
LinkedIn Post Embeddings: Industrial Scale Embedding
Generation and Usage across LinkedIn

Sudarshan Srinivasa
Ramanujam∗

LinkedIn Corporation
Mountain View, CA, USA
sramanujam@linkedin.com

Akanksha Bindal∗
LinkedIn Corporation

Mountain View, CA, USA
abindal@linkedin.com

Yu Jiang∗
LinkedIn Corporation

Mountain View, CA, USA
tjiang@linkedin.com

Timothy J. Hazen∗
LinkedIn Corporation

Mountain View, CA, USA
thazen@linkedin.com

David Golland∗
LinkedIn Corporation

Mountain View, CA, USA
dgolland@linkedin.com

Fengyu Zhang
LinkedIn Corporation

Mountain View, CA, USA
fezhang@linkedin.com

Daqi Sun
LinkedIn Corporation

Mountain View, CA, USA
daqsun@linkedin.com

Wanning Li
LinkedIn Corporation

Mountain View, CA, USA
wannli@linkedin.com

Birjodh Singh Tiwana
LinkedIn Corporation

Mountain View, CA, USA
btiwana@linkedin.com

Siddharth Dangi
LinkedIn Corporation

Mountain View, CA, USA
sdangi@linkedin.com

Peng Yan†
LinkedIn Corporation

Mountain View, CA, USA
pyan@linkedin.com

Abstract
A post embedding (representation of text in embedding space that
effectively captures semantic meaning) is a foundational compo-
nent of LinkedIn that is consumed by product surfaces in retrieval
and ranking (e.g., ranking posts in the feed or video tab). This paper
presents the post embeddings used at LinkedIn, where a pre-trained
transformer-based large language model (LLM) is taken as input
and fine-tuned using multi-task learning across a diverse set of
semantic labeling tasks. We observe positive transfer, leading to
improved performance across all tasks, compared to training them
independently. The generated post embeddings outperform base-
line models in zero-shot learning, demonstrating its potential for
broader applicability. Furthermore, the generated post embeddings’
performance surpasses that of OpenAI’s ADA-001 and ADA-002 em-
beddings on LinkedIn specific datasets and tasks. We also describe
the offline evaluation methodology and the deployment to our near-
line infrastructure, which makes the post embedding available for
use within minutes of post creation for any downstream application.
We present how the embeddings were applied in the Feed product
surface, in both ranking and retrieval stages, and showcase the real
world online impact to demonstrate the superior performance of
these embeddings. Finally, we also share the results of applying the
embeddings to the retrieval system of our video ranking product
surface in LinkedIn. These embeddings have been battle-tested in
production at LinkedIn for over two years, consistently powering
multiple products.

∗All authors contributed equally to this research.
†LinkedIn Alumni

Accepted for presentation at the 34th ACM International Conference on
Information and Knowledge Management (CIKM 2025).

1 Introduction
LinkedIn is the world’s largest professional network, connecting
over a billion users across 200+ countries and territories [2, 3].
Our platform fosters a thriving information exchange ecosystem,
helpingmembers discover valuable content, learn new skills, and ex-
plore career opportunities. Among various content types, posts play
a crucial role in facilitating knowledge sharing between creators
and consumers. To enhance content discovery and engagement,
LinkedIn introduced out-of-network content recommendations, sig-
nificantly expanding the pool of candidate posts. This shift made
efficient embedding-based retrieval (EBR) across a vast corpus es-
sential for delivering high-quality recommendations. Consequently,
state-of-the-art recommendation models require rich, semantically
meaningful representations of posts to improve content understand-
ing and ranking. Prior work has explored various approaches for
converting text into embeddings that effectively capture seman-
tic meaning. These methods range from traditional word vector
models like Word2Vec and GloVe to more advanced transformer-
based models such as BERT[6], RoBERTa [8], T5 [12] and more
recently, to OpenAI’s models such as ADA-002 [7]. These newer
OpenAI embedding models are designed for out-of-the-box usage,
requiring no fine-tuning, and are intended to perform effectively in
zero-shot learning scenarios. In this paper, we introduce LinkedIn
Post Embedding model which is LinkedIn’s content understanding
model, designed to generate high-quality post embeddings that
power multiple downstream applications, including Feed ranking,
Feed retrieval, out-of-network recommendations and immersive

ar
X

iv
:2

40
5.

