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The impressive performance gains of modern language models currently rely on scaling parameters: larger models store
more world knowledge and reason better. Yet compressing all world knowledge into parameters is unnecessary, as only
a fraction is used per prompt, and impractical for edge devices with limited inference-time memory and compute. We
address this shortcoming by a memory-augmented architecture and a pretraining strategy aligned with existing hardware
paradigms. We introduce small language models that access large hierarchical parametric memory banks encoding world
knowledge. During pretraining and inference, we fetch a small, context-dependent memory block and add it to the model.
Our pretraining learns to store long-tail world knowledge in the memory parameters, while the small language model acts
as an anchor capturing common knowledge and general reasoning abilities. Through trillion-token-scale experiments,
we show significant gains: a 160M-parameters model augmented with an 18M-parameters memory fetched from a
4.6B memory bank obtains comparable performance to a regular model with more than 2 x the parameters. Through
extensive experiments, we study the optimal type and size of parametric memories in transformers, scaling them to over 21B
parameters. We find that our proposed hierarchical feed-forward memories work robustly across transformer architectures,
whether added during pretraining or post-hoc.

Correspondence: Hadi Pouransari: mpouransari@apple.com
Date: October 7, 2025

r 100
The atomic number of [Silicon] is ... 103

4 ‘ baseline

/ 160M: +memory
World Knowledge ‘
(pre-training dataset)
3— frequency

. 410M
basellne/ N)urs
‘ - 20
oooo , ] baseline accuracy per bucket b
1.4B 1 04 J +memory accuracy per bucket T
+ OOOO \ ’ 0
oooo Head (frequent) Long-tail (rare)

single anchor 0 25 50 75 100 Elements
mogel model T Memory Exact Match (%)

- 80

10" 3 i

Element frequency
a\’ﬁ
Accuracy (per bucket %)

Figure1 Left: Schematic of pretraining-with-memories: some parameters are always used (anchor parameters), others
are fetched per input document (memory parameters). Middle: Accuracy improvement over baseline when ~ 10% of
parameters are allocated as memories for a knowledge-intensive task (predicting the atomic numbers of elements),
using models with 160M, 410M, and 1.4B parameters, corresponding to rows A2, B2, and C2 in Table 1. Right:
Elements sorted by their frequency of appearance in the DCLM-Baseline dataset (5 buckets, each with ~ 24 elements).
With the proposed pretraining-with-memories, we observe significant improvements, especially on long-tail data. While
the baseline 1.4B model has only 17% accuracy on the least frequent element bucket, augmenting it with only 10%
memory parameters increases the accuracy to 83%.
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1 Introduction

Frontier large language models (LLMs) have advanced significantly in recent years, demonstrating strong
capabilities across both world knowledge and reasoning tasks. These improvements have largely been driven
by scaling the number of parameters and training tokens. However, limited results exist on the role of model
parameter count in each specific aspect, and on whether knowledge and reasoning can be disentangled.

LLMs memorize many facts in their parameters during pretraining (Roberts et al., 2020), most of which
are long-tail knowledge, overly specific, and unnecessary for the intended use. For example, part of the
parameters of the Qwen3-2B (Yang et al., 2025) model store the fact that Albert Finstein was born on March
14, 1879, a detail that is not essential for executing on-device personal assistant tasks, yet is permanently
loaded into RAM and considered in each computation. Ideally, this capacity would be utilized for reasoning
and commonsense abilities.

We propose to use a base model as an anchor to capture common knowledge and reasoning capabilities and
augment it with a memory bank that dedicates a large set of memory parameters to long-tail knowledge. In
Figure 1, we illustrate this through a representative knowledge-intensive task: predicting the atomic number of
elements. Baseline pretraining performance degrades for samples with lower frequency in the pretraining data.
This degradation is attributed to catastrophic forgetting (Toneva et al., 2018), which arises from destructive
gradient updates caused by dissimilar content (Ghosal et al., 2025) applied to the same set of parameters.
In contrast, in the proposed approach, memory parameters are activated and updated only on sequences of
similar topics, thereby reducing susceptibility to forgetting. Besides training dynamics advantages, separating
long-tail knowledge into dedicated memory parameters offers several additional benefits, as discussed below.

Runtime efficiency: For on-device deployment of LLMs, the main bottleneck is the availability of large and
fast memory. Methods such as mixture-of-experts (Shazeer et al., 2017) (MoEs) improve compute efficiency
by activating only a fraction of the feed-forward modules. Still, MoEs require on-demand random access
to the full set of experts at every layer and for every token, such that all model parameters remain loaded,
not just the active ones. This makes on-device deployment of MoEs challenging. In our proposed method,
depending on the context, only the required knowledge parameters are attached to the anchor model (see
Figure 2). This allows fast on-device memory to be used primarily for anchor model parameters, while
knowledge parameters are stored in a slower but larger storage. Furthermore, we learn knowledge in the form
of hierarchical memories, allowing inference to naturally align with existing device memory hierarchies (RAM,
flash storage, external disk) and benefit from their compositionality over a session of interaction with the
model (see Figure 5).

Training efficiency: A key bottleneck in large-scale distributed training of standard LLMs is the need to
communicate large gradient tensors between compute nodes. In the proposed approach, during pretraining,
based on the content of documents in a batch, only a small fraction of memory bank parameters is retrieved
and updated together with the anchor model parameters. As a result, the gradients are highly sparse, which
substantially reduces node-to-node communication. This property makes the proposed method well-suited for
co-locating training data and compute in massively distributed setups, similar to branch-train-merge (BTM)
methods (Li et al., 2022; Gururangan et al., 2023a). For instance, pretraining an anchor model with 160
million parameters and 4.6 billion memory parameters requires less than 1.7x the compute budget of training
a 160M model alone.

Privacy and knowledge editing: Separating knowledge and reasoning abilities enables a direct mapping between
training tokens and specific subsets of parameters (memories). Ownership of training data tokens can therefore
be linked to ownership of the corresponding memories. This makes it possible to remove or edit certain data
from the model by deleting or updating the associated memory parameters, or to restrict access to specific
memories while keeping the anchor model public. We show the effect of memory blocking in Section 4. The
proposed approach also allows creating new memories from new data after pretraining, as shown in Section 4.
Through this mechanism, a strong public reasoning model can be readily augmented with memories built
from large private user data or organizational databases, providing a more efficient alternative to very long
contextual memories.

Our main contributions are transformer architectures augmented with large hierarchical memories (Figure 2)
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Figure 2 Proposed architecture: For a given context z (such as a question text), the memory retriever module
selects relevant parameters from a large set of memory bank parameters. These memory parameters are organized
hierarchically based on the hierarchical clustering of the pretraining data. The anchor model, together with the
retrieved memories, then responds to the question.

and a clustering-based pretraining method (Section 2.1), through which long-tail knowledge is automatically
incorporated into the memory bank. We systematically examine how different memory types (Figure 3), depths
(Figure 3d), sizes (Figure 4a), positions (Table 9), and memory-to-model ratios (Figure 4b) affect performance.
We further analyze the runtime efficiency of the proposed method in relation to hardware storage hierarchies
(Section 3). Memory learning is scaled to banks containing up to 21B parameters. Results demonstrate
consistent improvements over baseline models (Table 1) and retrieval-augmented generation strategies (Table 3),
and robust applicability to arbitrary transformer architectures (Table 2). For example, with approximately
10% additional parameters retrieved from the memory bank, we observe gains on knowledge-specific tasks of
34.1% — 40.3% for a 160M model and 40.9% — 45.9% for a 410M model.

