subsequent GRAPHMERT
prediction, and combining single-token predictions into meaningful, relation-aware tail phrases. Critically,
the LLM is constrained: It cannot invent new entities or relations, as heads must be present in the dataset,
relations are restricted to the seed KG, and only GRAPHMERT-predicted tokens are allowed to be in tails.

Why do we need a helper LLM for combining tokens? An encoder-only model does not address
span decoding. Masked span prediction would still be challenging for a small model, given the very limited
number of semantic examples. Here, two factors come into play:

1. For a coherent span prediction, each token should be conditioned on other tokens. However, in
an encoder-only model prediction, each masked token in the span is conditioned on the sequence
independently of other span tokens.

2. In our experiments, training with span masking results in a prediction where tokens in the syntactic
space are better aligned with each other within a span; however, the semantic space has orders of
magnitude fewer examples (10* in our experiments). Given the limited scale of the semantic space,
how to achieve the same effect on leaves remains an open question.

Thus, training on small corpora to some extent trades English proficiency for data quality. Exploring methods
to augment GRAPHMERT and thereby remove the LLM-based combining-tokens step is an avenue for future
work.

4.5 LLM-generated KG

To provide a fair and robust comparison for our framework, we construct a baseline LLM KG using a
standard LLM-based pipeline that follows the GraphRAG indexing methodology, with a filtering step to
align its schema with the GRAPHMERT KG.

The process begins by segmenting the source documents into smaller, manageable text chunks. An LLM is
then prompted to perform open information extraction on each chunk, which involves identifying entities,
extracting the relationships between them, and generating short, descriptive summaries for each entity. We
retain only the relationships that are part of our pre-defined relation set, discarding all others. This ensures
that the resulting LLM KG shares exactly the same relational schema as our framework, enabling a direct
and equitable comparison of performance. After filtering, the extracted elements are subsequently aggregated
and consolidated into a final graph structure. To handle multiple mentions of the same concept, exact string
matching is used to resolve entities into unique nodes. Relationships that are generated multiple times
between the same two entities are aggregated into a single edge.

4.6 KG Verification

We can subdivide KG verification methods into two categories: graph-level and triple-level.

4.6.1 Graph-level Verification

This method evaluates the KG as a whole. It focuses on its logical coherence, internal consistency, compre-
hensiveness, coverage, important aspects of domain-relevant knowledge, and depth (considering whether it
contains rich, insightful connections beyond surface-level facts). Graph-level approaches typically operate
by retrieving relevant subgraphs and evaluating their quality with respect to these criteria.

GraphRAG: We employ GraphRAG to evaluate the KGs and benchmark them across various tasks.
The KGs are used as the primary source of information in GraphRAG to answer medical questions, which
enables us to compare their effectiveness directly. In our implementation, we use the Local Search method
from GraphRAG and modify it to rely exclusively on the entities and relations in the querying stage. This
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process begins by identifying a set of entities within the KG that are semantically related to the user query.
These entities act as entry points for the retrieval of connected entities and relationships. The retrieved
data sources are then ranked and filtered to fit within a single predefined context window, which is used to
generate a response to the user query.

4.6.2 Triple-level Verification

At the triple level, verification can enhance factuality and validity, as we describe next.

FActScore: The FActScore framework (Min et al., 2023) provides a fine-grained method for evaluating
factual precision in long-form LLM outputs. Its principles transfer naturally to KG verification. FActScore
evaluates atomic facts, i.e., short, self-contained statements, against a trusted text source that does not have
any knowledge conflicts or overlaps. KG triples can be treated as atomic facts of equal importance. In our
setting, each triple can be paired with a reliable text source: GRAPHMERT triples with sequences and LLM
triples with short chunks, both drawn from the same trustworthy source. The short context length minimizes
conflicts and overlaps.

FActScore*: We follow the Retriecve — LM variant of automatic evaluation, in which an atomic fact is
concatenated with the knowledge source and provided to the model. However, we strengthen triple evaluation
with validity: In the prompt, we require verification of triple logical alignment in addition to context support,
since the fact may appear in the text, yet the triple may still be malformed. Malformed triples should not be
deemed reliable facts and would inflate the score. Because our prompt departs from the original FActScore
prompt, we denote the modified version as FActScore*. Formally, let G be a set of triples 7, and C(7) the
text source of 7. Then FActScore* for G is:

f(r) =17 is supported by C(7)], (12)

FActScore*(G) = E,¢g[f(7)].
ValidityScore: Triples should follow semantic rules of a KG. For example, in UMLS (Bodenreider, 2004),
the triple (beta-receptor, part_of, plasma membrane) is valid, since part_of denotes a meronymic (struc-
tural /spatial) relation: Every instance of the part must be a constituent of some instance of the whole.
It follows, then, that (beta-receptor, part_of, adrenergic signaling) is invalid, because it links a physical
structure to a biological process. Similarly, (beta-receptor, part _of, human) is factually plausible but still
an illegitimate usage, since it violates granularity: The correct wholes are specific structures (e.g., plasma
membrane), not entire organisms.

To quantitatively measure the validity of triples, we propose ValidityScore. It isolates ontological alignment
of triples as an independent mode of evaluation. Concretely, we use a strong LLM judge to semantically
validate a triple using the following prompt.

Prompt. Evaluate if these medical KG triples are valid (yes/no/maybe) and give a very short reason
why: (list of triples).

Then ValidityScore counts the number of “yes” responses.

5 Experimental Setup
To demonstrate the effectiveness of our framework, we extract a high-quality diabetes KG from a GRAPH-

MERT-compatible diabetes training dataset obtained from expert-verified sources. This section provides an
in-depth explanation of the proposed training, extraction, and evaluation pipeline.

5.1 GraphMERT Training and Extraction

Next, we discuss training data preparation and triple extraction.
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Table 1: Dataset size

Abstracts Tokens Sequences

Training 350k 124.7TM 989,666
Evaluation 39k 13.9M 110,297

Table 2: Seed KG statistics for a« = 0.55 (after Qwen3-32B). We obtain this seed KG based on the 1.1258E+406
matched UMLS triples with a similarity score greater than or equal to a.

Triples  Similarity Similarity Similarity Number of
count score mean score median score max relations
28533 0.613 0.605 0.848 28

5.1.1 Training Data Preparation

We showcase our framework in a sensitive medical domain, where concerns over trustworthiness of AI output
remain the main barrier to wider Al adoption (Wang et al., 2025b; Mishra et al., 2024), despite the undeniable
potential of Al in medical practice. As a case study, we set the goal of extracting a high-quality diabetes KG.
It all starts with high-quality textual data. We build a GRAPHMERT-compatible diabetes training dataset
(Table 1) from two main sources: (1) peer-reviewed medical abstracts from MEDLINE journals accessed via
PubMed Central, and (2) a seed KG derived from the UMLS Metathesaurus (Bodenreider, 2004).

Text corpus: MEDLINE is the National Library of Medicine’s bibliographic database and is accessible via
PubMed. MEDLINE selects journals based on rigorous criteria and indexes them using MeSH terms. We
retrieved diabetes-related papers from PubMed Central (see the query in Listing 1 in Appendix A), removed
non-English records, parsed abstracts using the PubMed parser (Achakulvisut et al., 2020), lowercased all
text, and filtered out opening boilerplate words such as “Abstract,” “Background,” “Introduction,” etc.,
with a regular expression. The resulting dataset contains 350k abstracts for training and 39k for evaluation,
totaling 124.7M and 13.9M tokens, respectively.

Seed KG: From UMLS, we select SNOMED CT, US and GO (Gene Ontology) vocabularies because
together they cover a broad range of biomedical concepts across clinical documentation, molecular biology,
and data exchange. We exclude low-value relations (more details in Appendix A) and retrieve triples relevant
to our dataset sequences based on semantic similarity matching (Sec. 4.3.1) with Gemini text-embedding-004.
For matched triples, we use an injection algorithm (Sec. 4.3.3) with a similarity threshold « of 0.55, validated
experimentally via grid search using GraphRAG evaluation (see Sec. 6.4.1). The resulting triples that are
injected comprise the seed KG (Table 2). Statistics per relation are presented in Table B1 (Appendix B)

As a helper LLM, we employ Qwen3-32B-FP8 (an 8-bit quantized version of Qwen3-32B, further referred
to as Qwen3-32B), an open-source, advanced, and lightweight LLM with “thinking mode” turned on. We
always use “thinking mode,” unless otherwise specified.

Entity discovery and relation matching: For head discovery, we prompt Qwen3-32B with each abstract
sequence in the dataset with few-shot examples, asking it to search for medical entities that are relevant
to diabetes and its comorbidities. From our observations, changing an example in the prompt significantly
changes the number of discovered entities. The outputs are validated against sequences of origin to eliminate
hallucinated or misspelled entities. For relation discovery, Qwen3-32B is few-shot prompted with a relation
list from the corresponding training seed KG to match entities with all relations that make sense for a given
entity in the context of the current sequence. Prompts and examples are presented in Appendix E.

All Qwen3-32B runs are performed on the Princeton cluster on one H100 GPU using vLLM with the vendor-
recommended sampling parameters: temperature = 0.6, top_p = 0.95, top_k = 20, and min_p = 0. In
addition, maz_ tokens and max_model_len are set to 8192, which is sufficient for our generation length.
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Figure 10: Leafy chain graph encoded sequentially: 7-leaf case. The sequence has a fixed length of 1024.
The first 128 tokens are reserved for roots and leaves reside in the remaining tokens. The first group of seven
leaves belongs to the first root, the second group of seven leaves belongs to the second root, and so on. Each
leaf token group is padded to the maximum length of seven.

Chain graphs for training: Chain graphs are initialized with 128 root nodes, each connected to seven
leaves, leading to a 1024-token sequence (see Fig. 10). These numbers are chosen to fit GPU memory
constraints while providing sufficient room for semantic tokens dedicated to leaves.

5.1.2 GraphMERT Training

We train GRAPHMERT with 12 hidden layers, eight attention heads, a hidden size of 512, and an interme-
diate size of a fully-connected layer of 2048, totaling 79.7M trainable parameters. We use the BioMedBERT
tokenizer (Chakraborty et al., 2020), trained on a vast amount of medical vocabulary, to prevent frequent
subword tokenization of common medical terms, which is particularly beneficial for the extraction stage.
The tokenizer determines the vocabulary size, which is 30,522.

Training runs for 25 epochs on four H100 GPUs with BF16 precision, totaling 90 GPU hours. We use an
instantaneous batch size of 32 per GPU, achieving an effective batch size of 128 through gradient accumu-
lation (steps = 2). We set dropout rates at 0.1 for regular, attention, and activation dropouts. In addition,
we set an exponential mask with base A = 0.6 and relation embedding dropout of 0.3. We train the model
using the cosine learning rate scheduler with the maximum learning rate set to 4 x 10~4. We use 500 steps
for warm-up. The weight decay at each step is 0.01 times the learning rate at that step. We stop training
when the learning rate reaches 1 x 107°. In the span masking training schema, we limit masked spans to a
maximum length of seven, matching the number of leaf nodes connected to root nodes.