11
34

4v
4

 [
cs

.L
G

]
 1

7
O

ct
 2

02
5

https://arxiv.org/abs/2405.11344v4

video experiences at a low dimensionality of 50. We also share how
these embeddings are leveraged in a few downstream applications
in a production setting for retrieval and ranking and demonstrate
the utility of having embeddings that can capture semantics.

1.1 Key Contributions
• Model Architecture for LinkedIn Post Embedding – A
multi-task fine-tuning approach for training LLMs on diverse
datasets to generate post embeddings.

• Offline Evaluation Methodology - A semantic under-
standing metric to measure embedding quality.

• Online Deployment - Design for making embeddings ac-
cessible across LinkedIn’s product surfaces.

• Offline Results - Offline results after multi-task fine-tuning
including positive transfer among tasks and comparison
against OpenAI embeddings on LinkedIn benchmarks.

• Online Impact in Feed Ranking and Retrieval - Eval-
uation of the real world effectiveness of LinkedIn post em-
beddings after deployment on the LinkedIn feed platform.
We share practical examples of how embeddings can be in-
tegrated into ranking and retrieval models and the impact
online through A/B testing. In this work, we share feed rank-
ing, feed retrieval and video retrieval as examples.

2 Related Work
Pre-trained models such as BERT, RoBERTa, and more recently,
models like GPT-3 [4] and E5 [11], have demonstrated remarkable
performance improvements across a variety of Natural Language
Processing (NLP) tasks. Recent studies have shown the effectiveness
of fine-tuning models on multiple tasks to achieve better general-
ization and performance across all tasks. Aghajanyan et al. (2021)
introduced MUPPET [1], which demonstrated that pre-fine-tuning
on a diverse set of tasks could significantly improve the model’s
performance on individual tasks. Contrastive learning has emerged
as a powerful technique for training embeddings by distinguish-
ing between similar and dissimilar pairs. Reimers and Gurevych
(2019) proposed Sentence-BERT, which trains both a siamese net-
work architecture and a triplet architecture to generate embeddings
for sentences, significantly improving performance on sentence
similarity tasks [10]. Despite these advances, learning approaches
can be sensitive to the quality of positive and negative pairs, and
obtaining high-quality labeled data can be challenging. Models
like XLM-R have shown that fine-tuning on multilingual data can
lead to robust cross-lingual embeddings [5]. Greene et al. (2022)
explored the performance of OpenAI’s ADA embeddings, high-
lighting its performance on a multitude of tasks, underscoring its
generalized nature [7]. However, these models often face limitations
when applied directly to specific domains such as recommendation
systems due to the linguistic variability between the general pre-
trained embeddings and the specialized application domain. This
requires additional fine-tuning to achieve optimal performance in
domain-specific tasks. In our investigation, we encountered several
challenges when trying to incorporate widely available architec-
tures into production environments. These challenges included
smaller context windows, limited linguistic variability in the topic
ontology, and high embedding dimension size resulting in increased

latency for production scale recommendation systems. In this pa-
per, we build upon these foundational works by implementing a
multi-task learning approach tailored to LinkedIn’s unique con-
tent. By leveraging diverse semantic labeling tasks, we enhance the
model’s semantic understanding, improvemultilingual support, and
achieve competitive performance with significant compression. Our
goal is to provide valuable insights into developing and deploying
specialized embeddings in large-scale, real-world applications.

3 Vision for Training Platform
• Accuracy: the embeddings should accurately capture all
of the relevant information about a post so that they can
reliably be leveraged by downstream applications to make
predictions about engagement or decisions about distribu-
tion.

• Robustness: the embedding should be able to handle all
inputs relevant to the post, including text in any language
used on LinkedIn. The training data did not have any filters
based on language.

• Timeliness: to ensure the embeddings reflect the latest
trends and patterns in the data, we should have the abil-
ity to retrain as often as needed

• Extensibility: Adding new sources of data or new tasks
to the training pipeline needs to be standardized for any
teams in LinkedIn to adopt or contribute data sources for
fine-tuning.

• Flexibility: It should be easy to experiment with different
underlying architectures for various base language models
since this space is rapidly evolving.

• Easy Deployability: Seamless integration with required
offline/nearline systems to ramp to production as quickly as
possible.

4 Datasets

Dataset Description
Interest Derived from LinkedIn’s topic tagging models, which

classify posts into categories based on a structured
ontology. A pair of posts is labeled positive if they
share the same interest category.