2 Pretraining with memories

Consider a language model with parameters 6, called anchor parameters, a large bank of memory parameters
W, and a retriever module R that, given a context x, fetches only the relevant memory parameters R(z; W)
from the memory bank. During pretraining, we optimize the next token prediction loss for each document x
in the dataset D:

L(r)=— ZIOgPO,R(z;W) (7¢ | w<y), (2.1)
t

where Pg % (z;w) (¢ | 7<¢) is the model’s output probability distribution over the vocabulary for token ¢ in
document z, given its previous tokens, using anchor parameters 8 augmented with the retrieved memory
parameters R(x; W).

In terms of parameter counts, we generally assume |R(z; W)| < |6] < |W/|. Therefore, with the training
objective in Equation (2.1), the memory bank parameters W are updated only sparsely. Intuitively, we expect
R(x; W) to retrieve the same subset of parameters from W for inputs x that are semantically similar. As
a result, memory parameters receive gradients primarily from documents with related content, mitigating
forgetting (Ghosal et al., 2025) and enabling them to efficiently memorize long-tail world knowledge. In
contrast, 0 receives gradients for all x € D and is expected to primarily capture common knowledge and
general reasoning capabilities.

At inference time, the model uses only 8| + |R(x; W)| parameters, introducing only a minor overhead
compared to a model that relies solely on 0. Figure 2 presents the overall architecture. We next describe the
construction of each component in this framework.

2.1 Clustering-based memory retriever

Hierarchical clustering: Given a pretraining dataset D, we use an off-the-shelf text embedding model ¢
to map each document x € D to ¢(x) € R°. We then perform hierarchical clustering using the document
embeddings: first, we divide the documents into k clusters using k-means; next, we further subdivide each



cluster into k sub-clusters, and continue this process for p levels. Finally, we obtain k! nested clusters at
each level. In this paper, we cluster the DCLM-baseline dataset (Li et al., 2024) with 3.2 billion documents
into a hierarchy with p = 4 levels and dividing factor of k = 16 resulting in 16,162,162, and 16* clusters
at levels 1, 2, 3, and 4, respectively (see Figure 2). We use Sentence-BERT all-MiniLM-L6-v2 embedding
model (Reimers and Gurevych, 2019) with dimension ¢ = 384. See more details in Appendix C.

To retrieve a cluster, we map a document x to an index tuple Z(x) = (i1, i2, . . ., ip) by traversing the clustering
tree greedily: at each level I, ¢(x) is compared to k centroids and the sub-tree corresponding to the closest
(via L2 distance) centroid (7;) is then visited. This greedy traversal leads to a fast and scalable retrieval within
O(pk) comparisons. For our tree of depth p = 4, we denote the cluster index as Z(z) = (i1, i2, i3,%4). We
pre-compute the cluster index for each document in the pretraining dataset offline, resulting in no training-time
overhead. See details in Section A.2. At test time, we use the same traversal to get the cluster index for the
task context (e.g., question text).

Hierarchical memories: We assign a memory parameter block to each cluster in a given hierarchical
clustering tree, denoted by W;;, € R*, where [ € {1,2,3,4} denotes the level, i; € {1,...,k'} is the cluster
index at level [, and s; is the size of the memory parameter blocks at level [. The memory bank W consists of
all memory parameter blocks W, ;,. The memory retriever is then:

R(.’E; W) = [Wl,il y W2’2'27 W3’i37 VV4’¢4]7 where I(.’L‘) = (ih ig, ’ig, i4). (22)

The total number of parameters in the memory bank is |[W| = s1k + sok? + s3k® + s4k*, and the number of
retrieved parameters (fetched memory size) is |R(x; W)| = s1 + s2 + s3 + sa4.

2.2 Inference with parametric memories

There are multiple ways to add parametric memories R(z; W) to an anchor model 6, i.e., to practically
model Py r (z;w) (2t | £<¢). We limit our discussion to decoder-only, transformer-based (Vaswani et al., 2017)
language models. For all memory types, we instantiate them such that at the beginning of training they have
no effect on the anchor model. See details in Appendix I.

LoRa-Memories: A popular approach to augment a model with a (small) set of extra parameters is to
patch its linear layers with low-rank adaptation matrices (LoRa, Hu et al., 2022). We consider three types
of LoRa memories: LoRa-QK adapts the query and key projection layers (see Figure 14), LoRa-VO adapts
the value and output projection layers (see Figure 15), and LoRa-FFN adapts all three linear layers in the
SwiGLU feed-forward network (FFN) (Shazeer, 2020) with rank r matrices (see Figure 16).

KV-Memories: The knowledge in the context tokens a transformer attends to is ultimately a sequence of
KV-caches. A natural extension of providing context knowledge is thus to learn KV-cache parameters directly.
This can also be seen as a generalization of prefix tuning (Li and Liang, 2021; Lester et al., 2021), where only
input token embeddings are learned. At each transformer layer, data-dependent query tokens cross-attend to
r fetched KV memories (see Figure 17).

FFN-Memories: Previous works have argued that transformer-based language models mainly store their
knowledge in the FFN layers (Geva et al., 2020; Dai et al., 2022; Yao et al., 2022). Inspired by this, we introduce
FFN memories: we expand the inner dimension of the SwiGLU FFN layers by r through concatenation with
the fetched memory parameters, which is equivalent to a fast addition (see Figure 18).

The number of parameters s; in a memory block assigned to clusters at level [ depends on the memory type,
the anchor model’s architecture (e.g., hidden dimension, depth, etc.), and the memory block size multiplier r
(rank for LoRa, number of KV memory tokens, or FFN dimension expansion size). Therefore, a hierarchical
memory configuration (si, sz, $3,84) can be written as co(r1,72,73,74), Where ¢g is a constant determined by
the anchor model architecture and memory type, and r; is the memory block size multiplier for memories at
level [ that we control. For simplicity, we drop the constant ¢y in the rest of the paper and provide details in
Appendix I. In practice, we generally set these multipliers so that coarser levels have larger parameter blocks,
i.e., 11 > 19 > 13 > 14, or set 1, = 0 when no memories are assigned to clusters at level (.
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Figure 3 Effect of memory type on Specific-Knowledge benchmarks (a) and Wikipedia perplexity (b). Effect of
memory level on performance as a function of fetched memory size (c¢) and bank size (d).

3 Design choices for pretraining with memories

We use DCLM-Baseline (Dai et al., 2022) for training. The dataset contains ~ 3.2 billion documents (~ 4.3
trillion tokens). We cluster the dataset to a tree with 4 levels, having 16, 162,16, and 16* clusters at each level.
See Appendix A for training details. For evaluation, we consider 13 frequently used benchmarks, including
multiple-choice and generative tasks. We divide these tasks into two groups based on the level of specific
knowledge required (see Appendices B and G for details):

Common-Knowledge (Avg-CK): Lambada-OpenAI (Paperno et al., 2016), Bool@ (Clark et al., 2019),
SQuAD (Rajpurkar et al., 2016), Winograd (Levesque et al., 2012), CoQA (Reddy et al., 2019), and
WinoGrande (Sakaguchi et al., 2021).

Specific-Knowledge (Avg-SK): Hellaswag (Zellers et al., 2019), ArcFasy/Challenge (Clark et al., 2018),
Trivia@QA (Joshi et al., 2017), NaturalQuestions-Open (Lee et al., 2019; Kwiatkowski et al., 2019), PIQA (Bisk
et al., 2019), and OpenBookQA (Mihaylov et al., 2018).

For evaluation, we retrieve the memories based only on the question text. As an open-ended generation task,
we also track the average perplexity on the 2022 English Wikipedia (Wiki-En) with ~ 6.5M samples (4B
tokens), where memories are retrieved based on the full Wikipedia document.