5.1.3 Triple Extraction

The triple extraction pipeline runs the following steps, as shown in Fig. 11. We begin with a leaf-masked
prediction over the training dataset, given head entities and their relations. This produces a vocabulary
distribution for each masked leaf. From this distribution, we select the top 20 tokens per leaf and use them
to prompt the helper LLM, Qwen3-32B. Conditioned on the head, relation, and the originating sequence,
the LLM combines these tokens into coherent, relevant, and medically meaningful multi-token tails (see
Appendix E for the prompt specification). When no valid tail can be formed, the corresponding (sequence,
head, relation) is skipped. Next, since the LLM may hallucinate tails outside the GRAPHMERT-predicted
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I. GraphMERT pipeline

among people with diabetes, .. 5% of all diabetic patients had adequate glycemic control,
respectively. in the multivariable logistic regression analysis, there was a significant
relationship between female gender, age over 40, living in the urban area, being in the
third wealth quintile and having health insurance with diabetes prevalence...

Sequence:

Sequence  Input Top k GraphMERT tail candidates

< diabetes, system, structure, endocrine, digestive,
has_finding_site,? > health, of, diabetes, 2, ii, metabolic,
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Combine Helper Trained

(CTiE[eil 1 2T LLM GraphMERT hypertension, underlying
tokens into triple 0
o tails
ﬁ (1
< diabetes, has_finding_site, Embeddings similarity filter
endocrine system> [ s e =
1 Sequence | triple 1 |! J
< diabetes, has_finding_site, | 1 score
heart> = = || TSNS -

i
1 Sequence triple 2 : x

L m m om oom oom oom oo o= o= SCOME

Formed triples for this sequence:

Output < diabetes, has_finding_site,

QUL endocrine system> < diabetes, has_finding_site,

9 urban area>
s; Il. LLM KG pipeline

Figure 11: I. Forming triple tails for a given sequence with GRAPHMERT. (1) Given a sequence as a context,
a triple head in the sequence, and a relation, GRAPHMERT predicts the tail token (we obtain the top 20).
(2) The helper LLM attempts to combine the tokens into a complete, coherent medical term. It may output
several or no tail candidates to complete the triple. (3) We evaluate the similarity score between triples from
the previous step and the sequence of origin. Only triples with a score higher than a preset threshold pass.
II. An example of a triple extracted with the LLM pipeline (Qwen3-32B) from the same context. Here,
LLM misinterprets the “has_finding_site” relation, treating “site” as a location instead of an anatomical
structure, which results in an invalid triple.

token space, we discard any output tails that contain out-of-scope tokens. The output of this stage is a set
of completed candidate tails.

Next, each candidate triple is evaluated with a similarity matching algorithm (Sec. 4.3.1). Specifically, we
compute the cosine similarity between the triple and its originating sequence using Gemini embeddings.
All triples with a score below the similarity check threshold g = 0.67 (obtained through grid search, see
Sec. 6.4.1) are discarded. The remaining set forms the final collection of extracted triples.

Table 3 illustrates the step-by-step triple extraction process for a representative sequence. Given a sequence
with its head and relation, GRAPHMERT predicts a token in a masked tail. From the output distribution,
we select the top 20 tokens as candidate tails, striking a balance between prediction quality and diversity,
and providing a sufficient pool for subsequent token combination. We may construct zero, one, or several
novel triples out of these.
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Table 3: Examples of GRAPHMERT-extracted triples (UMLS-style) from a single sequence. We pass the
sequence with two marked heads together with relations for these heads to the trained GRAPHMERT. After
GrAPHMERT makes a prediction in the semantic space, we use the top 20 predicted tokens to form complete
triples with a helper LLM. “##” is a separator for subword tokens.

Sequence 1: ...##2 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of
The Pathological Society of Great Britain and Ireland. Non-alcoholic fatty liver disease (NAFLD) is one of
the main causes of chronic liver disease worldwide. Flavonoids, a group of natural compounds, have garnered a
great deal of attention in the management of NAFLD because of their profitable effects on glucose and lipid
metabolism, inflammation, and oxidative stress which are the pivotal pathophysiological pathways in NAFLD.
Naringenin is a citrus-derived flavonoid with a broad spectrum of potential biological effects including
anti-inflammatory and antioxidant properties, which may. ..

Head, Relation Top-20 GraphMERT-predicted tokens

naringenin, isa flavonoid ##in flav nar ##idin ##arin ##flav compound #+#ce hydrolase
plant #+#ingen ##ono protein polysaccharide polyphenol family ##anol -
F###fonin

naringenin, plays_ role therapeutic neuroprotective ##ingen antidepressant role medicinal ##arin

flavonoid action baical inhibitory antibacterial bioactive medicine antimicrobial
##idin quercetin ##flav potential flavon
naringenin, has_ disposition nar flavonoid ##in hydrolase ##arin inhibitor - ##anol compound ##idin
amy ##flav ##ingen derivative amide receptor acid family alkaloid product
non-alcoholic fatty liver dis- liver disease alcoholic fatty ##osclerosis nafld steatosis disorder ##atitis
ease, cause_ of #+#ohep hypercholesterolemia hepatic - with syndrome mellitus myopathy
fibrosis diseases hyperlipidemia
non-alcoholic fatty liver dis- hyperlipidemia disorder alcoholic obesity - dyslipidemia myopathy liver

ease, associated_ with hereditary hypercholesterolemia syndrome ##ament #+#tr associated ##lip
fatty disease ##oid mellitus related

Head Relation Tail (formed from the
GraphMERT-predicted tokens)

naringenin isa flavonoid

naringenin plays__role therapeutic role

naringenin has_ disposition flavonoid

non-alcoholic fatty liver dis- cause_ of fibrosis

ease

non-alcoholic fatty liver dis- associated_ with obesity

ease

5.2 LLM-extracted KG

Following the default GraphRAG indexing parameters, our diabetes corpus is split into 2,000-token chunks
and processed by Qwen3-32B to extract entities and relationships. We enable the model’s thinking mode
and set temperature = 0.6, top_p = 0.95, top_k = 20, max_tokens = 8192. The detailed prompt for
extraction is shown in Appendix E1 and an example is shown in Appendix E2. After parsing and cleaning,
the final LLM-generated KG contains 272,346 triples.

5.3 Evaluation with GraphRAG

Next, we provide details of GraphRAG evaluations.

5.3.1 GraphRAG Settings

Our experimental setup uses Qwen3-14B as the backbone LLM in GraphRAG, with inference accelerated
using the vLLM library. For all evaluations, we enable the model’s thinking mode and set temperature = 0.6,
top_p = 0.95, top_k = 20, and max_tokens = 8192. To ensure the reliability of our findings, each
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experiment is conducted three times with different random seeds (1, 2, and 3). We report the average
accuracy across these runs in our final results.

The GraphRAG query process is configured with nomic-embed-text-v1 as the embedding model. To construct
the context for each query, the system retrieves the top 30 entities and the top 10 relationships per entity,
with the maximum context length capped at 12,000 tokens. Furthermore, we tailor the system prompts and
simplify the output table structure to better suit our tasks. The complete prompt is given in Appendix E3.
The modified table schema is also detailed in Appendix E4.

5.3.2 Benchmark Evaluation

We further verify the quality of our extracted KGs on the diabetes subsets of medical benchmarks: ICD-
Bench (Dedhia et al., 2025), MedMCQA, MedQA, and MMLU (medical). ICD-Bench is a targeted question-
answering benchmark aligned with the International Classification of Diseases (ICD) taxonomy (World
Health Organization, 1992), designed to evaluate domain-specific medical reasoning in language models
across 15 medical sub-specialties. We primarily evaluate the extracted KGs on ICD-Bench, as it is the
only benchmark that has a dedicated endocrinology subset; for this reason, we defer the other results to
Appendix D. For evaluation, we employ GraphRAG to answer benchmark questions.

To address the domain mismatch between our diabetes-specialized model, GRAPHMERT, and general med-
ical benchmarks, we create domain-specific evaluation subsets. First, we synthesize our training corpus into
an approximately 2000-word summary using Gemini 2.5 Pro. Subsequently, we use this summary to prompt
a Qwen3-32B model to filter the question-answer pairs in each benchmark, retaining only questions relevant
to the summary. All GraphRAG evaluations are then conducted on these filtered subsets to ensure a fair
assessment.

5.3.3 Traceability and User Verification

Allowing users to judge correctness is a simple but powerful principle. OpenAI’s WebGPT (Nakano et al.,
2022) addresses this by browsing the web and citing sources, a strategy also adopted by Perplexity Al In
these systems, the user decides (1) whether the source is credible and (2) whether the output is factual. Our
framework builds on this idea: Each triple is directly traceable to its originating sequence. This enables
automatic cross-checking, rather than searching external sources. The system retrieves the sequence from
which the triple is derived. Since this sequence originates from a verified paper abstract, users can further
validate the fact by consulting the source publication if needed.

6 Experimental Results
Next, we provide evaluation results for GRAPHMERT and LLM KGs on the benchmarks.

6.1 Description of the Extracted KG

Table 4 summarizes the statistics of the extracted KG. It inherits the 28 relations from the seed KG (men-
tioned in Table 2) but contains approximately four times as many triples; the comparison chart (Fig. C1)
is presented in Appendix C. The extracted triples include vocabulary that extends beyond the seed KG. As
expected, novel heads originate from the training dataset, which has a richer vocabulary than the seed KG.
GRAPHMERT also generates novel tails, predicting tokens from the dataset vocabulary that are absent in
the seed KG (see an example given in Table C1 in Appendix C).

6.2 Triple-level Evaluation

Next, we present results for triple-level evaluations.

6.2.1 FActScore* Results

We use two prompts to evaluate a triple based on:
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Table 4: GRAPHMERT-extracted KG. Number of triples over extraction stages; similarity threshold g =
0.67. We show the number of triples after the helper LLM combines the tail tokens, next after discarding
tails hallucinated by the LLM, then after similarity filtering, and finally after dropping triple repetitions.

Formed tails excluding After

Formed tails [f-filtering  Final: repetitions

o value (non-unique) LLM hallucinated (non-unique)  dropped (unique)
b (non-unique) E L g
a =0.55 1,760,088 1,536,581 139,565 109,293
Table 5: FActScore* KG evaluation (in percentage points)
KG type #triples Context only Context and General truth
LLM (baseline) 515,460 40.2 48.1
GRAPHMERT 139,565 69.8 72.2

1. context only,

2. context and model’s internal knowledge of general truth.

The first prompt includes the text in black only, the second prompt includes the text in black and teal:

Prompt. You will evaluate the quality of triples for a medical knowledge graph on diabetes and its comorbidities.
For each triple, you are given:

e A sequence providing context
e A head entity, a relation, and a tail entity
Your task: Accept the triple (“[yes]”) or reject it (“[no]”) based on:

e Logical alignment: the tail must logically align with the head and relation; relation must match entity
types.

¢ Context support: the sequence should support the triple. Allow statements that are factual and
general truth, even if not perfectly aligned with context, but still avoid contradictions. If the triple has
no reliable support, reject the triple.

e Knowledge value: the triple must add new, medically meaningful information to the graph.

Output only “[yes]” or “[no]” as your final judgment. Wrap your reasoning in <think>...</think>.

Table 5 reports the FActScore* of GRAPHMERT KG versus the LLM KG using Qwen3-32B as the validator.
We conduct two variants of the evaluation, differing only in an extra accept condition in the prompt: 1)
based on context only, closely following the original FActScore, and 2) based on context + model’s internal
knowledge, which additionally accepts triples that express general truths even if not explicitly stated in
the context. Variant (2) acknowledges cross-dataset concept linking, whereas (1) restricts evidence to the
local context. Because the same triple can originate from multiple sequences, some triples are checked more
than once against different texts. As a result, the reported number of triples exceeds the count in the final
deduplicated KGs. We also score the seed KG with respect to the sequences into which its triples are injected.
In this setting, FActScore primarily reflects the injection relevance.