Storyline Editor-curated posts grouped by topics. Available in
50+ languages, this adds multilingual posts to the train-
ing data. These can be typically seen in the top right
section of the LinkedIn feed in desktop

Hashtag Uses post hashtags as soft labels. This is available in
all languages on LinkedIn platform.

Search Extracts query-post relevance pairs from LinkedIn’s
content search data.

Intent Classifies posts based on intent (e.g., share advice, job
seeking, motivation). Used for evaluation to assess
zero-shot generalization and not used for training
the model.

Table 1: Training and evaluation datasets overview

2

5 Modeling Architecture
In this section we first describe the single task training setup used
for training content embeddings followed by the multi-task set up.

In our work, we have multiple tasks and multiple datasets. How-
ever, each data set is used for only one task. We did try other losses
(margin maximization loss, prediction tasks) but none of them per-
formed as well as the siamese architecture which we will illustrate
in the subsections below.

5.1 Single Task Architecture
Figure 1 represents the siamese architecture which is a representa-
tion of a single task that was replicated across datasets for training
a multi-task model [10]. We collect pairs of posts from the dataset
(both positives and negatives). Positive examples are sampled in
different ways for each dataset and the negative examples are two
randomly sampled posts for every dataset (more details in section 4).

• Positive pairs (label = 1): P1 and P2 are topically related
and should produce embeddings that have a high cosine
similarity. Example: P1 and P2 are about bitcoin.

• Negative pairs (label = 0): P1 and P2 are NOT related and
should produce embeddings that have a low cosine similarity.
Example: P1 is about ML, P2 is about sports.

The label assigned is binary (1 or 0) and we apply a binary cross
entropy loss between the label and the cosine similarity of the
embeddings of the two posts.

L = − 1
𝑁

𝑁∑︁
𝑖=1

[
𝑦𝑖 · log

(
𝜎

(
cos(e(𝑖)1 , e(𝑖)2)

))
+ (1 − 𝑦𝑖) · log

(
1 − 𝜎

(
cos(e(𝑖)1 , e(𝑖)2)

))] (1)

Where:
• 𝑁 is the number of pairs.
• 𝑦𝑖 ∈ {0, 1} is the binary label for the 𝑖-th pair.
• e(𝑖)1 , e(𝑖)2 are the embeddings for the 𝑖-th pair of posts.
• cos(e1, e2) = e1 ·e2

∥e1 ∥ ∥e2 ∥ is the cosine similarity between two
embeddings.

• 𝜎 (𝑥) = 1
1+𝑒−𝑥 is the sigmoid function.

5.2 Multi-Task Architecture
We expand the single task setup to a multi-task training paradigm.
The key idea of using a multi-task approach is that adding new
datasets/tasks helps all the tasks being trained [1] versus training
one model for every isolated task. The single task architecture de-
scribed in the previous section is duplicated for multiple datasets
(each dataset has its own independent task). We simultaneously
train for several tasks with shared LLM parameters, allowing effec-
tive semantic representation to be efficiently learned within a single
model. Each independent task tower computes its own loss. In our
implementation each task was an independent siamese task
with BCE loss similar to the set up in the single task architecture.
With this approach we can fine-tune an LLM that has awareness of
the semantics required for consumption by multiple downstream
product teams. The parameters for the common LLM and the layer
to reduce dimension are shared across all tasks. On completion of

post 1 text

LLM

Pooling (take CLS
special token

embedding alone)

MLP (reduce
dimension)

n dimensional
embedding

Cosine Similarity (u, v)

post 2 text

LLM

Pooling (take CLS
special token

embedding alone)

MLP (reduce
dimension)

n dimensional
embeddingshared params

shared params

shared params

BCE Loss
Binary Label (0 /1)

Figure 1: Architecture used for a single task

training, the task level heads are removed and the shared layers
are used to infer the post embeddings. Figure 2 illustrates how the
multi-task training is set up. The output of the [CLS] special token
is employed as the pooling methodology to get the output from the
LLM prior to dimension reduction.

5.2.1 Task Heterogeneous Sampling. Similar to the implementation
in the muppet paper [1], we sample data from all task data sources
within one batch which helps with training stability and in gradient
steps being better balanced across the tasks. Figure 3 illustrates the
three steps below.

(1) For each dataset, randomly split it into the number of work-
ers’ splits.