FFN-Memories outperform LoRa and KV memories: In Figure 3, we compare different memory
types introduced in Section 2.2. We attach the memories to a pretrained model with 160M parameters
(row Al in Table 1) and train them from scratch for 275B tokens with the loss objective in Equation (2.1),
while the anchor model parameters (8) are frozen. For this set of experiments, we use a single-level memory
configuration in the form of (0, s2, 0, 0), corresponding to a total of 162 = 256 memories, each with size sy, for
different values of s;. We observe that FFN-Memories have a significant advantage over other forms of memory
across all memory sizes. Based on this observation, in the rest of the paper we use only FFN-Memories.
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Figure 4 (a) Avg-SK accuracy for different hierarchical memories, demonstrating performance gain with larger
bank size and fetched memory size. (b) Wiki-En perplexity for different fetched memory—to—anchor model
size ratios, with the optimal point at 1:10. The purple curve shows the perplexity of anchor models without
memory. The green curves show the perplexity of models with memory, with different shades of green corresponding to
the progress of memory training.

Accuracy improves with deeper and larger memories: Here, we explore the design space of different
single-level memory configurations (s1, $2, S3, S4), where only one of the s;’s is non-zero. The anchor model
is pretrained and frozen (row Al in Table 1) during memory training (see Section A.3 for details). As
shown in Figure 3¢, for a constant fetched memory size (i.e., s;), deeper memories yield greater accuracy
improvements, as they capture more relevant and detailed information for a given query. In Figure 3d, we show
that performance is a strictly increasing function of total memory bank size for all memory configurations, as
more capacity becomes available to capture long-tail knowledge. Shao et al. (2024) recently made a similar
observation for regular RAG setups by increasing the size of the datastore from which documents are retrieved.
Note that for a fixed total memory bank size, a shallower memory corresponds to a larger fetched memory
size. Therefore, in Figure 3d, at a fixed memory bank size, shallower memories achieve higher accuracy.

Hierarchical memories enable an optimal design: Unlike single-level memories used in previous
experiments, a general hierarchical memory configuration (si, sz, 3, $4) with possibly multiple non-zero values
allows independent control of the total memory bank size (>, 16's;) and the size of fetched memory parameters
at inference time (3, s;). For a large total memory bank size with a small number of fetched parameters at
inference, we can use larger level-3 and level-4 memories. Conversely, for a smaller total bank size with more
fetched parameters at inference, we can increase the sizes of level-1 and level-2 memories.

From a learning dynamics perspective, in regular language modeling, all parameters are updated at every
iteration, receiving gradients from a wide range of dissimilar documents in the dataset. As a result, long-tail
information is often forgotten (Toneva et al., 2018). When training with hierarchical memories, however,
memory bank parameters at level [ are activated 16! times less frequently compared to anchor model parameters
(which can be considered level-0). Consequently, deeper memory bank parameters receive fewer gradient
updates, and from more similar content, shielding them from forgetting (Ghosal et al., 2025). This leads to
effective learning of a hierarchy of memories, ranging from the most common knowledge at level 1 to the most
specific knowledge at level 4.

Above, we showed that single-level memories benefit from larger fetch size and bank size. We now systematically
demonstrate this for a general hierarchical configuration. We evaluate two groups of hierarchical memories
added to our frozen pretrained 160M model (row Al in Table 1): one with a memory bank size of 4.6B
and another with 18.7B, both with configurations spanning between 1M and 300M fetched parameters (see
Section A.4 for details). Results in Figure 4a confirm that performance increases strictly with fetched memory
size (while keeping bank size fixed) and with bank size (while keeping fetched memory size fixed) for the
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Figure 5 Deployment advantages of hierarchical memories. Left: Memory loading latency is reduced by using the
hardware hierarchy. Right: Latency is reduced by exploiting compositionality over time: larger memories for low-level
clusters, once loaded, are less likely to need reloading.

general hierarchical configurations. For example, changing the memory configuration from (256,64,16,0) to
(256,64,16,4) barely changes the fetched memory size but corresponds to bank sizes of 4.6B and 18.7B,
respectively, and results in an Avg-SK improvement from 39.1% to 40.1%.

The point with highest accuracy in Figure 4a corresponds to augmenting a 160M anchor model with ~ 240M
fetched memory parameters, achieving 44.5% accuracy on Avg-SK. This is a notable result, showing that an
anchor+memory model with a total of 400M runtime parameters outperforms a regularly trained 410M model
(row B1 in Table 1) by 3.6 points. Building on this observation, we ask the following question: For a given
runtime parameters budget, how many parameters should be allocated to the anchor model and how many to
the fetched memories?

To explore this, we train a sequence of anchor models with 260M, 320M, 350M, 370M, 385M, and 410M
parameters, freeze them, and pair them with fetched memories of sizes 150M, 90M, 60M, 40M, 25M, and 0,
respectively, such that the total runtime parameter count for anchor+memory remains fixed at 410M. All
configurations use a 6.3B memory bank (see Section A.7). In Figure 4b, a 1:10 ratio of fetched memory to
anchor model size appears optimal and guides our next experiments. However, this observation may not
generalize to different runtime, memory bank, and training budgets, or when the anchor model and memory
parameters are co-trained.

Models with hierarchical memories have on-device deployment advantages. Assuming a von
Neumann architecture with hardware organized in increasing size and decreasing speed (RAM, flash disk,
external disk), we can store shallower memory levels (with larger fetch size but smaller bank size) on faster
components, while offloading deeper levels to slower storage (Alizadeh et al., 2024). In the example in
Figure 5 (left), with a hypothetical hardware setup, a hierarchical memory can be loaded in 38ms, whereas
loading a memory of the same fetch size from a flat bank (stored on the external disk due to its excessive
total size) takes 198ms—more than 5x longer. Additionally, even if both hierarchical and flat memory banks
are stored exclusively on the external disk, hierarchical memories still provide a loading speed advantage due
to their compositionality. For example, when generating different atomic numbers in Figure 1, the level-1 and
level-2 memories remain mostly unchanged, and only deeper memories need to be swapped. This takes 47ms,
compared to 198ms when the entire flat memory must be reloaded, as shown in Figure 5 (right).

4 Results

In this section, building on the findings from Section 3, we provide a comprehensive set of results for
different-sized models and compare them with baselines. See Appendix A for training details.

Starting from a 160M anchor model pretrained regularly (row Al in Table 1), we add memories with the
(256, 64,16, 0) configuration, corresponding to a fetched memory size of ~ 18M parameters and a total memory
bank size of ~ 4.6B parameters. When memories are learned with a frozen anchor model (row A3), we observe
a +5.1 points improvement on Avg-SK compared to Al and a 2 points reduction in Wiki-En perplexity,
demonstrating the effectiveness of memories for tasks requiring specific knowledge, with only ~ 10% additional
runtime parameters from fetched memories.

To ensure a fair comparison, we also train a generic memory with the same size as the fetched memories
(18M parameters) together with the memory bank parameters. When evaluating with generic memory, unlike
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Table1 Summary of results for pretraining with memories at different parameter scales.

fetched memories that are retrieved based on context, we simply use the anchor+generic memory parameters.
This isolates the effect of merely increasing the number of parameters and training tokens in the anchor model.
Anchor+generic memory scores 34.7% on Avg-SK, 4.5 points below fetched memories, showing the benefit of
context-based retrieval in isolation.

We next explore co-training the anchor model parameters () and the memory parameters (W) together,
as in Equation (2.1). For a fair comparison, during training we use the generic memory with probability
1/(16 + 1) and the fetched memory with probability 16/(16 + 1), where 16 is the clustering division factor.
This ensures there is no training bias in favor of the memory bank parameters.