Why are LLM KG FActScores so low? Surprisingly, the LLM KG scores poorly even when validated by
the same model (Qwen3-32B), which flags many of its own errors. This underscores weak prompt steerability:
Knowledge may exist in parameters, yet prompt-based generation fails to elicit correct, ontology-respecting
triples. Our analysis points to three recurring failure modes:

1. Relation misinterpretation: The model maps relations by lexical similarity rather than ontological
meaning, drawing on its internal knowledge.
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Table 6: Validity check with Qwen3-32B (in percentage points)

KG type # triples yes (ValidityScore) maybe no
LLM (baseline) 515,460 43.0 24.1 31.4
UMLS Seed KG 28,533 53.4 10.0 34.7
GRAPHMERT 139,565 68.8 18.3 10.8

2. Systematic malformed repetition: The same ill-formed triples reappear across different text chunks.

3. Overlinking a head-tail pair: Multiple, largely invalid relations are assigned to the same entity pair.

Illustrative errors

o Misinterpreted relation: (diabetes,has_finding_site,urban area). Here, “site” is treated as a lo-
cation (anatomical structure is expected). Likewise, (telehealth intervention,has_part, diabetes)
misuses has_part to describe care; a correct variant: (diabetes, focus_of, telehealth intervention).

o OQuverlinking  (redundant  relations): For  (obesity, diabetes), the LLM  proposed
is_modification_of, part_of, plays_role, cause_of, causative_agent_of, has_component,
has_pathological_process. However, only associated_with is valid.

o Spurious co-occurrence link: (diabetes,has_method, mammography). The entities merely co-
occurred in an abstract; mammography is not used for diabetes, yet the LLM infers a spurious
relation.

“Spurious co-occurrence link” illustrates a disadvantage of local KG extraction methods vs. global methods
that capture how concepts are distributed and connected across the full dataset. As a result, spurious links
between concepts that rarely co-occur remain weak and are less likely to be predicted.

Implication: Broad, pre-trained LLMs tend to project general associations into domain-specific relations,
yielding invalid triples. High-stakes domains benefit from compact, domain-tailored models and pipelines
that enforce ontology and provenance.

6.2.2 ValidityScore

Validity check on the whole KG with Qwen3-32B: To get a sense of the triple semantic quality of
GRAPHMERT- and LLM-extracted KGs, we conduct a validity check: Test the validity of each triple in the
graph with Qwen3-32B as the judge LLM.

Table 6 summarizes the validity checks across KGs. GRAPHMERT attains a markedly higher “yes” rate,
i.e., ValidityScore, than the LLM baseline (68.8% vs. 43.0%) with far fewer “no” judgments (10.8% vs.
31.4%), indicating substantially cleaner relation usage and predicate hygiene. Overall, the LLM KG is
less conservative (more details ahead) and less valid. The typical malformed triples are shown in Tables 7
(GRAPHMERT) and 8 (LLM).

Validity check on a KG subset with GPT-5: We also perform a validity check on small KG subsets
with GPT-5 (Thinking). GPT-5 is particularly strict in evaluating consistency of triples and whether the
relation is used in the correct direction, aligning with our goal of obtaining dependable judgments. We
retrieve 100 random triples across seven diabetes-related keywords: T2DM, hyperglycemia, dyslipidemia,
adiponectin, metformin, SGLT2, and CVD. Each triple is assigned a yes/maybe/no verdict (Fig. 12). The
keywords are drawn from the 2000-word dataset-level summary generated with Gemini 2.5 Pro, representing
some of the most frequent and clinically relevant terms related to diabetes and its comorbidities.

Overall, the GRAPHMERT KG consistently produces a higher proportion of valid (yes) triples and fewer
incorrect (no) triples across all keywords, whereas the LLM KG shows more relation misuse and ontology
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Figure 12: Validity check with GPT-5 Thinking, 100 random triples per keyword. The keywords are lined on
the z-axis. Within each category, the left bars represent GRAPHMERT triples and right bars LLM triples.
The captions below the labels show yes/maybe/no split counts for GLM and LLM.

Table 7: GRAPHMERT-extracted KG triples: Malformed triple examples

Triples with an incomplete tail

Comment

CKD risk prediction model, associated_ with, validated
gestational diabetes mellitus, associated_ with, twin
elastin, has_ modification, carbam

adjectival tail
should be twin pregnancy
should be carbamylation

Triples with overstated causality

Comment

insulin resistance in CKD, cause_ of, metabolic syndrome
insulin resistance in CKD, cause_ of, vascular disorder
diabetes mellitus, cause_ of, tuberculosis

IR is a criterion

vague tail

cause is mycobacterium; DM is
risk

Triples with vague tails Comment

blind patients with DM, associated__with, diabetic retinopathy head is a cohort

atherosclerotic cardiovascular disease, associated_ with, lifestyle vague tail

Triples with predicate misuse Comment

atherosclerotic cardiovascular disease, has_ causative__agent, apolipoprotein b should be apolipoprotein

type 2 diabetes mellitus, associated_ with, parasitic infection
glucocorticoid-induced hyperglycaemia, has_ finding_ site, tissue

B-—containing lipoproteins
weak /unspecific link
wrong site (should be blood)

violations, reflected in a greater share of maybe and no verdicts. This highlights the more conservative but
domain-appropriate character of the GRAPHMERT KG compared to the noisier LLM KG. According to
verdicts (a very short reason why), the LLM often violates ontology, confusing methods with diseases, and
misuses relations, with the two errors reinforcing each other. Next, we analyze the main errors of each KG

separately.

GraphMERT: The main issues in GRAPHMERT triples are vagueness and incomplete tails, though they
remain domain-appropriate. Tail incompleteness arises when the helper LLM accepts an incomplete token
as a valid tail during token combination. We observe this effect across all helper LLMs we tested, including
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Table 8: LLM-extracted KG triples: Malformed triple examples

Triples with reversed relation Comment

cryptogenic stroke, causative__agent_ of, paradoxical embolism  reversed causality

ischemic stroke, cause_ of, ps PS — Protein S deficiency; reversed

glucocorticoids, has_ part, steroidogenesis steroidogenesis produces GCs

Triples with predicate misuse Comment

ischemic stroke, cause_ of, telomere length biologically wrong

elastin, finding_ site_ of, vascular smooth muscle cell cells aren’t “found” in elastin

CKD awareness, has_ component, race/ethnicity CKD = chronic kidney disease; ontologically
wrong

lockdown, associated_ with, bone mineral density mismatches ontological types

elastin, has_ pathological process, matrix metalloproteinase metalloproteinase is an enzyme

Triples with ill-defined target Comment

chronic kidney disease (CKD), cause_ of, renal retinopathy tail isn’t a standard retinal disorder term

Gemini Flash 2.0 and 2.5. Tail vagueness occurs when GRAPHMERT does not rank the required tail
tokens within its top-20 predictions; the helper LLM then stitches together a completion that is contextually
acceptable but semantically weak. This also explains most of the cases of overstated causality and predicate
misuse: missing key tokens required for high-quality tail completion, the LLM still attempts a plausible but
semantically weak completion. A practical mitigation is to exclude low-information 128-token sequences in
the prediction stage (e.g., segments dominated by measurements, dosages, or numbers). We currently do
not filter these sequences, which may contaminate the extracted KG.

LLM: In contrast, we observe that the LLM misinterprets UMLS biomedical relations and substitutes
them with its broader internal knowledge, resulting in approximations that violate the ontology. Designing
prompts to fully explain all relations is impractical. Our experiments show that even multiple examples fail
to steer the model consistently: It defaults to its own internal semantics. We also observe systematic relation
reversal, consistent with findings in (Berglund et al., 2024). More broadly, extracting well-formed triples
requires capturing semantic rather than syntactic representations, which is challenging for LLMs trained
primarily on surface text.

Examples: To exemplify the difference between GRAPHMERT and LLM KGs explicitly, for the same
prompt, we provide Tables C3, C4, C5, C6 with GPT-5 verdicts of triples sampled from GRAPHMERT-
extracted KG and LLM-extracted KG in Appendix C.

6.3 Graph-level Evaluation

To evaluate the extracted KG, we apply GraphRAG to the filtered benchmarks and assess accuracy based
on the model’s success rate in answering the questions. We compare the accuracy by using different KGs as
the primary source of information in response generation.

We evaluate GRAPHMERT KG against the baseline LLM KG on the filtered endocrinology subset of ICD-
Bench, reporting the average question-answering accuracy across three runs. The evaluation is stratified
by difficulty level, a label from the original benchmark. Our filtered test set includes 20 trivial questions
(corresponding to 1-hop QA), and a total of 49 questions across difficulty levels ranging from very easy to
very hard, based on the difficulty definitions from ICD-Bench. The detailed results are presented in Table 9.

We also test the KGs on public benchmarks, which are described in Appendix D. The findings demonstrate
that the GRAPHMERT KG consistently outperforms the baseline. Across the whole filtered subset, our
framework achieves an overall accuracy gain of 9.2% on ICD-Bench, and 1.7% to 3.7% gain on other medical
benchmarks. This highlights the advantages of the GRAPHMERT KG for downstream medical question-
answering tasks.
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Table 9: GraphRAG KG evaluation

Difficulty Trivial Very Easy Medium Hard Very Average
Easy Hard

# Questions 20 26 8 6 2 7 69

LLM KG (baseline) 56.7 68.0 33.3 38.9 0.0 9.5 50.2

Seed KG 56.7 71.8 37.5 55.6 0.0 4.8 53.1

GRAPHMERT 66.7 79.5 50.0 50.0 0.0 0.0 59.4

Table 10: GraphRAG accuracies for different o and . Performance gain versus LLM KG is shown in
parentheses.

a value LLM KG Seed KG B =0.62 B8 =0.65 B8 =0.67 B =0.69

0.50 58.0 51.7 55.1 (-2.9)  55.1 (-2.9)  54.6 (-3.4) -
0.53 55.1 51.2 60.4 (+5.3) 55.1 (+0.0) 58.9 (+3.8) -
0.55 50.2 53.1 57.5 (+7.3)  59.2 (+9.0) 59.4 (+9.2) 52.2 (+2.0)
0.57 51.2 53.1 56.0 (+4.8) 54.6 (+3.4) 52.2 (+1.0) -
0.60 53.1 49.8 53.6 (+0.5)  52.7 (-0.4)  53.6 (+0.5) -
6.4 Ablations

To validate our design choices and understand the contribution of different components, we conduct a series
of ablation studies. We analyze the sensitivity of GRAPHMERT to its core hyperparameters, its robustness
to the density of the seed KG, and the effect of similarity and fact-checking.

6.4.1 Training GraphMERT with Less-relevant Injections

Our framework relies on two key similarity thresholds: the injection threshold «, which determines the
relevance threshold of seed triples used for training, and the acceptance threshold §, which filters the final
triples generated by the pipeline. To find the optimal configuration, we perform a grid search over a range
of values for both parameters.

Hyperparameter o controls the trade-off between the quality and quantity of knowledge injected during
training. A higher « imposes a stricter relevance filter, ensuring high-quality injections but limiting their
volume and diversity. Hyperparameter 8 serves as a grounding function for the final triples on the source
sentence. The baseline LLM KG is filtered in each experiment to include only the relations available for the
corresponding « value, ensuring an equitable evaluation.