(2) For each worker, load its corresponding split for all datasets.
(3) First batch data on each split, then randomly shuffle all the

batches.
With this approach every batch consists of data from multiple

datasets. The final loss employed was the average loss across all
tasks. In the event of significant skew in dataset volume, a weighting
term for each task could be added to help with the training. For
this work, we did not add any weighting to the loss.

5.3 Implementation Details
We used 104M training samples coming from a combination of
datasets described in section 4. We use a 6 layer multilingual BERT

3

Post Text

Common LLM

Post Embedding (50 dims)

Task A MLP

Task A Loss

Task B MLP

Task B Loss

Task C MLP

Task C Loss

Task D MLP

Task D Loss

Pooling

MLP to reduce Dimension

Figure 2: Multitask architecture

Split 1

Split 2

Split 4

Split 3

Split 1

Split 2

Split 4

Split 3

Split 1

Split 2

Split 4

Split 3

Split 1 Split 1 Split 1

Split 2 Split 2 Split 2

Split 3 Split 3 Split 3

Split 4 Split 4 Split 4

Dataset 1 Dataset 2 Dataset 3

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Shuff le

Shuff le

Shuff le

Shuff le

.........

.........

.........

.........

1

2

3

Figure 3: Task heterogeneous sampling with 3 datasets and 4
workers

(pre-trained on LinkedIn data using masked-language modeling) as
the base model [6], with a total parameter size of 89M and vocab-
ulary size of 135K. We use 1 worker and 6 GPUs for training. We
use a per GPU batch size of 32 for siamese fine-tuning and shared
embedding size of 50. We selected an embedding dimension of 50
after empirical experimentation. This dimension provides a bal-
ance between expressiveness and latency in large scale deployment.
Higher dimensions achieved only marginally better offline accuracy

while incurring higher inference cost and storage requirements. For
task level parameters, each task has an MLP layer of size (50x100).
We use a learning rate of 1e-6 for training. All experiments were
conducted on a CentOS Linux server equipped with dual Intel®
Xeon® Silver 4216 (Cascade Lake) CPUs (32 cores, 2.10 GHz), 64 GB
of RAM, and an NVIDIA Tesla V100 SXM2GPUwith 32 GBmemory,
using CUDA Toolkit 11.7.

5.4 Member Embeddings from Post Embeddings
Numerous applications in LinkedIn require an embedding repre-
sentation of LinkedIn members, and extracting this representation
in an efficient way is essential. For example, any EBR (embedding-
based retrieval) application needs both query (member) and item
embeddings that are in the same space.

We made use of hierarchical clustering (Ward’s method)[9] to
get the representations of the member (medoids) based on member
engagement in Feed and post embeddings of those engagements.

(1) Identify engagement history (e.g., like, comment, share, re-
act)

(2) Join post embeddings to the corresponding history in en-
gagement

(3) Run hierarchical clustering (Ward’s method) to generate
topK medoids for every member.

The top ’K’ is based on an importance score for each cluster which
is a combination of size of the cluster and freshness of items in the
cluster [9].

6 Offline Evaluation
Training produces a model that captures post semantics that we
evaluate across different downstream tasks. For instance, 2 posts
on deep learning should be close in the embedding space. We built
a simulation of EBR offline to evaluate the embeddings. We build a
dataset of triplets containing anchor, positive and negative texts.
The expectation is that for each anchor, the positive item is as
close as possible and the negative item is as far as possible in the
embedding space.

Anchor Positive Negatives
𝑎1 𝑝1 {𝑛11, 𝑛12, . . . , 𝑛1𝑁 }
𝑎2 𝑝2 {𝑛21, 𝑛22, . . . , 𝑛2𝑁 }
.
.
.

.

.

.
.
.
.

𝑎𝑀 𝑝𝑀 {𝑛𝑀1, 𝑛𝑀2, . . . , 𝑛𝑀𝑁 }
Table 2: Anchor-Positive-Negative triplets

After training a candidate embedding model, we generate em-
beddings for all the text in the evaluation dataset, and then calculate
the average fraction of triplets, where the distance between the
anchor and positive instance is smaller than the anchor and neg-
ative instance. This serves as a good proxy for embedding based
retrieval applications and is used as the offline evaluation metric
for our content models.