Row A2 in Table 1 shows co-training results, with Figure 6a illustrating training curves for A2 and A3
experiments. A key observation is that when we allow the anchor parameters to be co-trained with the
memory bank, we obtain greater improvement compared to the case where the anchor model is frozen (Avg-SK
39.2% — 40.3%). This gain can be attributed to two factors: 1) when co-training, the anchor model learns to
utilize the memories more effectively compared to when it is frozen, and 2) the anchor model performance
improves simply due to more training. The latter effect should be minor if the anchor model is already
converged. We provide additional discussion in Appendix E.

We also explore co-training the anchor model and memory bank together from scratch. Results are shown in
row A4 of Table 1. Despite using the same total training budget as row A2, A4 shows lower performance.
This result suggests that memories are learned more effectively after the anchor model has been trained to
some extent (i.e., the setup of row A2). This is analogous to human memory, which develops only after the
brain gains semantic understanding, around age 3 (Shaw, 2016).

Next, we scale the co-training setup of row A2 to anchor models of sizes 410M and 1.4B, corresponding to
rows B2 and C2 in Table 1. These models are paired with memory configurations such that the fetched
memory is approximately 10% of the anchor model size, corresponding to memory bank sizes of 12.7B and
21.1B for the 410M and 1.4B anchor models, respectively. We observe similar improvements for these larger
models: for Avg-SK, fetched memories outperform generic memories by +4.1 points for the 410M and +3.6
points for the 1.4B model.

Finally, for the 410M model, we train a model regularly (without memories) with the same total training budget
as row B2 (2.2T tokens). We observe that Avg-CK performance is worse than that of the anchor+generic
setup in row B2. These preliminary results suggest that when the anchor model is co-trained with a large
memory bank (as in row B2), long-tail knowledge is offloaded to the memories, enabling the anchor model to
perform better on common-knowledge tasks.

Blocking part of the memory bank: In Figure 6b, we show the performance of the 410M model with
memories (row B2 in Table 1) on predicting atomic numbers of elements (see Figure 1) when the best-matching
parts of the memory bank are adversarially blocked during retrieval. We observe a significant performance
drop, from 70% to 20%, when blocking 1/16 of the bank. This preliminary result highlights the potential of
the proposed approach for applications with privacy goals.

Adding memory to other pretrained models: We explore the post-hoc addition of parametric memories
to open-weight models. We span multiple sizes and architectures, namely Gemma 3 270M (Gemma Team
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Figure 6 (a) Performance improvements on Avg-SK when co-training memories and anchor model parameters jointly
during training. (b) Effect of blocking parts of the memory bank from retrieval.

Anchor Inference Bank FLOP Avg-CK  Avg-SK
. Atomic model setup size s 0-shot 0-shot
Pretrained Bank Fetch Avg-CK Avg-SK Numbe
model size  size (%) 1 (%) + A “m(y g Baseline 0 x1 43.6 32.8
ce. (%) 1 lgong RAGDCLM  70TB  x23 424 32.6
Gemma 3 270M 0 0 44.2 34.3 1.7 RAG-Wiki 21 GB  x1.7 42.4 35.0
+ memory 59B  23.2M 44.8 38.2 49.2 10% Memory 9 GB x1.11 45.3 38.4
Qwen 2.5 0.5B 0 0 53.9 40.6 53.4 Baseline 0 x1 48.6 38.5
+ memory 11L1B  43.4M 52.1 44.5 90.4 sioM  RAG-DCLM  70TB  x23 48.2 38.1
RAG-Wiki 21 GB  x1.7 47.3 41.6
Llamald:2pB g o BED 46:6 96.6 10% Memory 25 GB x1.1 52.0 44.5
+ memory 141B  102.2M 57.6 50.5 96.6
Baseline 0 x1 56.0 46.9
14p  RAG-DCLM 70 TB x2.3 55.8 46.1
Table 2 Learning memory on top of pretrained open-weight ’ RAG-Wiki 21 GB 1.7 55.5 49.2
models post-hoc. All trainings use 1.1 trillion tokens from 10% Memory 42GB  x11 59.3 524
DCLM.

Table 3 Comparison with vanilla RAG.

et al., 2025), Qwen 2.5 0.5B (Yang et al., 2024), and Llama 3.2 1B (Meta AT, 2024). We add hierarchical FFN
memories of ~ 10% the model size post-hoc to pretrained (and frozen) anchor models and train the memories
for 1.1T tokens on DCLM, see Section A.6 for additional details. Results are shown in Table 2. As above,
the specific knowledge accuracy improves with memories. This is consistent across all architectures, showing
the generality of adding hierarchical memories across all models. Common knowledge remains the same or
slightly decreases; potentially because these models were pretrained on more tuned data mixtures than the
simple open-source data mixture DCLM that we use in these experiments.

Comparing with vanilla retrieval-augmented generation: An alternative, yet complementary, approach
to parametric memory is retrieval-augmented generation (RAG), where relevant texts are retrieved from a
datastore and prepended to the context (Lewis et al., 2020; Ram et al., 2023; Izacard et al., 2023) to improve
performance on knowledge-intensive tasks. Using our Sentence-BERT embedding model as the retriever and
DCLM training data as the datastore, we evaluate RAG on the baseline models from rows Al, B1, and C1.
See implementation details in Appendix H.

As shown in Table 3, vanilla retrieval from DCLM performs poorly relative to the baseline models, while
adding more than 2x runtime FLOPs and requiring large storage for the raw-document datastore. This is
likely due to the low quality of DCLM (a pretraining dataset) when used as a RAG datastore. To give RAG
an advantage, we also retrieve from the higher-quality Wiki-En. RAG-Wiki improves baseline performance on
SK (e.g., from 46.9 to 49.2 for the 1.4B model) while remaining slightly below baseline on CK. By contrast,
learned memories (with ~ 10% extra parameters) improve both CK and SK, with lower FLOPs overhead.
We note that high-quality RAG is complementary to the proposed learned memory approach and can be
combined with it for further gains.



5 Related works

Databases. (Ahn et al., 2016) use a symbolic knowledge graph, and Borgeaud et al. (2022) introduce Retro,
augmenting language-model predictions with a large raw-text memory bank. More recently, Zhao et al. (2025)
propose replacing long-tail knowledge with retrieval to an external knowledge base by masking retrieved
tokens during pretraining. Limitations of these approaches are scalability to large pretraining corpora and low
compression rate because the memory stores raw text.

Parametric memories. Wu et al. (2022) propose memorizing transformers, which use nearest-neighbor
lookup to sparsely retrieve cached key—value pairs. For efficiency, Eyuboglu et al. (2025) introduce Cartridges:
KV-memories (similar to what we discussed in Section 2.2) that learn a specific long document as a more
runtime-efficient alternative to in-context learning. We find that KV-memories underperform compared
to FFN-memories, at least for large-scale memorization. MemSinks (Ghosal et al., 2025) uses a type of
FFN-memories, where they dedicate a fraction (e.g., 30%) of FFN neurons per layer to memorization. However,
their goal is to throw those parameters away at inference time for privacy and generalization. Our context-
dependent memory retrieval is also conceptually related to instruction-following pruning Hou et al. (2025),
which selects the most suitable parameters from a larger model based on the task description.