The results are presented in Figure 13. We observe that performance peaks at o = 0.55 and § = 0.67. Lower
a’s likely introduce noisy, contextually irrelevant triples that degrade performance. Conversely, higher o’s
appear overly restrictive, preventing the model from leveraging a sufficient breadth of knowledge. In addition,
B = 0.67 gives good results, underscoring the importance of a final quality check on generated triples. A
higher optimal 3 strengthens the importance of cross-document understanding for triple generation, which
is not possible in LLM-generated KGs. The optimal configuration achieves a 9.2% improvement over the
baseline LLM KG.

6.4.2 Training GraphMERT with a Smaller Seed KG

To evaluate the dependency of GRAPHMERT on the density of provided knowledge, we conduct an ex-
periment to measure its performance with a sparser seed KG. A robust system should be able to function
effectively even when the initial knowledge base is incomplete.

Using the optimal hyperparameters identified previously (« = 0.55 and 3 = 0.67), we simulate varying levels
of knowledge sparsity by randomly removing 25%, 50%, and 75% of the triples from the original seed KG
before executing our pipeline.
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Figure 13: GraphRAG accuracies for different o and 5. Bubble size corresponds to absolute accuracy and
color indicates the accuracy gain relative to the LLM KG baseline (red denotes positive gain, blue denotes
negative gain).

Table 11: GraphRAG accuracies upon dropping part of the seed KG. Performance gain versus LLM KG is
shown in the last column.

KG type GraphRAG accuracy Gap vs. LLM KG
GRAPHMERT 59.4 +9.2
GRAPHMERT (remove 25% of seed KG) 54.6 +4.4
GRAPHMERT (remove 50% of seed KG) 56.5 +6.3
GRAPHMERT (remove 75% of seed KG) 54.1 +3.9

The results, shown in Table 11, indicate that while performance generally decreases as the seed KG becomes
sparser, our framework remains effective. Even with 75% of the seed knowledge removed, GRAPHMERT
still outperforms the baseline LLM KG by 3.86%. This finding highlights the robustness of our approach,
demonstrating that it can effectively leverage even a sparse set of seed triples to generate a high-quality KG.

6.4.3 Ablating GraphMERT Components

Next, we ablate architectural components and the training objective:

No-span MLM/MNM: Replace the span masking objective with a simple one-token MLM /MNM masking
objective.

No H-GAT: Switch off graph attention. This implies training without relation embeddings; the model
predictions are purely syntactic.

No dropout: Switch off dropout on relation embeddings.
Before discussing the ablation results, we outline the main observations for each one:

e In the “no H-GAT” ablation, we observe a large number of irrelevant tokens in the top-k predicted
tokens, with commas and articles being primarily predicted in the top 3. This is supported by findings
by Garcfa-Silva et al. (2023): They attempted to complete triples with top-k tokens extracted from
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Table 12: GraphRAG accuracies when ablating GRAPHMERT features

KG type Trivial Very Easy Medium Hard Very Average
Easy Hard
GRAPHMERT 66.7 79.5 50.0 50.0 0.0 0.0 59.4
GRAPHMERT (no-span MLM/MNM)  66.7 76.9 29.2 61.1 0.0 9.5 58.0
GRAPHMERT (no H-GAT) 65.0 68.0 33.3 55.6 0.0 0.0 53.1
GRAPHMERT (no dropout) 56.7 65.4 45.8 50.0 0.0 14.3 52.2

Table 13: FActScore* KG evaluation (in percentage points) when ablating GRAPHMERT features

KG type #triples Context only Context and General truth
GRAPHMERT 139,565 69.8 72.2
GRAPHMERT (no-span MLM/MNM) 188,211 69.0 72.2
GRAPHMERT (no H-GAT) 167,443 68.3 70.0
GRAPHMERT (no dropout) 149,952 68.9 70.9

Table 14: Validity check with Qwen3-32B (in percentage points) when ablating GRAPHMERT features

KG type # triples yes maybe no
GRAPHMERT 139,565 68.8 18.3 10.8
GRAPHMERT (no-span MLM/MNM) 188,211 69.4 18.1 10.2
GRAPHMERT (no dropout) 149,952 66.5 19.2 12.0
GRAPHMERT (no H-GAT) 167,443 68.2 17.2 12.2

the BERT model in a purely syntactic manner, and had to rely on a stop word list to make the
results usable.

« Disabling dropout leads to overfitting on the seed KG vocabulary; hence, less diverse tails.

o Training with a no-span MLM/MNM objective produces simpler tail completions (1-2 tokens long),
because each individual candidate is not well aligned with the others.

Table 12 demonstrates that the full GRAPHMERT KG configuration achieves the highest performance.
While the full model achieves the best results, the variant without span-masking performs only slightly
worse. In contrast, the removal of either dropout or H-GAT leads to a substantial decrease in accuracy,
underscoring their importance for robust performance.

Table 13 demonstrates that the full model FActScore* is the highest: removing dropout or H-GAT lowers
acceptance and increases rejections. GRAPHMERT without span-masking reaches the same FActScore* in
“Context and General truth” case.

GRrRAPHMERT without span-masking achieves the best acceptance (69.4% yes, 10.2% no) (Table 14), but,
according to GraphRAG, the KG remains less informative overall. In effect, the KG obtained from this
variant tends to be populated with trivially correct tiples, i.e., (diabetes, is_a, disease). This leads to a
higher rate of successful tail completion: 188k against 140k with span masking. Such short, obvious facts
pass a validity check, manifesting in a higher ValidityScore. However, this simplicity comes at a cost: No-
span-masked completions lack the nuance and granularity provided by span masking, resulting in poorer
coverage and a loss of fine-grained domain details. This trade-off stresses the importance of evaluating KGs
both at the graph and triple levels. We advise employing token-level MLM/MNM when the simplicity of
triples is not a limitation.
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7 Discussion, Limitations, and Future work

Discussion: Our results show that GRAPHMERT yields higher factuality and validity of triples than LLM-
based KG extraction while preserving ontology fidelity. We observe a consistent difference between GRAPH-
MERT and LLM KGs in relation usage and predicate hygiene. GRAPHMERT generally employs relations
correctly, aligns tails with heads, and preserves biomedical categories (diseases, syndromes, complications).
The LLM KG often misuses or reverses the direction of relations, mixes categories in ontology-violating ways
(e.g., socio-economic with biomedical), and produces inverse/ill-typed statements. The GRAPHMERT KG
has far fewer ontology violations and hews closer to UMLS. The GRAPHMERT KG vocabulary is more
conservative: The conservativenss can be explained based on the limited scope of the seed KG’s vocabulary
and its tendency to restate head tokens (mimicking UMLS’s tautological triples).

We attribute the difference in factuality and validity of triples to the usage of semantic relation embeddings,
which move predictions toward ontology-aligned ones. Triple-level error analysis shows GRAPHMERT may
sometimes extract incomplete and vague but often domain-appropriate tails with factual relations, whereas
LLMs usually produce diverse tails but frequently misuse or reverse the direction of relations. Our graph-
level evaluation may conflate the KG signal with backbone model knowledge under GraphRAG; future work
will include graph-level metrics that isolate the contribution of KGs as well as relation-aware retrieval.

Limitations: The main limitation of GRAPHMERT is its reliance on the seed KG. First, running the
framework requires a high-quality seed with 100-1000 examples per relation. Second, once training is com-
plete, the relation set is fixed. Hence, adding new relations requires retraining. A further limitation is its
dependence on a helper LLM for tail combination, which introduces occasional incompleteness in the ex-
tracted triple tails. As a neural model, GRAPHMERT also tends to prioritize frequent entities, potentially
overlooking rare but meaningful ones. In addition, we did not evaluate the model’s ability to predict or
handle numerical tokens, which remains an open direction for future work. Finally, its robustness to unseen
entities remains untested; extracting entirely novel concepts from new texts would likely require fine-tuning,
limiting adaptability in fast-changing domains.

Future work: We plan to improve the KG quality by unifying entity spellings, replacing the fixed top-k
limit with high-probability token selection. We aim to extend GRAPHMERT to direct multi-token span
prediction in the semantic space, reducing reliance on the helper LLM for tail token combining. Further, we
plan to conduct more rigorous graph-level evaluations, since GraphRAG alone often blends KG information
with model knowledge, and does not guarantee retrieval of the most relevant subgraph, as its retrieval is
entity-guided and relations play only a secondary role. It may also be valuable to investigate how the
GRrRAPHMERT evaluation loss correlates with the quality of the extracted KGs. We also plan to extract
KGs in other domains and employ them in various downstream applications.

8 Conclusion

We proposed a new framework for automatically extracting domain-specific KGs from unstructured, sentence-
level text. Central to this work is our idea of encoding both semantic and syntactic information into textual
chain graphs, a new representation we introduced. To operate in this space, we presented GRAPHMERT,
a transformer-based model that unifies an encoder-only architecture with graph attention. Together, these
contributions enable the distillation of explicit semantic structures from trained neural networks, bridging
neural and symbolic representations and advancing interpretable, reliable KG construction.

We also outlined KG-powered applications, underscoring that future progress hinges on reliable, factual
KGs and other high-level explicit abstractions that embody collective knowledge while remaining compatible
with Al inference and downstream tasks. We argue that neural-KG integration is a key step toward domain-
specific superintelligence. Looking ahead, we foresee the research community embracing the neurosymbolic
paradigm, where explicit, auditable, and evolving KGs complement neural inference that is approximate,
efficient, and capable of handling ambiguity.
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Appendices

A Training Data

We exclude some relations from the UMLS KG that add little semantic value, i.e.: (i) custom-defined
mappings of outdated-to-new UMLS relations for backward compatibility, which cannot be inferred from
external data; (ii) relations used only for cross-vocabulary mappings; (iii) relations where tails are largely
redundant with respect to heads; and (iv) relations with very few possible tails. For example, relation
has_associated_ finding is a redundant relation:

o family history of diabetes, has_associated_finding, diabetes mellitus

o family history of glaucoma, has_associated_finding, glaucoma

o parental history of diabetes, has_associated_finding, diabetes mellitus

e family history of hypertension, has_associated_finding, hypertensive disorder
o family history of cvd, has_associated_finding, congenital heart disease

In these cases, the tail subject is the same as the head subject. has_laterality is an example of a relation
with very few possible tails, with almost all tails being “side”.
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Table Al: Excluded UMLS relations

acted__on_ by _process
active_ ingredient_ of
associated_procedure_ of
basis_of strength_substance of
component__of

consider from
direct__device_of

direct_ substance of
has_associated_ finding
has_finding context
has__interpretation

has_ laterality

has realization

has_scale_ type

has_ specimen

has_subject_ relationship_ context
has_temporal_context
inverse _was_ a
mapped__from

mapped__to

moved_ to

negatively regulated_ by
positively_ regulated_ by
possibly__replaces
precise_active__ingredient_ of
realization of

regulated_ by
replaced_ by

replaces

was_ a

has intent
referred_to_ by
refers_to

characterizes
substance__used_ by
specimen__source__topography_ of
specimen__substance__of
has_ active_ ingredient
has_property

>22019/04/01’ ’ [PubDate]

(
(
Terms]
)
OR (
’>’diabetes mellitus’’[MeSH Terms] OR
)
)
OR diabetes[Title]
NOT (
’?’gsars-cov-2’’[MeSH Terms] OR
)
AND (
medline [sb] AND
)

diabetes [Abstract] OR diabetes[Body - All Words]

’>diabetes insipidus’’[MeSH Terms]

’?>covid-19’°’ [MeSH Terms]

>22025/04/01° > [PubDate]

OR diabetes[Body - Key

Listing 1: PubMed search query
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B KG Injection Algorithm

Input: Sequences with heads: Each head h may have multiple triples T = (h,r,t) = T(seq) in sequence
seq (we cap this number at 40 triples to ensure enough diversity and leaving room for further dropping);
triple embedding similarity score with respect to the sequence: score(T'); similarity matching threshold « (a
hyperparameter).