AvgFracTripletsWherePosIsCloser: Fraction of triplets where
the positive is closer to the anchor than the negative (larger is
better):

4

Backend
Service

LinkedIn
Post

Embedding
Key Value

Store

 Member
Embedding
Key Value

Store

Post
Stream

LinkedIn Post
Embedding LLM

model
(Finetuned with

MTL)

Trained
LinkedIn Feed

Ranking
model

Daily Offline
Spark Jobs to

Generate
Medoids

Figure 4: Online system for post embeddings

1
𝑀𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

{
1, if dist(𝑎𝑖 , 𝑝𝑖) < dist(𝑎𝑖 , 𝑛𝑖 𝑗)
0, otherwise

(2)

7 Online Deployment
Figure 4 shows the high level overview of the online system we use
in the Feed ranking model. All incoming posts that are created, are
fed into a Samza job that computes embeddings using the trained
LinkedIn post embedding model, and pushes it to a key-value store
within 2 mins of post creation (typically this is done in a matter of
seconds). The posts’ key-value store is configured to store a fixed
history of embeddings at all times on a rolling basis. Any backend
service can fetch the embedding feature for scoring. Derived mem-
ber embeddings (medoids), are pushed to a dedicated key-value
store and this is an offline job which runs once a day.

8 Results
In subsection 8.1 to subsection 8.3 we will talk about offline results.
To ensure fair evaluation, we report results on complete test data
sets rather than sampled subsets. Multiple retraining runs produced
only marginal differences in offline evaluation metrics, so we report
representative results for clarity. For all of our online A/B tests, we
report the statistical significance of our results in subsection 8.4. The
performance improvements of our multi-task model are consistent
across multiple datasets and tasks, reinforcing the robustness of
our approach.

8.1 Fine-tuning an LLM on multiple tasks at
once helps uplift performance in all tasks

T1, T2, and T3 correspond to models trained only on the indepen-
dent datasets, and the last row is the LinkedIn Post Embedding
model, trained in a multi-task fashion with all the datasets. E1,
E2 and E3 are eval datasets built using the corresponding dataset
mentioned in Table 3 (Interest, Storyline and Hashtag). The re-
sults demonstrate that our model trained on a combination of data
from multiple semantic labeling tasks, shows a better overall per-
formance across all tasks. The first 3 rows serve as an ablation

Model E1 E2 E3
(Interest) (Story) (Hashtag)

T1 (Interests) 0.88 0.86 0.79
T2 (Story) 0.76 0.93 0.85
T3 (Hashtag) 0.79 0.93 0.93
LinkedIn post embedding (MTL) 0.89 0.95 0.93

Table 3: Evaluation results across models using AvgFrac-
TripletsWherePosIsCloser; E1-E3 correspond to different
evaluation datasets

study showing the impact with the use of equivalent dataset only
as opposed to MTL framework. Content search data was used for
training but was not used for evaluation purposes, since there were
no immediate plans to deploy these embeddings to the content
search surface.

8.2 Zero Shot Capabilities Improvements

Model E4 (Intent)
T4 (Intent) 0.69
LinkedIn Post Embedding (MTL) 0.72

Table 4: Evaluation results for intent understanding (E4) us-
ing AvgFracTripletsWherePosIsCloser

Table 4 demonstrates zero shot learning capabilities for the post
embeddingmodel. Although it is trained only on data from Interests,
Search, Storylines and Hashtag datasets, it generalizes effectively to
the Post Intent Dataset (E4). On Task E4, LinkedIn Post Embeddings
outperforms the model fine-tuned solely on T4 (Post Intent training
data).

8.3 Comparing performance with generalized
OpenAI embeddings

E1 - Interest Dataset E2 - Storyline Dataset E3 - Hashtag Dataset

Model Dim E1 E2 E3
BERT-base 768 0.69 0.90 0.77
ADA_001 1024 0.66 0.95 0.82
ADA_002 1536 0.89 0.95 0.89
E5-base-v2 768 0.84 0.96 0.87
E5-multilingual-base 1024 0.81 0.96 0.87
LinkedIn Post Embedding 50 0.89 0.95 0.93

Table 5: Performance comparison across models (including
ADA_002 [7]) using AvgFracTripletsWherePosIsCloser

The results in Table 5 show that compared to open-source mod-
els that generate generalized embeddings, we achieve comparable
performance with up to 30x compression in embedding size for
LinkedIn specific tasks.

8.4 Impact in Downstream Applications
All test results reported here are based on online A/B experiments
run for at least one week, and all downstream application impacts
are statistically significant with p value less than 0.05.