Mixture of experts. Our approach is related to MoEs (Shazeer et al., 2017). Jelassi et al. (2024) show that
increasing the number of experts improves memorization while reasoning saturates when active parameters
are fixed, aligning with our anchor-memory decomposition to balance reasoning and knowledge. For privacy,
Shi et al. (2025) propose FlexOlmo, combining a publicly trained anchor expert with exchangeable domain
experts trained on private data. Product key memory (PKM) (Lample et al., 2019) can be seen as a sparser
MOoE that combines two selected expert sets; Huang et al. (2024) improve PKM via tensor decomposition,
and Berges et al. (2024) augment subsets of FFN layers with such memory to boost factual benchmarks.
These MoE approaches are similar in kind to ours, and we expect that some of our insights may carry over.
However, our memory architecture is vastly different, allowing to offload inactive parameters based on the
context, give explicit control over memories during both training and inference, and add memories post-hoc.

6 Discussion

Conclusion. We propose pretraining language models with memories to automatically capture long-tail
world knowledge in large hierarchical memory banks. Small language models augmented with memory banks
match regular transformers with 2x more parameters. Moreover, we propose and analyze several additional
potential benefits of this design, including more efficient hardware implementation and enhanced data privacy.

Limitations and future directions. One unexplored area is the study of optimal scaling laws for learning
memories. Compute-optimal scaling laws developed for dense training (Hoffmann et al., 2022) are not
necessarily applicable to pretraining with memories, since memory parameters are updated less frequently. We
also mainly focused on architecture design for memories, and leave architecture search and design of anchor
models to future work. Finally, pretraining with memories can benefit multilingual setups (not considered in
this work) or other modalities beyond text, such as vision. We leave this investigation for future work.
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A Training details

In this section, we provide the training details of all experiments. All experiments in the paper are conducted
using the OpenLM (Gururangan et al., 2023b) repository'. The training data is DCLM-Baseline (Li et al.,
2024). Rotary Positional Embedding (RoPE) (Su et al., 2024) is used to encode positions in queries and
keys before the attention module, with a frequency of 100,000. For all training jobs, anchor and memory
parameters are stored in BFloat16 precision and trained with PyTorch Fully Sharded Data Parallelism (FSDP)
using AdamW optimizer (81 = 0.9, 82 = 0.95) and gradient clipping to 1.0.

A.1 Baseline model training

The baseline models, corresponding to rows Al, B1, and C2 in Table 1, are transformers with the block
shown in Figure 13 and configurations detailed in Table 4, Table 5, and Table 6, respectively. Each model is
trained from scratch with 240 ~ 1.1T tokens, using a context length of 8,192 and the dataset decomposition
approach (Pouransari et al., 2025) with a global batch size of 1M tokens. The learning rate follows a cosine
schedule with 10k warmup steps, a maximum value of 5 x 1073, and a cooldown value of 5 x 107°. Weight
decay is set to 0.05.

Model | OpenLM-160M Model | OpenLM-410M Model | OpenLM-1B
Num layers 35 Num layers 24 Numb layers 24
Hidden dim 512 Hidden dim 1,024 Hidden dimension 2,048
Num heads 12 Num heads 16 Num heads 16
Per head dim 32 Per head dim 64 Per head dim 128
FFN inner dim 2,048 FFN inner dim 2,816 FFN inner dim 5,632
Head-Embedding tied Head-Embedding separate Head-Embedding separate
Num params 163,510,016 Num params 411,665,408 Num params 1,439,893,504
Table 4 OpenLLM-160M Table5 OpenLM-410M Table6 OpenLM-1B

A.2 Memory model training

For all memory learning jobs, we first perform clustering as described in Appendix C. After identifying the
corresponding level 4 cluster ID of each document (a number between 1 and 16*), we pack documents from
the same cluster into sequences of length 2,048, globally shuffle them, and add the cluster ID as a prefix to
each sequence. During training, the cluster ID is simply obtained by separating the first token from the rest
of the tokens, which represent the actual data. Note that shallower-level cluster IDs can be inferred from the
level-4 cluster ID due to the nested structure of our clustering. Each sequence of length 2,048 can contain
subsequences from different documents (within the same cluster), separated by a special EOT token. The
attention mask is restricted to each document to avoid cross-document attention. The global batch size for
all jobs is 2M tokens (1,024 sequences of length 2,048 each), except for the 1.4B model (row C2 in Table 1),
where we use a global batch size of 4M to improve GPU utilization.

When the anchor model is frozen, we train memories asynchronously (one job for the memories of each level-1
subtree, resulting in a total of 16 jobs) and merge the checkpoints afterward.

In addition, we use a cosine learning rate schedule with a maximum value of 10~* and a cool-down value
of 107°. When training for 240 tokens, we use 10k warmup steps, and for all other trainings with different
numbers of tokens, we keep the same warmup ratio. We found that warmup has minimal effect on the
performance of memory learning. We use a weight decay value of 1073, which we found to improve the
performance of memory learning, consistent with its goal of memorization.

A.3 Additional details of memory type and size ablations

The total number of seen tokens for the memory type and size experiments in Figure 3 is 238

memories considered, the memories correspond to level-2 clusters.

. For all types of

1 https://github.com/mlIfoundations/open_Im
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For the experiments in Figure 3d, the total seen tokens are 236, 238 249 and 24! for memories at levels 1, 2,
3, and 4, respectively. Since deeper memories are updated less frequently, we increased the total seen token
budget for those cases.

A.4 Additional details of ablation on memory configuration

For the experiments in Figure 4 (corresponding to Table 7), we use 24° and 24! total seen tokens, corresponding
to memory bank sizes of 4.6B and 18.7B, respectively.

Memory config ‘ Bank Fetched Common-Knowledge ‘ Specific-Knowledge

level 1 level 2 level 3 level 4 ‘ size size (M) (%) ‘ (%)
0 0 0 0o | o 0 45.9 \ 34.1
0 16 4 1 1.1 46.5 37.8
98 42 18 0 8.5 46.5 38.6
256 64 16 0 16B 18.1 474 39.2
768 96 12 0 ' 47.1 47.6 40.2
1792 112 7 0 102.7 48.3 41.6
5376 0 0 0 289 49.7 43.2
256 64 16 4 18.1 47.2 40.1
328 156 74 0 18.7B 30 46.3 40.9
1216 164 22 3 ' 75.5 47.8 41.6
4096 320 17 2 238.4 49.2 44.6

Table 7 Ablation on different hierarchical memory configurations corresponding to results shown in Figure 4a. For all
experiments, the anchor model is the 160M model (row Al in Table 1), frozen during memory learning. Memories are
trained for 1.1T and 2.2T tokens when the memory bank size is 4.6B and 18.7B, respectively.

A.5 Additional details of co-training memories and anchor model

For the experiments in Table 1, we denote the total number of seen tokens, which is either 24° or 24!, For the
A4 model in Table 1, where both memory and anchor model parameters are trained together from scratch, we
use a cosine learning rate schedule with a maximum value of 10™3 and a cool-down value of 1072, with 10k
warmup steps and weight decay set to 0.1.

A.6 Additional details of memory learning on open-weight models

For all experiments in Table 2, we use a total of 2%° tokens. All models are initialized from their public
pretrained checkpoints, and these anchors remain frozen in all experiment except cotraining. We use a memory
config of (512, 128, 32, 0) for Gemma and Qwen (which results in higher memory parameters for Qwen
because it has a higher internal dimension and more transformer blocks) and (768, 256, 32, 0) for Llama.
These numbers result in a roughly 10% memory to anchor model parameter ratio. We follow the optimizer
setup of Section A.2, except that we do not restrict cross-attention because the baseline models were not
all trained this way and reduce warmup steps to 5k. When we cotrain the Qwen anchor with memories, we
reduce the batchsize to 1M tokens (512 sequences of length 2,048 each) to accomodate for GPU VRAM and
increase warmup steps to 10k to reduce the risk of interference with the pretrained parameters.

A.7 Additional details of memory-to-model size experiment
Here we provide implementation details for the experiments in Figure 4b.