Output: Each head has one injection T'(seq) or does not have any, in all sequences.
Preprocessing

1. Drop all triples with a score less than threshold a.

2. Make all triples unique: If a triple matches multiple sequences, retain the triple T with the highest
score, i.e., in the sequence to which the triple is most relevant:

T = arg max score(T(seq))

seq
The second preprocessing step prevents overfitting in the semantic space on common triples.

Triple selection for each head: To balance contextual relevance with relation diversity: 1st priority:
maximize injection score, 2nd priority: maintain relation diversity. Relation diversity is measured by the
number of unique triples that contain the relation.

Maximize diversity

1. Split relations into relation buckets based on the number of unique triples at step k and assume that
within each bucket all relations are equally diverse (e.g., kK = 20 implies that relations with #triples
100-120, 120-140.., are treated as equally diverse).

2. Within each relation bucket, sort all triples by score regardless of relation.

3. Start with the lowest-numbered bucket (rarest relations). Within it, start with the triple with the
highest score and retain only it for its head, removing all other matched triples, which may have a
higher score but may be in a higher relation bucket. As a result, one of the rarest possible relations
in the dataset would survive for this head, increasing relation diversity overall.

Maximize score then diversity

1. Order triples by score.
2. Split into score buckets: Assume that within each score bucket, triples are equally good.

3. Then, within each score bucket, apply Maximize diversity.

Altogether, we group triples by how “low” the score is (higher scores are assigned to lower-bucket IDs). Then,
within each score bucket, we favor relation types that are less frequent. Finally, we choose the highest-scoring
triple for each head.

The algorithm is implemented using the Pandas framework and presented in Algorithm 1.

In our experiments, we use score_bucket__size = 0.01, relation__bucket__size = 100. The bucket size and
relation bucket size are chosen under the assumption that, within each bucket, score and relation diversity
remain approximately balanced.
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Algorithm 1: Maximize Score then Diversity

Input :df (a Pandas DataFrame where each row comprises a triple (h,r,t), unique
matched__head_id, and an associated score), score_bucket__size, relation_bucket__size

Output: Filtered DataFrame result

max__s < max(df.score);
foreach row in df do

L row.score_bucket < |(max__s — row.score)/score_bucket__size|;

rel__counts < count occurrences of each relation_ type r in df;
foreach row in df do

rel__count < rel__counts[row.r];
L row.rel__bucket < |rel__count/relation_bucket__size];

Sort df by ascending (score_bucket, rel__bucket) and by descending score;

result < [];
seen__heads < (;
foreach row in sorted df do
if row.matched__head_id ¢ seen__heads then
append row to result;
L seen__heads <+ seen__heads U {row.matched__head_id};

// Equivalent to df.drop_duplicates(subset="matched_head_id", keep="first")

return result;

Table B1: Seed KG: Relation statistics for & = 0.55 in the training split (Qwen3-32B)

# Relation # injections # Relation # injections
1 isa 8627 15 possibly__equivalent_ to 446
2 inverse_ isa 5512 16 has_component 433
3 cause of 1440 17 due to 365
4 interprets 1268 18 has_ part 350
5 associated_ finding_ of 1145 19 has modification 310
6 has_ disposition 1084 20 associated with 254
7 focus_ of 1038 21 part_of 211
8 is_interpreted_ by 962 22 plays_role 194
9 has_ associated__morphology 863 23 occurs_ before 187
10 causative_agent_ of 809 24 has_clinical course 144
11 finding_site_ of 741 25 occurs_in 138
12 associated__morphology_ of 598 26 same_as 134
13 has method 515 27 has_ causative__agent 127
14 has_finding_ site 477 28 has_ focus 118
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Comparison of Relation Frequencies (Logarithmic Scale)
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Figure C1: Relation distribution in the GRAPHMERT-extracted KG vs. seed KG. The shapes differ: While
“isa” prevails in the seed KG, the GRAPHMERT KG is heavily skewed towards “associated_ with.” This
reflects the helper LLM’s inclination to select “associated_with” during relation matching as the most
appropriate, given a sequence.
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C.1 Relation Distribution: GraphMERT-extracted KG vs. Seed KG

Fig. C1 shows the relation distribution on a logarithmic scale. While “isa” is the most represented relation
in the training data, in the to-be-extracted KG, the helper LLM tends to select “associated_with” most
frequently during relation matching.

C.2 Sanity Check

We ran a lightweight screening with GPT-5 Thinking on small, comparable samples from each KG. This
screening should be viewed as complementary to benchmark-based verification, providing useful diagnostic
signals but not replacing factual evaluation.

Setup: For each KG, we retrieved all triples whose head contains the keywords “insulin-like growth factor 1
(IGF-1)” and “glucocorticoid receptor (GR).” These terms are highly relevant to diabetes, yield comparable
sample sizes per KG (22-29), and remain small enough for human inspection.

Prompt. Evaluate if these medical KG triples are valid (yes/no/maybe) and give a very short reason
why: (list of triples).
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Table C1: Example of GRAPHMERT-extracted triple with novel tail vocabulary from a 128-token sequence.
The seed KG does not include the token “nlrp3” — it was learned and extracted from the text. “Pathway”
is a token that GRAPHMERT learned from the training corpus. Here, “pathway” is implicitly supported:
The phrase “specific inhibitors of NLRP3 inflammasome activation” links the activation to NLRP3-mediated
signaling (i.e., the NLRP3 pathway).

Sequence: ...inflammasome activation and regulation is highlighted, including its putative roles in adipose tissue
dysfunction and insulin resistance. Specific inhibitors of NLRP3 inflammasome activation which can potentially
be used to treat metabolic disorders are also discussed. Identifying a quantitative biomarker of neuropsychiatric
dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence
to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has
examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed
PWH. METHODS In 2 independent cohorts of virologically suppressed women with HIV (vsWWH. ..

Head Relation Tail

inflammasome activation associated_ with nlrp3 pathway

Table C2: GPT-5 Thinking screening (counts with proportions)

Keyword KG Yes Maybe No Total
IGF-1 LLM 8 (0.28) 3 (0.10) 18 (0.62) 29
IGF-1 GraPHMERT 15 (0.68) 0 (0.00) 7 (0.32) 22
GR LLM 4 (0.17) 12 (0.50) 8 (0.33) 24
GR GrRAPHMERT 15 (0.54) 7 (0.25) 6 (0.21) 28

Table C2 summarizes screening results. Tables C3, C4, C5, C6 provide GPT-5 Thinking responses for each
triple in the GRAPHMERT and LLM KG samples.
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Table C3: GRAPHMERT KG. Sanity check with GPT-5 Thinking. We select all KG triples that contain
“insulin-like growth factor-1,” 22 triples in total, yes/no/maybe: 15/0/7.

Triple

Verdict GPT-5 explanation

insulin-like growth factor 1, isa, peptide hormone
insulin-like growth factor 1, isa, growth factor

insulin-like growth factor 1, associated_with, insulin
resistance

insulin-like growth factor 1 receptor (IGF1R), plays_ role,
target

insulin-like growth factor 1 (IGF-1), associated_ with,
diabetes mellitus

insulin-like growth factor 1 (IGF-1), associated_with,
biomarker

insulin-like growth factor 1 (IGF-1), associated_ with,
insulin

insulin-like growth factor 1 (IGF-1), associated_ with, type
2 diabetes

insulin-like growth factor 1 (IGF-1), associated_ with,
insulin resistance

insulin-like growth factor 1, plays_role, growth factor
insulin-like growth factor 1 (IGF-1), plays_role, biomarkers
insulin/insulin-like growth factor 1 (IGF-1) signaling
pathway, has component, IGF-1 receptor

insulin-like growth factor 1 (IGF-1), associated__with,
insulin

insulin-like growth factor 1, plays_ role, growth hormone
action

insulin-like growth factor 1 receptor (IGF1R), plays_ role,
signaling receptor

insulin-like growth factor 1 receptor, plays_role, signaling
insulin-like growth factor 1 (IGF1), associated_ with,
androgen

insulin-like growth factor 1 (IGF1), associated_ with,
transcription

insulin-like growth factor 1 (IGF-1), associated_with,
hyperglycemia

insulin-like growth factor 1 level, associated with, growth
hormone treatment

insulin/insulin-like growth factor 1 (IGF-1) signaling
pathway, has_ component, insulin receptor

insulin-like growth factor 1 (IGF1), plays_role, downstream
target

yes
yes
yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

70-aa peptide hormone.
Canonical growth factor.
Correlates with IR.
“Target” is vague.
Linked with DM.
Biomarker is a role.
Strong crosstalk.
Epidemiologic link.

Well supported.

Acts as growth factor.
Plural/ontology mismatch.
IGF-1R is in pathway.
Duplicate; supported.
Mediates GH effects.

RTK signaling receptor.

Mediates signaling.
Context-specific crosstalk.

Indirect gene-expression effects.

Context dependent.
GH raises IGF-1.
IR is in pathway.

Phrasing vague (GH
downstream).
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Table C4: (Part 1 of 2). LLM KG (Qwen3-32B). Sanity check with GPT-5 Thinking. We select all KG

triples that contain “insulin-like growth factor-1,” 29 triples in total, yes/no/maybe: 8/18/3.

Triple

Verdict GPT-5 explanation

insulin-like growth factor 1, associated_with, diabetes
insulin-like growth factor 1 (IGF-1), has_ direct_substance,
type 2 diabetes

insulin-like growth factor 1, associated_ with, insulin
resistance

insulin-like growth factor 1, associated_with, metabolic
syndrome

insulin-like growth factor 1 (IGF-1), associated_with,
chronic kidney disease

insulin-like growth factor 1 (IGF-1), has_direct_ substance,
gestational diabetes mellitus (GDM)

insulin-like growth factor 1 (IGF1), has_ direct_ substance,
angiogenesis

insulin-like growth factor 1 (IGF-1), has_ direct_substance,
short-chain fatty acids (SCFAs)

insulin-like growth factor 1 (IGF-1), has_component,
insulin signaling pathway

insulin-like growth factor 1 (IGF-1), plays_role,
cardiovascular health

insulin-like growth factor 1 (IGF-1), associated_ with, bone
metabolism

insulin-like growth factor 1, has part, growth hormone
insulin-like growth factor 1 (IGF-1), cause_ of, prostate
cancer (PCA)

insulin-like growth factor 1 (IGF-1), has_modification, left
ventricular global longitudinal strain (LVGLS)

insulin-like growth factor 1 receptor, cause_ of,
epithelial-mesenchymal transition

insulin-like growth factor 1 (IGF-1), has_modification,
HAAT-MSCs

insulin-like growth factor 1, has_direct_ substance, testis
insulin-like growth factor 1, plays_ role, endocrine-related
cancers

yes
no

yes

yes

yes

no

no

no

no

yes

no
no

no

no

no

Linked with DM.
Disease # substance.