5

Text

Categorical
Features

ID
Embeddings
(Actor and
Hashtag)

LinkedIn
Post

Embedding
(50

dims)

Derived
Member

Embeddings
(Medoids) (Top

3 , each 50
dims)

MLP
Layer

Concatenate
Features

Input Features
to Feed Model

Model
Predictions

MLP Layers

Feature
Transformations

Concat
Numeric
Features

Contributions
Tower

P(like)

P(comment) P(share)

.............

LinkedIn Post
Embedding
Addition to

Model

LinkedIn Post
Embedding

layers in Feed
Ranking Model

Figure 5: Feed ranking model architecture with LinkedIn
post embeddings

8.4.1 Feed Ranking: The Feed ranking model is the final ranking
layer, which takes in inputs from multiple first pass rankers (exam-
ples: followed content, jobs content, suggested content, etc.), and
outputs the final ranked list. The current Feed ranking model is
a large personalized model which includes ID features, numeric
features and categorical features [3]. Figure 5 shows how the em-
beddings were integrated into the main Feed ranking model.

After adding LinkedIn Post Embeddings to the model, we were
able to achieve an increase of 0.1% in the number of user sessions
on LinkedIn (𝑝 < 0.001). This metric indicates that more members
found the feed more relevant and chose to come back more often.
We achieved an increase of 0.21% in the number of daily unique
professional interactions by our members (𝑝 < 0.0001) and rev-
enue was up by 0.42% (𝑝 < 0.001) in online A/B tests. While these
lifts may appear modest, at LinkedIn’s scale, this translates to mil-
lions of additional positive member interactions daily, representing
a significant business impact.

8.4.2 Feed Retrieval: The Feed model has a retrieval layer for fetch-
ing the best candidates for ranking from the corpus of content cre-
ated by a member’s connections. This is one of the sources that
feeds into the final ranking model along with out-of-network posts,
videos, ads, jobs and others. In this layer, we filter down top 500
most relevant connected content for the user from a corpus which
could range up to millions depending on connection size of a mem-
ber. See Figure 6 for the architecture of the retrieval model after
addition of LinkedIn Post Embeddings. The model resulted in a
+0.37% increase in daily unique members who had an active
engagement in the Feed (𝑝 < 0.001), and a 0.05% decrease in
Feed skips, indicating greater relevance (𝑝 < 0.0001).

8.4.3 Feed Video Recommendation: LinkedIn has a video recom-
mendation experience across multiple product surfaces like Video

actorIds
(ID

Embedding
Lookup)

viewerHashtagHistory
(ID Embedding Lookup)

hashtagIds
(ID

Embedding
Lookup)

Concat
Concat

LinkedIn Post
Embedding (50

dim)

MLP

Medoids (Member
Embedding) (Top 3,

each 50 dim)

MLP

viewerActorHistory
(ID Embedding

Lookup)

Post and Medoid
Embeddings

ID
Embedding

Look Up
Layers

Member
Embedding

Cosine
Similarity Item

Embedding

Other
features

Concat

Dense +
Sigmoid

probability of
engagement

True binary Label
for training

network

Figure 6: Feed retrieval model architecture with LinkedIn
post embeddings

Tab, Video Chaining and Video Carousel where professional con-
tent in the format of short videos are available for our members.
We added post embeddings based on video transcript information
to the video retrieval layer (detailed architecture in Figure 7) and
we achieved an improvement of +10.46% in Total Watch Time
(𝑝 < 0.0001) and +1.74% in DAU (𝑝 < 0.0001) for the video tab
surface. The LinkedIn Post Embedding model was not retrained,
and was simply used for inference using the video transcript text
as input to generate embeddings. This further validates the ability
of the embeddings to easily scale across multiple product surfaces
with impact.

9 Conclusion
In this paper, we presented the fine-tuning of a BERT-based lan-
guage model to generate high quality post embeddings, that have
been widely adopted across LinkedIn. We demonstrated how these
embeddings enable the derivation of member representations using
hierarchical clustering (Ward’s method), and showed that train-
ing on a diverse set of semantic labeling tasks led to consistent
performance improvements through positive transfer. The general-
izability of the model was further validated through its zero-shot
learning capabilities on an unseen task. We also compared the
model’s performance against OpenAI’s generalized embeddings,
highlighting its superior effectiveness for LinkedIn specific applica-
tions achieved at significantly lower dimensionality. Furthermore,
we outlined several real world product use cases where these em-
beddings were deployed, resulting in measurable online impact
through A/B testing. Looking ahead, our goal is to integrate larger
foundational language models into our fine-tuning framework, and
expand our training datasets by partnering with additional LinkedIn
product teams. This ongoing effort towards platformization not
only enhances the quality and scalability of post embeddings, but
also incentivizes the creation of new, reusable datasets that can
benefit multiple teams across the company.