We summarize the architecture of six anchor models and their corresponding memories for this experiment in
Table 8. The anchor models are first trained for 238 tokens, then frozen, and their memories are trained for
another 239 tokens. For the anchor models, we use a cosine learning rate schedule with a maximum learning
rate of 1072 and a cool-down value of 10~°. Weight decay is set to 0.1. We then freeze the anchor model to
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train the memories. For this particular experiment, memories are trained with a constant learning rate of
10~* to demonstrate convergence of memory parameters, even without learning rate annealing.

Anchor model ‘ Memory ‘ Runtime params

Name Num layers Num params ‘ Config Fetch size Bank size ‘

260M 12 257,475,584 \ (3840,336,6,0) 154,165,248 6,341,787,648 \ 411,640,832
320M 17 321,721,344 \ (1445,256,8,0) 89,250,816  6,341,246,976 \ 410,972,160
350M 19 347,419,648 ‘ (870,226,9,0) 64,496,640  6,341,099,520 ‘ 411,916,288
370M 21 373,117,952 ‘ (384,200,10,0) 38,320,128  6,341,787,648 ‘ 411,438,080
385M 22 385,967,104 | (264,94,16,0) 25,276,416 6,341,001,216 | 411,243,520
410M 24 411,665,408 |  (0,0,0,0) 0 0 \ 411,665,408

Table 8 Anchor models and their corresponding memory configurations for the memory-to-model size experiment in
Figure 4b. The anchor model architecture and memory configuration are designed to keep the total runtime number of
parameters and the memory bank size (almost) fixed. The anchor model architecture uses a hidden dimension of 1,024
and 16 heads for all rows.

B Evaluation

We use LLM-Foundry (V0.9) as the evaluation framework. To obtain a stable signal, we only include
benchmarks for which the baseline 410M model (B1 in Table 1) performs better than random and the ratio of
standard deviation to mean performance is less than 0.5. Below is a detailed description of the 13 tasks we
use to evaluate pretrained language models in this work:

Lambada-OpenAl (Paperno et al., 2016) with 5,153 samples, evaluated 0-shot, is of type language
modeling, with a random baseline performance equal to 0%.

BoolQ (Clark et al., 2019) with 3,270 samples, evaluated 0-shot, is of type multiple choice, with a
random baseline performance equal to 50%.

SQuAD (Rajpurkar et al., 2016) with 10,570 samples, evaluated 3-shots, is of type language modeling,
with a random baseline performance equal to 0%.

Winograd (Levesque et al., 2012) with 273 samples, evaluated 3-shots, is of type schema, with a random
baseline performance equal to 50%.

WinoGrande (Sakaguchi et al., 2021) with 1,267 samples, evaluated 5-shots, is of type schema, with a
random baseline performance equal to 50%.

CoQA (Reddy et al., 2019) with 7,983 samples, evaluated 0-shot, is of type language modeling, with a
random baseline performance equal to 0%.

Hellaswag (Zellers et al., 2019) with 10,042 samples, evaluated 0-shot, is of type multiple choice, with
a random baseline performance equal to 25%.

ArcEasy (Clark et al., 2018) with 2,376 samples, evaluated 3-shots, is of type multiple choice, with a
random baseline performance equal to 25%.

ArcChallenge (Clark et al., 2018) with 1,172 samples, evaluated 3-shots, is of type multiple choice,
with a random baseline performance equal to 25%.

TriviaQA (Joshi et al., 2017) with 3,000 samples, evaluated 3-shots, is of type generation task with
answers, with a random baseline performance equal to 0%.

PIQA (Bisk et al., 2019) with 1,838 samples, evaluated 0-shot, is of type multiple choice, with a
random baseline performance equal to 50%.
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e OpenBookQA (Mihaylov et al., 2018) with 500 samples, evaluated 10-shots, is of type multiple choice,
with a random baseline performance equal to 25%.

e NaturalQuestions (Lee et al., 2019; Kwiatkowski et al., 2019) with 2,655 samples used by Liu et al. (2024),
evaluated 0-shot, is of type generation task with answers, with a random baseline performance
equal to 0%.

In Appendix G, we present our analysis dividing the above tasks into two groups: common-knowledge (CK)
and specific-knowledge (SK).

When evaluating models with fetched memory, we retrieve memory based on the question for multiple choice
tasks, the context for language modeling tasks, and the portion of the text that is common across all choices
for the schema tasks. To compute perplexity (for the Wiki-En dataset) we use the full document to retrieve
memory.

Elements atomic number: We include a task on predicting the atomic number of different elements. The
model completes a prompt in the form of “The atomic number of {...} is,” where {...} is replaced with the name
of an element (from a total of 118). The model’s generation is then processed to extract integer numerical
values, and a response is accepted if it matches the actual atomic number. Random baseline performance for
this task is 0%. We use the prompt, including the element name, for memory retrieval.

The elements atomic number evaluation is particularly interesting because each query has a specific keyword:
the element name. This allows us to count the frequency of each element’s name in the dataset (as shown in
Figure 1) to analyze model performance as a function of knowledge scarcity in the pretraining dataset. We
note, however, that this analysis has some minor caveats. For example, the word “lead” is both the name of
an element and an English verb. In addition, some elements have multiple names; for instance, “Natrium” is
an accepted alias for “Sodium”. In our frequency calculations, we count all acceptable aliases of each element
name.

C Data clustering details

We cluster the training set with hierarchical clustering (Grangier et al., 2025). We build a clustering tree:
each node in the tree is associated with a cluster centroid. The examples traverse the tree from top to bottom,
selecting the node corresponding to the closest centroids among the current node’s children.

Before training the clustering tree, we segment our dataset into non-overlapping 2,048 token windows
and compute sentence-BERT embedding for every window. We rely on the sentence-BERT MiniLM-L6-v2
model (Reimers and Gurevych, 2019). This process associates each segment of text with a 384 dimensional
vector.

The training of the tree proceed from root to leaves. Iteratively, a new level is built by applying k-means to
a subset of the examples belonging to each node. We built a tree of depth up to 4, always splitting nodes
in 16 clusters. For k-means, we normalize the Euclidean norm of the vectors prior to clustering. We train
the model via Expectation Maximization using k-means-++ initialization (Arthur and Vassilvitskii, 20006).
At each step, we sample 6,400 new examples. With 20 steps, we visit 128k examples. To ensure a cluster
distribution close to uniform, we monitor the cluster sizes at each assignment steps. If a cluster is larger than
our balancing limit (0.094 ~ 1.5 x 1/16), we split evenly at random its assignments with the smallest cluster,
as suggested by Jegou et al. (2010).

D Tokens per parameter in memory learning

While scaling laws exist for regular language model pretraining that identify the training budget—optimal
choice for token-per-parameter (TPP) (Hoffmann et al., 2022), these laws may not hold for memory learning
due to its different learning dynamics. Here, we experiment with the effect of TPP when learning memories.

We consider the (0,0,16,0) memory configuration on top of a pretrained 160M anchor model (row Al in
Table 1). This corresponds to 4,096 memories, each with 860,160 parameters, for a total of 3.5B parameters.

20



48.0 38.0 e
—O— With memory —O— With memory
4754 ===_No memory 37.54 ===_No memory
17.01
47.04 37.01
Z 16.8
. 46.5 — 365 -3
g g s
N ™ @
o S —— ¥ 360 S 166
i< o w
= > e
< 455 < 355 £
16.4 4
45.0 35.0 1
445 3454 1829 5 With memory
=== No memory
44.0 B T T 5 34.0 B 9 T B B T 9 5
10 10 10 10 10 10 10 10 10 10 10 10
Token-Per-Parameter (TPP) Token-Per-Parameter (TPP) Token-Per-Parameter (TPP)
(a) (b) (c)

Figure7 Common-Knowledge (Avg-CK), Specific-Knowledge (Avg-SK), and perplexity on Wiki-En as a function of
tokens-per-parameter (TPP). The anchor model is a pretrained 160M model (row Al in Table 1) and is kept frozen
during memory learning.