Strong physiologic link.
Levels track MetS.
GH/IGF axis altered.
Disease # substance.
Process, not substance.
Unrelated metabolites.
Pathway # component of
ligand.
Broad/context-dependent.

Anabolic for bone.

GH regulates; not part.
Association # causation.

Clinical metric, not
modification.
Signaling can induce EMT.

Not a molecular modification.

Organ produces IGF-1.
Vague class-level claim.
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Table C4: (Part 2 of 2). LLM KG (Qwen3-32B). (continued)

Triple

Verdict GPT-5 explanation

insulin-like growth factor 1, associated with, oocyte cohort
quality

insulin-like growth factor 1 (IGF1), has_component,
phosphoinositide 3-kinase (PI3K)

insulin-like growth factor 1 receptor, isa, receptor
insulin-like growth factor 1 receptor, has direct_ substance,
lactate dehydrogenase a

insulin-like growth factor 1 (IGF1),

has_pathological process, core body temperature
insulin-like growth factor 1 (IGF1), has_component,
IGF-binding protein 3 (IGFBP3)

insulin-like growth factor 1 receptor, has_method,
JAKS2/STAT3 pathway

insulin-like growth factor 1 (IGF1), has_component,
ZYG11A

insulin-like growth factor 1 receptor (IGF-1R), has_part,
nositide 3-kinase (PI3K)

IGF-1 (insulin-like growth factor 1), has_ direct_substance,
PPAR~ (peroxisome proliferator-activated receptor gamma)
insulin-like growth factor 1, plays_ role, cardiac
development

yes

no

yes
no

no

no

no

no

no

no

yes

Follicular IGF-1 correlates.

Downstream effector, not
component.

Canonical RTK.

Not a receptor substance.

Not a pathology.

Binding partner, not
component.

Wrong relation/atypical
pathway.

Unrelated protein.

PI3K is recruited, not part.
transcription factor # substance

of IGF-1.
Supports cardiac growth.
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Table C5: GRAPHMERT KG. Sanity check with GPT-5 Thinking. We select all KG triples that contain

“glucocorticoid receptor,” 28 triples in total, yes/no/maybe: 15/6/7.

Triple

Verdict GPT-5 explanation

endothelial glucocorticoid receptor, plays_ role, therapeutic
role

endothelial glucocorticoid receptor, plays_ role,
glucocorticoid signaling

endothelial glucocorticoid receptor, plays_ role, protective
role

glucocorticoid receptor (GR), plays_ role, glucocorticoid
signaling

glucocorticoid receptor, associated_ with, insulin signaling
glucocorticoid receptor, has_ part, ligand-binding

endothelial glucocorticoid receptor, has_ disposition,
signaling

glucocorticoid receptor, plays_role, glucocorticoid receptor
signaling

glucocorticoid receptor (GR), plays_ role, hypothalamic
signaling

endothelial glucocorticoid receptor, has_ disposition,
immunomodulator

glucocorticoid receptor (GR), plays_role, steroid signaling

glucocorticoid receptor (GR), associated__with,
glucocorticoids

glucocorticoid receptor agonists, plays_ role, therapeutic
glucocorticoid receptor (GR), plays_role, steroid hormone
receptor

glucocorticoid receptor gene (NR3C1), associated_ with,
hormone receptor

glucocorticoid receptor, plays_role, signaling

glucocorticoid receptor (GR), associated_ with, steroid
selective glucocorticoid receptor agonists, plays_ role,
therapeutic role

endothelial glucocorticoid receptor, cause_ of, renal fibrosis

selective glucocorticoid receptor modulators, plays_ role,
pharmacological modulator

glucocorticoid receptor, associated_ with, glucocorticoids
glucocorticoid receptor (GR), plays_ role, glucocorticoid
signaling

glucocorticoid receptor a, plays_ role, steroid receptor

glucocorticoid receptor (GR), associated__with,
transcription

glucocorticoid receptor, plays_ role, signaling
glucocorticoid receptor (GR), associated with, hormone
glucocorticoid receptor (GR), associated_with, signaling
selective glucocorticoid receptor modulators, plays_ role,
pharmacological modulator

yes

yes

yes

no

yes

no

yes

yes

yes
no

yes

yes

no

no

yes
yes

no

yes
yes
yes

yes
no

Role is
vague/context-dependent.
Mediates GC signaling in
endothelium.

Protective effects reported but
not universal.

Canonical function.

Well-known pathway crosstalk.
Should be “ligand-binding
domain.”

Wrong relation; participates in
signaling.

Tautologically true.

HPA feedback involvement but
broad.

“Immunomodulator” is an agent
role, not a disposition.

Nuclear steroid receptor
pathway.

Binds GC ligands.

Used clinically.

This is an is_ a identity, not a
role.

Gene encodes one; relation
imprecise.

Ligand-activated signaling/TF
activity.

Glucocorticoids are steroids.
Class intended for therapy;
phrasing vague.

GR generally anti-fibrotic;
causation unsupported.
Category is is_ a, not a role.

Duplicate; correct.
Duplicate; correct.

« isoform is_ a steroid receptor,
not a role.

Ligand-activated transcription
factor.

Duplicate; correct.

Responds to hormones (GCs).
Broad but true.

Duplicate; is_ a, not a role.
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Table C6: LLM KG (Qwen3-32B). Sanity check with GPT-5 Thinking. We select all KG triples that contain

“glucocorticoid receptor,” 24 triples in total, yes/no/maybe: 4/18/2.

Triple

Verdict GPT-5 explanation

glucocorticoid receptor haploinsufficiency, cause_ of,
hypertension

glucocorticoid receptor, associated_ with, insulin
resistance

glucocorticoid receptor locus (GRL) polymorphisms,
associated__with, type 2 diabetes (T2D)
podocyte-specific glucocorticoid receptor knockout
(GR pKO) mice, has_pathological process, diabetic
nephropathy

glucocorticoid receptor, has_ component, autophagy

glucocorticoid receptor (GR), finding site of, liver

glucocorticoid receptor, has_ component, diabetic
complications

endothelial glucocorticoid receptor (GR),
has_causative_ agent, renal fibrosis
glucocorticoid receptor, has_ disposition, cortisol

glucocorticoid receptor alpha, has_component,
coronavirus disease 2019

glucocorticoid receptor, has_ component, estrogen
endothelial glucocorticoid receptor (GR),
has_pathological process, WNT signaling
glucocorticoid receptor, has_ pathological_process,
osteoporosis (OP)

glucocorticoid receptor, has_ direct_ substance,
PEPCK

glucocorticoid receptor (GR), has_ direct_ substance,
Kupfler cells

glucocorticoid receptor (GR), has_ component, Leydig
cells

glucocorticoid receptor, has_ direct_ substance, stress
response

glucocorticoid receptor, associated_ with, miR-32-5p

glucocorticoid receptor, has_ direct_ substance, G6P

glucocorticoid receptor, has_ component,
SETD1A/COMPASS complex

glucocorticoid receptor (GR), has_ direct_ substance,
STAT6

glucocorticoid receptor (GR), has_ direct_ substance,
adipose tissue macrophage (ATM)

glucocorticoid receptor (GR), has component,
peripheral sensory neurons

glucocorticoid receptor 3
(GRfB)has_ direct_ substancers948820149

yes

yes

yes

yes

no

no

no

no

no

no

no
no

no

no

no

no

no

no

no

no

no

GR resistance drives
mineralocorticoid excess —
hypertension.

GC/GR signaling induces IR.

NR3C1 variants linked to T2D risk.

Podocyte GR loss worsens DN
phenotype.

Autophagy is a process, not a
receptor component.

Relation reversed; GR is located in
liver.

Diseases aren’t receptor components.

Relation misuse; fibrosis doesn’t
“cause” the receptor.

Cortisol is a ligand, not a
disposition.

COVID-19 isn’t a component.

Hormone # receptor component.
WNT signaling isn’t inherently
pathological.

Excess GR signaling leads to
GC-induced OP; relation loose.
GR regulates PEPCK expression;
not a substance of GR.

Cells aren’t receptor substances.

Tissues/cells aren’t components of a
receptor.
Process # substance.

Limited, context-specific miRNA
linkage.

Metabolite isn’t a receptor
substance.

Possible cofactor interaction, not a
component.

TF interactor, not a substance of
GR.

Cells # substances.

Neurons aren’t receptor components.

SNP pertains to gene, not isoform
“substance.”
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D GraphRAG evaluation on Medical Benchmarks

Table D1: GraphRAG KG evaluation on public benchmarks

MedMCQA MedQA MMLU (medical)

# Questions 61 75 62

LLM KG (baseline) 72.1 85.3 71.0
Seed KG 76.5 81.3 73.1
GRAPHMERT 73.8 88.0 74.7

In this evaluation, we select questions related to diabetes and its comorbidities from popular medical bench-
marks and run GraphRAG evaluation on the selected questions. We first filter the benchmarks with the
Qwen3-32B model, as stated in Section 5.3.2, and then manually review and remove some questions that are

irrelevant to diabetes.
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E Helper LLM prompts

We include only one example for all few-shot settings. For each prompt, all examples are mined from the
dataset. Then, we prompt GPT-03 with the zero-shot prompt, edit the reply if needed, and include it as a
few-shot example.

All sequences in our datasets are lower-case; here, we use normal case to improve readability.

Entity Discovery Prompt

You are a medical-domain extractor building a diabetes KG of (head, relation, tail). You possess advanced
medical academic knowledge.

Given an input sequence, identify entities specifically relevant to diabetes, its complications, comorbidities, ther-
apeutics, and related biomedical entities that help to clarify or contextualize them. Output a Python list of up
to 6-word entity “heads” following these rules:

1. Select a precise and medically-specific span (e.g., “myocardial infarction,” not “infarction”). Avoid
generic terms like “disease,” “condition,” “patients,” and “comorbidity” without a specific context. When
encountering vague descriptors like “complication,” “symptom,” or “effect,” always prefer explicitly
named conditions or symptoms directly linked to diabetes pathology or diabetes comorbidities.

”

2. Keep original spelling, casing, and abbreviations from the sequence.

3. Choose only entities that add meaningful medical knowledge to the diabetes KG. Do not include COVID-
related terms. Do not include head entities that describe findings in animal models (mice, rats, etc.).

4. A few examples of low-value entities you should not include:

e ‘> 10 % weight reduction’ (too context-dependent).
e ‘nhanes 2015 - 2018’ (dataset/survey, not a medical entity).
e ‘semaglutide 2.4 mg’ (includes a dosage, which can vary).

e ‘60+ women’ (“60+” is too context-dependent).

” W« M«

e “anxiety,” “home births,” “pregnant women,” “neonatal deaths,” “general practitioners” (not spe-
cific enough to diabetes; only include if explicitly related to diabetes).

5. If it is not clear whether a term adds diabetes-specific knowledge, look at the context. If the text
explicitly links the term to a diabetes-specific concept, include it. Otherwise, exclude it when mentioned
only in a generic context. Include such terms when the sequence clearly links them to a diabetes-relevant
gene, pathway, cell type, or therapeutic effect.

You will be provided with incorrect output examples beginning with “Output (Incorrect).” Use them to avoid the
common mistakes. Wrap your intermediate reasoning steps clearly within (think) ... (/think) tags. Be strict and
discard any entity about which you are uncertain and that is not relevant to diabetes. After generating, verify
your output.

Steps:
1. Identify candidate spans.
2. Filter by medical precision and relevance rules.