6

Post
Embedding

Encoder

Concat

Concat

Post
Embedding

Encoder

Member
Embeddings
(Medoids)

MLP

User
Embedding

Post Embedding
Layer

Cosine
Similarity

 Softmax Loss
(w ith in-batch

negative
sampling)

Probability of
engagement

Binary Label
for training

network

User Prof ile
Embedding

 Historically
Interacted Posts

Transformer
Encoder

MLP

Actor
IDs

Video Transcript ion
Text

ID
Embedding

Video
Member

Embedding

Video Item
Embedding

Transformer
Encoder

MLP

Figure 7: Video retrieval model architecture with LinkedIn
post embeddings

Limitations
Our embeddings have been battle-tested in production for over
two years and remain competitive, although advances in founda-
tional andmultimodal models may eventually surpass this approach.
Our framework is designed to incorporate such improvements. We
chose binary cross-entropy loss for efficiency: while triplet loss and
InfoNCE are standard, triplet loss required three parallel inferences
per update, increasing GPU memory costs and reducing batch sizes,
which degraded performance. BCE provided a more practical trade-
off between efficiency and downstream accuracy. Our evaluation

metric (AvgFracTripletsWherePosIsCloser) aligns with our semantic
understanding objective, although alternative ranking or retrieval
based offline metrics could provide complementary views of embed-
ding quality. Finally, embedding performance is sensitive to how
positive and negative pairs are sampled; although we adopted a
broad, multi-task strategy, more sophisticated pair generation may
further improve generalization. We have initiated efforts to develop
multimodal post embeddings that integrate both visual and textual
information, since the current embeddings only operate on the text
present in a post.

References
[1] Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettle-

moyer, and Sonal Gupta. 2021. Muppet: Massive multi-task representations with
pre-finetuning. arXiv preprint arXiv:2101.11038 (2021).

[2] Fedor Borisyuk, Shihai He, YunboOuyang,Morteza Ramezani, PengDu, Xiaochen
Hou, Chengming Jiang, Nitin Pasumarthy, Priya Bannur, Birjodh Tiwana, et al.
2024. LiGNN: Graph Neural Networks at LinkedIn. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4793–4803.

[3] Fedor Borisyuk, Mingzhou Zhou, Qingquan Song, Siyu Zhu, Birjodh Tiwana,
Ganesh Parameswaran, Siddharth Dangi, Lars Hertel, Qiang Charles Xiao, Xi-
aochen Hou, et al. 2024. LiRank: Industrial Large Scale Ranking Models at
LinkedIn. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 4804–4815.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning
at scale. arXiv preprint arXiv:1911.02116 (2019).

[6] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[7] Ryan Greene, Ted Sanders, Lilian Weng, and Arvind Neelakantan. 2022. New
and improved embedding model. OpenAI Blog. Available online: https://openai.
com/blog/new-and-improved-embedding-model (accessed on 28 November 2023)
(2022).

[8] Yinhan Liu. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 364 (2019).

[9] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 2311–2320.

[10] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. arXiv preprint arXiv:1908.10084 (2019).

[11] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised
contrastive pre-training. arXiv preprint arXiv:2212.03533 (2022).

[12] Spyros Zoupanos, Stratis Kolovos, Athanasios Kanavos, Orestis Papadimitriou,
and Manolis Maragoudakis. 2022. Efficient comparison of sentence embeddings.
In Proceedings of the 12th Hellenic Conference on Artificial Intelligence. 1–6.

7

	Abstract
	1 Introduction
	1.1 Key Contributions

	2 Related Work
	3 Vision for Training Platform
	4 Datasets
	5 Modeling Architecture
	5.1 Single Task Architecture
	5.2 Multi-Task Architecture
	5.3 Implementation Details
	5.4 Member Embeddings from Post Embeddings

	6 Offline Evaluation
	7 Online Deployment
	8 Results
	8.1 Fine-tuning an LLM on multiple tasks at once helps uplift performance in all tasks
	8.2 Zero Shot Capabilities Improvements
	8.3 Comparing performance with generalized OpenAI embeddings
	8.4 Impact in Downstream Applications

	9 Conclusion
	References