We freeze the anchor model and train the memories with 232,233, ..., 240 total tokens, corresponding to TPP
values ranging from ~ 1 to 312. Results are shown in Figure 7.

In regular language modeling, knowledge (as in conditional likelihoods) is picked up into parameters when
it, and similar content, is repeated often (with many TPP) and receives constructive gradient updates, and
forgotten if it is rare and gets destructive gradient updates by dissimilar content (Ghosal et al., 2025). This
means that long-tail information is forgotten after it is seen in a batch because the following batches send
destructive gradient updates. What lasts in joint parameters is common knowledge, which occurs more often
and with more aligned gradients. We demonstrate this effect in Figure 1.

In the proposed memory learning method, however, memory parameters are shielded in that they are activated
and updated only on sequences of a similar topic. This both reduces the times where knowledge can be
overwritten and the dissimilarity of possible other gradients. On average, memory parameters corresponding
to level ! are updated 16' times less often than anchor parameters. For the setup considered above with
memory configuration (0,0,16,0), where all memories are at level 3, memory parameters receive one update
for every 4,096 sequences in the training set.

Specific knowledge stored in deep memories is shielded from catastrophic forgetting (Toneva et al., 2018),
because, unlike regular parameters, it is not overwritten frequently by destructive gradients from unrelated
content. Instead, deep memory parameters are only activated when there are constructive gradients of
similar content in their clusters, so that they memorize this specific knowledge. This behavior is shown in
Figures 7b and 7c, where specific-knowledge benchmark accuracy and wikipedia perplexity steadily improve
with increasing TPP. The last point corresponds to a total of 1.1 trillion seen tokens (TPP = 312). Due to
computational constraints, we did not scale TPP further.

E Fetched memory vs generic memory (additional results)

In Figure 6a, we showed the performance of the model using fetched and generic memories throughout training,
both when anchor parameters are frozen and when they are learnable. A key observation is that when we allow
the anchor parameters to be co-trained with the memory bank, we obtain greater improvement compared to
the case where the anchor model is frozen (e.g., Avg-SK improves from 39.2% to 40.3% as shown in Table 1).
This improvement can be attributed to two factors: 1) when co-training, the anchor model learns to adapt to
the memories more effectively compared to when it is frozen, and 2) the anchor model is exposed to additional
tokens, so its performance improves simply due to more training. The latter effect should be minor if the
anchor model is already over-trained (i.e., trained with a high TPP) during pretraining and has reached
performance saturation, meaning it no longer benefits from additional training.

We also track the gap between the performance of the anchor model using generic memories (a fixed set of
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memory parameters independent of the input context) and fetched memories throughout co-training, as shown
in Figure 8b and Figure 8d for the Avg-SK and Wiki-En perplexity metrics, respectively. We observe that
the performance gap between fetched and generic memories grows over time (despite using a cosine learning
rate schedule), indicating that longer co-training benefits fetched memories more than generic ones. This is
expected, as the memory bank has significantly more parameters (4.6B in this example) compared to the
anchor model (160M) and a single generic memory (18M), and thus benefits more from extended training.
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Figure 8 Additional results for the experiment setup of Figure 6a. Performance improvements from co-training the
anchor model and memories, corresponding to row A2 in Table 1. We also show performance when the anchor model is
frozen, corresponding to row A3 in Table 1. (a) Avg-SK using fetched and generic memories, (b) Avg-SK gap between
fetched and generic memories, which grows as training progresses, (¢) Wiki-En perplexity using fetched and generic
memories, (d) Wiki-En perplexity gap between fetched and generic memories, which widens as training progresses.

F Memory location

So far, we have considered memory parameters to be uniformly distributed across the layers of the model.
Meng et al. (2022) showed that model knowledge is mainly captured in the middle layers. We use our memory
learning setup to further explore this hypothesis by considering different distributions of memory parameters
across layers, as shown in Figure 9.

Starting from a baseline memory with configuration (0,64,0,0), trained on top of a pretrained and frozen
160M model (row Al in Table 1), corresponding to the level-2 models in Figure 3d, we study the effect of
distributing memory parameters non-uniformly across the model. We consider three setups—early, mid, and
late—where the same number of memory parameters as the uniform baseline are applied only to the first,
middle, or last 10 layers of the anchor model (see Figure 9). As discussed in Section A.3, for these experiments
the anchor model is frozen, and memories are trained for a total of 23® tokens.

Results for each memory placement are shown in Table 9. Consistent with the observations of Lample et al.
(2019), using memories in the early layers of the anchor model is less effective than using them uniformly (the
default setup) or in the deeper layers.
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Uniform © Early = Middle = Late Memory | Avg-CK | Avg-SK | Elements atomic | Wiki-En
location (%) (%) number (%) Pplx |

Anchor model No Memory |  45.9 | 341 | L7 | 172
Uniform 46.7 36.8 14.4 16.0

Early 45.8 34.9 2.5 16.6

A Middle 46.1 35.4 1.7 16.5
Late 46.9 36.8 20.3 16.1

Figure 9 Different distribution of memory along taple9 Comparing effectiveness of memories with different distri-
the layers of the anchor model. bution over the depth of anchor model, which is kept frozen.

G What tasks benefit more from memories

In Figure 1, using the atomic number prediction task, we showed that memories can significantly improve
performance on tasks requiring long-tail knowledge. To extend this concept to commonly used benchmarks for
evaluating pretrained models, we introduce an approximate, quantitative measure of the degree of knowledge
specificity for each of the 13 evaluation benchmarks described in Appendix B. For each dataset, we randomly
sample 100 entries and prompt GPT-4 (Achiam et al., 2023) to estimate the education level (as a proxy for
knowledge specificity) at which a typical person would have acquired the knowledge needed to answer each
question. The average of these ratings is used as the knowledge specificity score of the task.

Specifically, we ask the model to rate each question based on the amount of knowledge required, using the
following prompt:

Given the following prompt and answer, what facts should a human know in order to answer the
question correctly? What phase of life will a typical person know all required facts? Your response
should be in the format of an integer between 0 and 5 based on the following scale:

: Only language understanding, all required information is in the context

: Commonsense facts learned through sensory experiences in childhood

: Facts learned in elementary school

: Facts learned in middle school

: Facts learned in high school

: More specific facts learned later in life

Respond with only a single integer and nothing else.

Uk W N~ O

L

In Figure 10, we plot the accuracy difference between fetched memories and generic memories against
the knowledge specificity score for each benchmark, using the 1.4B model trained with memories (row C2
in Table 1). The plot shows a clear positive correlation between knowledge specificity and performance
improvement from fetched memories.

We further group the datasets into six common-knowledge (purple) and seven specific-knowledge (green) tasks
using a knowledge specificity score threshold of 2.0. On average, fetched memories improve specific-knowledge
(Avg-SK) task performance by 3.6 points, while performance on common-knowledge (Avg-CK) tasks remains
comparable (64.4 vs. 64.5). Notably, both CK and SK performance show even greater improvement compared
to the baseline model (row C1 in Table 1): Avg-CK improves from 61.2% to 64.5%, and Avg-SK improves
from 49.7% to 54.9%.

Additionally, we show the same analysis for the 160M (row A2 in Table 1) and 410M (row B2 in Table 1)
models trained with memories in Figure 11 and Figure 12, respectively.