3. Confirm the entity’s relevance and contribution to the diabetes KG; discard low-value entities.

Input format: sequence
KOutput format: [‘headl’, ‘head2’, ...]. If none, output [J. )
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Few-shot Example for Entity Discovery Prompt

Input:

sequence: ..., its upstream regulator has the opposite effect (Han et al., 2013). Previous studies suggest that
CHOP deteriorates ER stress and accelerates cell death via promoting protein synthesis and oxidative stress
(Han et al., 2013). In addition, ER stress damages [-cells, possibly through altering Ca?* homeostasis. It
has been indicated that ER stress interferes with the function of RyR located in the membrane of the ER
and causes leakage of ER Ca?' (Yamamoto et al., 2019). The destruction of B-cell ER Ca** homeostasis
results in impaired insulin secretion and further promotion of S-cell death ...

Output:
[““chop,’’ ‘‘er stress,’’ ‘‘ryr,’’ ‘‘$\beta$-cells,’’ ‘‘impaired insulin secretion’’]

The rationale behind the output:
Candidates: CHOP; ER stress; 8-cells; RyR; impaired insulin secretion; oxidative stress; protein synthesis. Keep
Kprecise diabetes-relevant entities: CHOP (ER stress regulator), ER stress, 8-cells, RyR, impaired insulin secretion.

/

Relation Matching Prompt

You are a medical intelligence with academic knowledge in diabetes and comorbidities. We are building a diabetes
knowledge graph of triples (head, relation, tail).

Given:
e a sequence including biomedical context,
e a list of heads,

return, for each head, all relations chosen from the list below that could form a plausible KG triple and are
supported by the sequence.

Allowed relations:

#i#

associated_ finding_ of has_associated__morphology inverse__isa
associated__morphology_ of has_ component is_ interpreted_ by
associated with has_ disposition isa

causative_ agent_ of has_ finding_ site occurs__before

cause_ of has method part_ of

due_to has modification plays_ role
finding_site_of has_ part possibly__equivalent_ to
focus_ of interprets

#H##

The relations are taken from UMLS and have the same meaning as in UMLS.
Examples:

o carotid artery stenosis | associated_ finding of | history of carotid artery stenosis
o fibrosis | associated morphology of | endomyocardial fibrosis

e cancer | associated_with | anemia in malignant neoplastic disease

e Mycobacterium tuberculosis | causative_agent_of | Tuberculosis

o diabetes mellitus | cause_of | diabetic foot

« hypoglycemic alcoholic ketoacidosis | due_to | acute alcohol intoxication

« adipose tissue | finding site_of | lipoatrophy

K « renal failure | focus_of | emergency hemofiltration /

60



\_

Think concisely within (think) ... (/think). Immediately after, output JSON.

hepatitis A | has_associated__morphology | Hepatocellular necrosis
fasting triglyceride | has_component | triacylglycerol

tumor necrosis factor | has_disposition | immunomodulator
melanoma | has_finding_site | skin

bariatric surgery | has_method | surgical action

glucagon | has_modification | glucagon hydrochloride

nephron | has_part | glomerulus

overweight | interprets | body weight measure

adiponectin | inverse_ isa | high molecular weight adiponectin

blood eosinophil counts | is_interpreted_by | asthmatic pulmonary eosinophilia
empagliflozin | isa | sodium glucose cotransporter subtype 2 inhibitor
cardiac amyloidosis | occurs_in | old age

coronary syndrome | possibly__equivalent_to | preinfarction syndrome

MI | same_as | Myocardial infarction

Note the meaning of some relations in UMLS: isa and inverse_isa are exact inverses of each other.

isa — points up the hierarchy: “Diabetic retinopathy” isa “Retinal disease.” (specific — general)
inverse__isa — points down the hierarchy: “Retinal disease” inverse_isa “Diabetic retinopathy.”
cause__of — directional link where the source concept is understood to directly or indirectly produce,
trigger, or give rise to the target concept.

due__to — causal link: the subject condition, finding, or situation results from the object. Inverse:
cause__of.

associated__with — non-directional link indicating that two concepts are statistically or clinically linked
without asserting a clear cause-and-effect direction.

has__associated__morphology — links a pathological or clinical entity (typically a disease, syndrome, or
injury) to the characteristic structural change (“morphology”) it produces. Concretely: source = dis-
order concept; target = morphologic abnormality (e.g., “Necrosis,” “Hyperplasia,” “Fibrosis”). Inverse:
associated__morphology_ of.

associated_finding of — reads as:  “X associated_ finding_of Y” “Finding X is the clinical finding
for which procedure Y is performed.”

Input format:

sequence
heads: [headl, head2, ...]
Output format:
{
‘‘head 1’’: [‘‘relation 1,’’ ‘‘relation 2,’’ ...],
‘‘head 2°’: [...],
}
Steps:
1. Understand Input
e Clearly understand the biomedical context from the sequence.
e For each head, find explicit mentions in the text.
e Check if each head is explicitly linked to other concepts or relations.
2. Use the list of allowed relations. FEvaluate each head individually. Do not overuse the relation
associated_with — apply it only when appropriate.
3. For each head, list only plausible and supported relations. Return [] if none apply.
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Few-shot Example for the Relation Matching Prompt

Input:

...interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data
suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming
growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the
best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK.
Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium,
Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the
favorable inflammatory. . .

heads: [‘interleukin-1 r6,’ ‘receptor activator of nuclear factor kappa-b,’
‘transforming growth factor-beta’]

Output:

{
‘‘interleukin-1 r6’’: [‘‘associated_with’’],
‘‘receptor activator of nuclear factor kappa-b’’: [‘‘cause_of’’],
‘‘transforming growth factor-beta’’: [¢‘part_of’’],

}

The rationale behind this output:

interleukin-1 r6 — associated_with — Named as a “key regulator of inflammation,” which links it to the
inflammatory process without stating direction or hierarchy, so the non-causal associated_with relation fits best.

receptor activator of nuclear factor xk-B (RANK) — cause_of — The text says the intervention prevents bone
loss via RANK, implying that RANK signalling produces or drives bone loss; therefore cause_of is appropriate.

transforming growth factor-beta — part_of — Explicitly mentioned within the “TGF-8/Smad signalling
pathway,” so it is a constituent component (part_of) of that pathway.

No additional relations are warranted.

N /

Combining GRAPHMERT-predicted Top Tokens Prompt

You are completing triples for a medical knowledge graph on diabetes and its comorbidities. For each sample,
you're given a sequence, a head entity in that sequence, a relation, and a list of candidate tokens. The relations
are from UMLS and have the same meaning.

Your task is to output a filtered list of high-quality and factual tails in the format:
[“¢tail 1,°’ ‘‘tail 2,’’ ...] or [].

To form the list of candidates:

Step 1: Analyze the sequence to understand the context and identify the head entity and relation.

Step 2: Choose candidate tails. You can combine tokens from the candidate list to get the most precise, relevant,
and meaningful tails in the context of the head and relation. Combine subword tokens, too.

Step 3: Verify each candidate.

Verification. Each tail must:

e Be causally and factually related to the head via the specified relation. Make sure the relation direction
is correct: the head implies the tail given the relation. Note that isa is a subclass—class relation, and
K inverse_isa is a class—subclass relation. /
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[ e Be supported by the sequence, but you can rely on well-established medical knowledge even if the\
sequence does not spell it out verbatim. If no reliable support exists, reject the tail.

e Add valuable medical knowledge to the graph. Tails must be non-redundant. When all tails are factual,
prefer specific tails over general and vague (e.g., “proliferative diabetic retinopathy” over “retinopathy”).
Terms that include “level,” “disease,” “disorder,” or “complication” are too vague and rarely add useful
knowledge to the KG.

¢ Include only tokens from the list of candidates.

Reason step by step within <think>...</think>.

You will see incorrect outputs labeled “Output (Incorrect).” Avoid similar errors.

Before finalizing:

— Ensure all output constraints are met.

— Validate that each tail is logically, contextually, and factually aligned with the head and relation.
— Confirm that each triple adds meaningful knowledge to the graph.

Note the meaning of some UMLS relations you may encounter in the input:

e isa and inverse isa are exact inverses of each other.

— isa — points up the hierarchy: “Diabetic retinopathy” isa “Retinal disease.” (specific — general)

— inverse__isa — points down the hierarchy: “Retinal disease” inverse__isa “Diabetic retinopathy.”

e cause__of — directional link where the source concept directly or indirectly produces, triggers, or gives
rise to the target concept.

e due_to — causal link: the subject condition, finding, or situation results from the object. Inverse:
cause__of.

e associated__with — non-directional link indicating that two concepts are statistically or clinically linked
without asserting a clear cause—effect direction.

e has__associated__morphology — links a pathological or clinical entity (typically a disease, syndrome, or
injury) to the characteristic structural change (“morphology”) it produces.
Concretely: source = a disorder concept; target = a Morphologic Abnormality concept (e.g., “Necrosis,”
“Hyperplasia,” “Fibrosis”). Inverse: associated__morphology__of.

e associated_finding of — reads as:
\ “X associated__finding _of Y” = “Finding X is the clinical finding for which procedure Y is performed.”/

Few-Shot Example for Combining GRAPHMERT-predicted Top Tokens Prompt

Input:

sequence: ...2+ binding to S100A1 EF-hand motifs, the conformation of S100A1 changes and promotes
interactions with target proteins. RAGE consists of three domains: the cytoplasmic, transmembrane, and
extracellular domains. The extracellular domain consists of C1, C2, and V domains. V domains are the
primary receptors for the S100 protein. It was reported several years ago that SI00A1 and RAGE V domains
interact in a pathway involving SI00A1-RAGE signaling, whereby S100A1 binds to the V domain, resulting
in RAGE dimerization. The autophosphorylation of the cytoplasmic domain initiates a signaling cascade
that regulates cell proliferation, cell growth, and tumor formation. In this study. ..

head: [‘“s100a1’’]

relation: associated with

predictions: protein receptor hydrolase structure process pathway factor complex glycoprotein s100a family
domain oxidoreductase proteinase ligand extracellular signaling calcium apolipoprotein s100

Output:
N J
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/[‘ ‘calcium signaling pathway’’]

The rationale behind this output:
Available tokens let us build terms such as:

e “calcium signaling pathway” (calcium + signaling + pathway)
o “extracellular signaling” (extracellular + signaling) — too broad
e “s100a family” — classification, not an association

Other tokens (“glycoprotein,” “oxidoreductase,” etc.) do not represent well-known processes linked to SI00A1.

Preference & verification:
“S100A1 modulates intracellular Ca?" handling and is well-documented to participate in the calcium signaling
pathway, especially in cardiac and skeletal muscle.” This is a concrete biological pathway association that adds

value to the graph.
N J
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F GraphRAG Prompts

E1l: GraphRAG Index Prompt

-Role-
You are an Al assistant specialized in extracting structured information from biomedical texts to build a
knowledge graph about diabetes.

-Goal-

Given some medical paper abstracts, a predefined list of entity types, and a predefined list of relations, identify
all entities of those types and the medically meaningful relationships explicitly described among the identified
entities within the abstract. You should only extract entities that are relevant to diabetes, its complications, and
comorbidites.

-Entitiy Types-
You should extract entities from the following 5 entity types:
Organism, Anatomical Structure, Manufactured Object, Substance, Conceptual Entity.

Use the subcategories listed below SOLELY as guidance to help you determine the correct main entity type.
Only use the 5 main entity types in your output.