H Retrieval augmented generation detail
In this section, we provide further details for the experiments in Section 4. We consider two datasets to retrieve

documents from: DCLM-Baseline and English Wikipedia 2022, with 6.5 million and 3.2 billion documents,
respectively. The average document length in DCLM, using our EleutherAI/gpt-neox (Black et al., 2022)
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Figure 10 Fetched memories improve performance on knowledge-intensive benchmarks. Accuracy gain
(fetched memory vs. generic memory) for the 1.4B model (row C2 in Table 1) as a function of the knowledge specificity
score of each benchmark. Knowledge specificity is determined by GPT-4 ratings of 100 sampled entries per dataset,
and error bars reflect the standard error of the mean. The positive correlation highlights the value of fetched memories
for knowledge-intensive tasks. Note that this plot shows the improvement of fetched memories compared to generic
memories; the improvement is even greater when comparing fetched memories with the baseline model without memory
(row C1 in Table 1).

tokenizer, is 1,309 tokens (computed from a random 10% subset of the dataset), while for Wikipedia it is 723
tokens. We set the max sequence length at evaluation to 2,560.

As a reference point, we report FLOPs associated with each approach. For RAG models, we use the average
sequence length and compute the additional FLOPs on top of a 1024-token context. When using memory, the
context length does not increase, but additional memory parameters are fetched and added to the anchor
model, increasing runtime FLOPs by ~ 10%.

For these experiments, we compare augmenting the anchor model with: 1) fetched memory from the learned
bank of memories, versus 2) raw documents retrieved from the same dataset the memories were trained on.
For high-quality RAG performance, many factors matter, including the instruction-following and long-context
capability of the LLM, the retriever’s quality, the quality of the datastore, and additional techniques such as
self-reflection (Asai et al., 2024).

In this study, we mainly aim to compare learned memories (ours) against contextual memories without
additional confounders. We therefore call our retrieval-augmented generations vanilla RAG. We use the same
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Figure 11 Fetched memories improve performance on knowledge-intensive benchmarks. Accuracy gain
(fetched memory vs. generic memory) for the 410M model (row B2 in Table 1) as a function of the knowledge specificity
score of each benchmark. Knowledge specificity is determined by GPT-4 ratings of 100 sampled entries per dataset,
and error bars reflect the standard error of the mean. The positive correlation highlights the value of fetched memories
for knowledge-intensive tasks. Note that this plot shows the improvement of fetched memories compared to generic
memories; the improvement is even greater when comparing fetched memories with the baseline model without memory
(row B1 in Table 1).

retrieval mechanism for both learned memories and RAG: given a query, we identify the context as described
in Appendix B. Using the Sentence-BERT (Reimers and Gurevych, 2019) all-MinilM-L6-v2 embedding
model, we first determine the closest level-3 cluster in DCLM (comparing against 4096 centroids). Note that
the models with memory in Table 3 are also trained with hierarchical memory configurations up to level 3.
We then retrieve the nearest-neighbor (NN) document from within that level 3 cluster (on average ~ 750k
documents, given 3B/4096). This document is then added to the context. To avoid confounders from few-shot
complexity in RAG, all tasks are run in a 0-shot setup. We experiment with the 160M, 410M, and 1.4B
models, corresponding to rows Al, B1, and C1 in Table 1.

As shown in Table 3, a vanilla NN retrieval from DCLM does not improve baseline model performance for
either common-knowledge or specific-knowledge benchmarks. We argue this is mainly due to the low quality
of DCLM (a pretraining dataset) when used as a datastore for RAG. Recently, Lyu et al. (2025) showed that
with careful filtering, RAG quality can be improved when using web-scale datastores.

To demonstrate the effect of datastore quality here, we also use English Wikipedia to retrieve higher-quality
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Figure 12 Fetched memories improve performance on knowledge-intensive benchmarks. Accuracy gain
(fetched memory vs. generic memory) for the 160M model (row A2 in Table 1) as a function of the knowledge specificity
score of each benchmark. Knowledge specificity is determined by GPT-4 ratings of 100 sampled entries per dataset,
and error bars reflect the standard error of the mean. The positive correlation highlights the value of fetched memories
for knowledge-intensive tasks. Note that this plot shows the improvement of fetched memories compared to generic
memories; the improvement is even greater when comparing fetched memories with the baseline model without memory
(row Al in Table 1).

documents for the given context with the same Sentence-BERT model. Results in Table 3 show that RAG-Wiki
improves baseline performance on specific-knowledge benchmarks (e.g., from 46.9 to 49.2 for the 1.4B model).
However, for common-knowledge benchmarks, RAG-Wiki does not improve over baseline. By contrast, using
learned memories (with ~ 10% additional parameters relative to baseline) improves performance on both
common-knowledge and specific-knowledge benchmarks with lower runtime FLOPs overhead.

Finally, we note that high-quality RAG is complementary to the proposed learned memories and can further
enhance performance.

I Memory augmented transformer architecture

In this section, we provide additional detail on different memory augmented transformer architectures that we
considered.

LoRa-Memories: The transformer block with SwiGLU FFN has seven linear layers, as shown in Figure 13.
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Figure 13 Base architecture of a transformer block with SwiGLU FFN layer.

We can augment any subset of these with low-rank memories. To avoid exhaustive search, we group the linear
layers into three categories based on their role in the transformer block: 1) query and key projection layers, 2)
value and output projection layers, and 3) FFN linear layers.

Accordingly, we define three types of LoRa memories: LoRa-QK (shown in Figure 14), LoRa~-OV (shown in
Figure 15), and LoRa-FFN (shown in Figure 16). Each LoRa consists of two low-rank matrices, A and B.
The target linear layer W is patched additively as W + BA. The size of memories is determined by the rank r
of matrices A and B. Note that for a model with hidden dimension d, inner FFN dimension dy, per attention
head dimension dy, h heads, and [ layers the size of fetched memory with LoRa type is as follows:

o LoRa-QK memory size: 2ri(d + hdp,)
e LoRa-OV memory size: 2ri(d + hdp)
e LoRa-FFN memory size: 3ri(d + dy)

For graceful initialization, so that memories initially have no effect, we initialize B with zeros, as suggested in
the original work (Hu et al., 2022), and A with a uniform Kaiming distribution in all cases. Additionally, we
found that a scaling factor of v = 2 works best for the LoRa memories considered here.

Aligned with previous observations that knowledge in transformers is primarily stored in FFN layers (Geva
et al., 2020; Dai et al., 2022; Yao et al., 2022), we also find that LoRa-FFN mostly outperforms alternative
LoRa memories for the same number of learnable parameters, as shown in Figure 3.

KV-Memories: With these memories, we learn additional key and value vectors to augment the input-
dependent keys and values. The input-dependent query vectors cross-attend to the learned key and value
vectors, and their results are added to the output of multi-head attention. Note that we do not apply causal
masking when attending to the learned keys and values. Additionally, we found that KV memories are slightly
more effective when used without positional encoding. To ensure no memory effect at initialization, we
initialize the learned value vectors with zeros and the learned key vectors with a truncated normal distribution,
consistent with other model parameters.

The size of KV memories is determined by the number of key-value vectors (r), as shown in Figure 17, and
can be calculated as follows:

e KV memory size: 2rlhdy

FFN-Memories: for FFN memories, we directly expand the inner dimension of the three linear layers in
the SwiGLU FFN as shown in Figure 18. Similar to other memory types, we initialize memories such that
at the beginning of training they have no effect. Therefore, we initialize W1 and W2 FFN memories with
truncated normal, and W3 FFN memory with zeros. The size of the FFN memory is determined by their
inner dimension and can be calculated as follows:

e FFN memory size: 3rld
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