1. Organism: Plant; Fungus; Virus; Bacterium; Archaeon; Eukaryote; Vertebrate; Amphibian; Bird; Fish;
Reptile; Mammal; Human

2. Anatomical Structure: Embryonic Structure; Anatomical Abnormality; Congenital Abnormality; Acquired
Abnormality; Fully Formed Anatomical Structure; Body Part, Organ, or Organ Component; Tissue; Cell; Cell
Component; Gene or Genome

3. Manufactured Object: Medical Device; Drug Delivery Device; Research Device; Clinical Drug

4. Substance: Chemical; Pharmacologic Substance; Antibiotic; Biomedical or Dental Material; Biologically
Active Substance; Hormone; Enzyme; Vitamin; Immunologic Factor; Receptor; Indicator, Reagent, or Diagnostic
Aid; Organic Chemical; Nucleic Acid, Nucleoside, or Nucleotide; Amino Acid, Peptide, or Protein; Inorganic
Chemical; Element, Ion, or Isotope; Body Substance; Food

5. Conceptual Entity: Idea or Concept; Body System; Body Space or Junction; Body Location or Region;
Molecular Sequence; Nucleotide Sequence; Amino Acid Sequence; Carbohydrate Sequence; Geographic Area;
Finding; Laboratory or Test Result; Sign or Symptom; Organism Attribute; Clinical Attribute; Intellectual
Product; Occupation or Discipline; Organization; Group

-Relation Types-

Please only identify the following 35 relations: [‘associated_finding of,” ‘associated__morphology_ of,” ‘as-
sociated__with,” ‘causative_agent_of,’ ‘cause_of,” ‘direct_ procedure_site_of,” ‘due_to,” ‘finding_site_of,’
‘focus_ of,” ‘has_ associated__morphology,” ‘has_ causative agent,” ‘has_clinical course,” ‘has_component,’
‘has_ direct_procedure_site,” ‘has_direct_substance,” ‘has_disposition,” ‘has_entire_anatomy_ structure,’
‘has_ finding_ site,” ‘has_ focus,” ‘has_method,” ‘has_modification,” ‘has_part,” ‘has_ pathological process,’
‘interprets,’” ‘inverse_isa,” ‘is_interpreted_ by,” ‘is_ modification_ of,’ ‘isa ¢

)¢ method_ of,” ’occurs__before’, ‘oc-
curs_in,” ‘part_of,” ‘plays_role,” ‘possibly_equivalent_ to,” ‘same_ as’]

’ L
)

The following provides one example for each type of relation, formatted as ‘head, relation, tail’:
fetal growth restriction (fgr), associated_ finding_ of, history of fetal growth retardation
tumors, associated__morphology_ of, neoplastic disease

neutropenia, associated_ with, neutropenic sepsis

s. epidermidis, causative_agent_ of, staphylococcus epidermidis ventriculitis

chronic kidney disease (ckd), cause_ of, renal retinopathy

gastric fundus, direct_ procedure_ site_ of, laparoscopic fundoplication

diabetic cardiomyopathy (dbcm), due_to, diabetes mellitus

endocrine pancreas, finding site_of, extreme insulin resistance type a

gait abnormalities, focus_ of, prosthetic gait training

pyoderma gangrenosum, has_ associated__morphology, neutrophilic infiltration

chronic chagas disease cardiomyopathy, has_ causative_ agent, trypanosoma cruzi
Kmembmnous nephropathy, has_ clinical _course, chronic j
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/serum creatinine level, has_component, creatinine \
fmt, has_ direct_ procedure_ site, gastrointestinal tract structure
high-intensity statins, has_ direct_ substance, hmg-coa reductase inhibitor
resveratrol (res), has_ disposition, platelet aggregation inhibitor
middle occipital gyrus, has_entire_ anatomy_ structure, entire lateral occipital gyrus
diabetes retinopathy, has_ finding_ site, retinal structure
on-line hemodiafiltration, has_ focus, renal failure syndrome
islet cell transplant, has_ method, surgical transplantation
uric acid, has_modification, calcium urate
anaerobic glycolysis, has_ part, pyruvate kinase activity
evans syndrome, has_ pathological process, autoimmune process
endocrine hypertension, interprets, blood pressure
adaptive thermogenesis, inverse__isa, diet induced thermogenesis
serum triglyceride, is_ interpreted_ by, serum triglyceride levels
tau, is_ modification_ of, uridine
t cell receptors, isa, antigen receptor
amputation, method_ of, cineplastic amputation
renal transplantation, occurs_ before, accelerated rejection of renal transplant
paediatric obesity, occurs__in, childhood
bone resorption, part_ of, bone remodeling
everolimus (eve), plays_role, antineoplastic therapeutic role
non-alcoholic fatty liver disease, possibly_equivalent__to, fatty liver
retinal cotton wool spots, same__as, retinal exudates

-Steps-

1. Identify all entities corresponding to one of the 5 main entity types and relevant to diabetes, using the
subcategory examples as guidance for classification. For each identified entity, extract the following information:
- entity _name: Name of the entity, lowercase

- entity__type: One of the following types: Organism, Anatomical Structure, Manufactured Object, Substance,
Conceptual Entity.

- entity_ description: concise description of the entity’s attributes and activities. Format each entity as
("entity"<|><entity_name><|><entity_type><|><entity_description>)

2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are clearly
related to each other according to the given text, and are medically meaningful. Only use the 35 relationships
that are in the predefined list.

Avoid relationships that are attached to entities that are too general, for example: patients, bodily functions,
parameters, management, optimization. Only keep the relationships that state facts, represent the main idea in
the text, or other important relationships that are in the predefined list. It’s acceptable if some entities identified
in the previous step are not used.

For each pair of related entities, extract the following information: - source_ entity: name of the source entity,
as identified in step 1

- target_ entity: name of the target entity, as identified in step 1

- relationship: one relation that is in the predefined list, according to the given text

- relationship_ strength: a numeric score out of 10 indicating the strength of the relationship between the source
entity and target entity

Format each relationship as
("relationship"<|><source_entity><|><target_entity><|><relationship_description><|>
<relationship_strength>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use
## as the list delimiter.

4. When finished, output <|COMPLETE|>

- J
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/- Constraints and Guidelines \
- Strict Textual Grounding: Base all extractions only on the provided medical abstract. Do not use external
knowledge or make assumptions beyond what is written.

- Entity Filtering: Only extract the entities whose type is present in the provided 5 Entity Type, and only
extract entities that are relevant to diabetes, its complications, and comorbidites.

- Relationship Filtering: Extract only the 35 relationships as defined. Exclude all other relationships.

- Delimiter Usage: Strictly adhere to the specified tuple_ delimiter within tuples and record_ delimiter between
records.

N J

E2: GraphRAG Index Example

Input:

HAHHH B HBRHHBR AR H B

Entity_types: Organism, Anatomical Structure, Manufactured Object, Substance, Conceptual Entity
Text:

CMR imaging enables comprehensive detection of myocardial remodeling in patients undergoing TAVR.
Regression of LV matrix volume as a surrogate for reversible diffuse myocardial fibrosis is accompanied by
increase of myocardial function and recovery from heart failure. Further data are required to define the
value of these parameters as therapeutic targets for optimized management of TAVR patients.

HEHHH B HHH B SHH RS H RS

Output:

Output:

("entity"<|>cmr imaging<|>Conceptual Entity<|>A medical imaging technology that allows for the
comprehensive detection of myocardial remodeling.)

##

("entity"<|>myocardial remodeling<|>Conceptual Entity<|>A pathological process involving changes
in the heart muscle, observed in patients undergoing TAVR.)

##

("entity"<|>tavr<|>Conceptual Entity<|>Transcatheter Aortic Valve Replacement, a medical
procedure undergone by patients with myocardial remodeling.)

##

("entity"<|>regression of LV matrix volume<|>Conceptual Entity<|>The reduction in the volume of
the left ventricular matrix.)

##

("entity"<|>reversible diffuse myocardial fibrosis<|>Conceptual Entity<|>A condition of the
heart muscle for which the regression of LV matrix volume acts as a surrogate.)

##

("entity"<|>myocardial function<|>Conceptual Entity<|>The physiological performance of the heart
muscle.)

##

("entity"<|>heart failure<|>Conceptual Entity<|>A clinical condition from which recovery is
observed along with the regression of LV matrix volume.)

##

("relationship"<|>myocardial remodeling<|>cmr imaging<|>has_method<|>9)

##

("relationship"<|>regression of LV matrix volume<|>reversible diffuse myocardial
fibrosis<|>is_interpreted_by<|>9)

##

("relationship"<|>regression of LV matrix volume<|>myocardial function<|>associated_with <|>10)
##

("relationship"<|>regression of LV matrix volume<|>heart failure<|>associated_with<|>10)

##

("relationship"<|>tavr<|>myocardial remodeling<|>occurs_before<|>8) 4/
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E3: GraphRAG Query Prompt

—Role—
You are a helpful assistant responding to questions about data in the tables provided.

—Data tables—
{context_data}

—Goal—

Generate a response in the specified target format that answers the user’s question using only the information
provided in the tables. Do not use any external knowledge. If any prior knowledge conflicts with the tables,
always rely on the tables as the sole source of truth.

If you cannot get the answer based on the tables, just say so. Do not make anything up.

Points supported by data should list their data references as follows:

“This is an example sentence supported by multiple data references [Data: <dataset
name> (record ids); <dataset name> (record ids)].

Do not list more than 5 record ids in a single reference. Instead, list the top 5 most relevant record ids and add
“+more” to indicate that there are more.

For example:

“Person X is the owner of Company Y and subject to many allegations of wrongdoing [Data:
Entities (5, 7); Relationships (2, 7, 34, 46, 64, +more)].”

where 5, 7, 2, 34, 46, and 64 represent the id (not the index) of the relevant data record.
Do not include information where the supporting evidence for it is not provided.

—Target response format—
Response type: multiple paragraphs.
Provide a concise answer using \boxed{}, select only the correct letter from A, B, C, D. (e.g., \boxed{C})

Reference data points that support your answer using the given format (e.g., [Data: Relationships (2, 3,
4); Entities (35, 36, 37, 39, 55, +more)]). If no relevant information from the table supports your answer,
Qeave the reference empty (e.g., [1). )

E4: GraphRAG Context Example

—Relationships—

source - (relation) -> target

chemotherapy - (cause_of) -> peripheral neuropathy due to and following chemotherapy
chemotherapy - induced peripheral neuropathy - (due_to) -> administration of antineoplastic
agent

antineoplastic drugs - (associated_with) -> resistance to antineoplastic drug

chemotherapy - induced peripheral neuropathies - (due_to) -> administration of antineoplastic
agent

hematologic malignancies - (isa) -> neoplastic disease

lymphoid leukaemia - (associated_finding_of) -> history of lymphoid leukemia

leukemia - (associated_finding_of) -> history of leukemia

cancer - (focus_of) -> oral chemotherapy for malignant neoplasm

cancer - (associated_with) -> restrictive cardiomyopathy secondary to malignancy

cancer - (associated_with) -> cancer - related fatigue

imatinib - (plays_role) -> antineoplastic therapeutic role

imatinib - (isa) -> antineoplastic agent

vorinostat - (plays_role) -> antineoplastic therapeutic role

nivolumab - (plays_role) -> antineoplastic therapeutic role

\fucaparib - (plays_role) -> antineoplastic therapeutic role 4/
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nivolumab - (isa) -> antineoplastic agent
rucaparib - (isa) -> antineoplastic agent
antineoplastic agents - (inverse_isa) -> vorinostat
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