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Abstract

Analyzing financial transactions is crucial for ensuring regulatory
compliance, detecting fraud, and supporting decisions. The com-
plexity of financial transaction data necessitates advanced tech-
niques to extract meaningful insights and ensure accurate analysis.
Since Transformer-based models have shown outstanding perfor-
mance across multiple domains, this paper seeks to explore their po-
tential in understanding financial transactions. This paper conducts
extensive experiments to evaluate three types of Transformer mod-
els: Encoder-Only, Decoder-Only, and Encoder-Decoder models. For
each type, we explore three options: pretrained LLMs, fine-tuned
LLMs, and small proprietary models developed from scratch. Our
analysis reveals that while LLMs, such as LLaMA3-8b, Flan-T5, and
SBERT, demonstrate impressive capabilities in various natural lan-
guage processing tasks, they do not significantly outperform small
proprietary models in the specific context of financial transaction
understanding. This phenomenon is particularly evident in terms
of speed and cost efficiency. Proprietary models, tailored to the
unique requirements of transaction data, exhibit faster processing
times and lower operational costs, making them more suitable for
real-time applications in the financial sector. Our findings highlight
the importance of model selection based on domain-specific needs
and underscore the potential advantages of customized proprietary
models over general-purpose LLMs in specialized applications. Ulti-
mately, we chose to implement a proprietary decoder-only model to
handle the complex transactions that we previously couldn’t man-
age. This model can help us to improve 14% transaction coverage,
and save more than $13 million annual cost.
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1 Introduction

In the payments industry, the ability to accurately understand trans-
actions is crucial for assessing business risks, enhancing user expe-
riences, and minimizing inquiry costs. However, this task is compli-
cated by the fact that transaction data is often messy and expressed
in various formats. Traditional rule-based methods can manage
data from a limited number of merchants, but they struggle to han-
dle the vast array of unseen merchants, making them inefficient
and unscalable. In contrast, the advanced language models, partic-
ularly pretrained large language models (LLMs) such as GPT[8],
Llama[14], T5[10], and BERT[5], has demonstrated remarkable ca-
pabilities in analyzing complex data, offering a promising solution
to the challenges. However, the application of LLMs in production
environments comes with limitations. One significant drawback
is the substantial computational resources required to run these
models, which can lead to high operational costs and latency issues.
Additionally, pretrained LLMs are not optimized for the unique
requirements and nuances of particular applications, often necessi-
tating extensive fine-tuning and optimization to perform well on
specific tasks, which can be time-consuming and resource-intensive.

On the other hand, building a Transformer model from scratch
can be necessary due to the unique and specialized nature for finan-
cial transaction data. Unlike general language data, transaction data
often involves specific terminologies, unstructured formats, and
domain-specific patterns that pretrained LLMs may not adequately
capture. By developing a Transformer model from scratch, it is pos-
sible to design and train the model specifically for the intricacies
of transaction data. This approach allows for the incorporation of
domain-specific knowledge and the customization of the model
architecture to better handle transactions.

Choosing between pretrained LLMs and small proprietary Trans-
former models can be a complex and challenging task in real-world
applications. This decision involves weighing various factors such
as accuracy, scalability, cost, and the specific requirements of the
application at hand. Our study makes a significant contribution by
demonstrating that while LLMs excel in general tasks, a proprietary
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Figure 1: Example for Transaction Understanding

model is essential for specific tasks, such as financial transaction un-
derstanding. We provide a comprehensive comparison of pretrained
LLMs and small proprietary Transformer models, evaluating both
accuracy and efficiency. Our findings reveal that larger models do
not always outperform smaller ones in practical settings. Addition-
ally, we offer detailed guidance on choosing the right proprietary
models for real-world applications, assisting decision-makers in
navigating the complexities of model selection.

2 Problem Definition

The aim of this study is to standardize POS (point-of-sale) trans-
actions with merchant information, which provide value-added
features for Chase customers and offer merchant-level insights for
the business. Our goal is to identify the corresponding merchant
IDs from messy transaction text and enhance the merchant infor-
mation available to users on our Chase mobile app (as shown in
Figure 1). Instead of displaying a raw transaction, we can present
detailed merchant information, such as the logo, formal name, ad-
dress, phone number, etc., to provide users with more context for
inquiries and fraud detection.

The challenges stem from two main factors: the high volume
and the highly disorganized nature of transactions. We need to
process over 50 million transactions daily, requiring our model
to respond within milliseconds while maintaining cost efficiency.
Additionally, transactions are extremely complex and contain a
significant amount of noise, making them difficult to manage with
a simple solution. As illustrated in Table 1, numerous transactions
lack an obvious sub-strings to identify merchants. For instance,
"SWA * EARLYBRD XQQJWQ9V4F4" is difficult to associate with
"Southwest Air". Furthermore, transactions often include various
types of noise, such as aggregators (third-party online payment
processors) like "SQ (Square)", but there is no consistent pattern for
where and how these aggregators appear. Additionally, the presence
of transaction numbers makes it more challenging. For instance, in
"FAM EXP LDGX," the segment "LDGX" is a transaction number
rather than part of the merchant’s name.

OAll transaction data mentioned in this paper is synthetic. Actual data is confidential
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Our previous solution comprised two components: a set of regex
rules (Rulebased) and an Enhanced String Distance (ESD) method.
Rulebased method maintains thousands of regex rules to map in-
coming transactions to their corresponding merchant IDs. This
method can only cover about 1000 merchants, which is highly
unscalable and requires significant effort to create, modify, and
maintain rules. The ESD method utilizes string similarity measures
in conjunction with a manual decision tree, which is more flexible
and can cover a larger number of merchants. However, the ESD
method can only cover less than 20% of transactions, leaving a
significant amount of transactions unmanaged. These transactions
lead to poor user experiences and numerous transaction inquiry
calls, which annually cost the company millions of dollars.

The purpose of this study is to explore advanced language mod-
els that can handle more complex transactions. Regarding advanced
language models, Transformer-based models have emerged as the
state-of-the-art (SOTA) in natural language processing (NLP). These
models have demonstrated exceptional performance across a wide
range of tasks due to their ability to capture intricate patterns
and dependencies in data. In this study, we aim to explore both
pretrained LLMs and small proprietary Transformer models. By
comparing these approaches, we seek to determine the most effec-
tive solution for managing complex transactions, balancing perfor-
mance, efficiency, and cost.

3 Methodology

LLMs, pretrained on extensive public data that includes merchant
nicknames and abbreviations, have significant potential to stan-
dardize transactions. Alternatively, training a proprietary model
from scratch with specific transaction data also promises accurate
predictions. To investigate both models, we have established six
work streams centered around three types of Transformer-based
models: Encoder-Only, Decoder-Only, and Encoder-Decoder Mod-
els. We will compare the pretrained versions of these models with
their proprietary counterparts.

3.1 Encoder Only Model

When utilizing the Encoder-Only model to address this problem, we
employ the Bi-Encoder framework[11]. In this method, we initially
use an encoder model to convert all merchants in our database
into embedding vectors, which are then stored in a vector database.
When a transaction occurs, the same encoder model is used to
encode the transaction. We then search for and rank the most likely
merchants based on similarity, selecting the top-ranked merchant
as the match with Lucene Vector Search[19].

3.1.1 SentenceBert. The most widely used pretrained Encoder-
Only model is SentenceBERT (SBERT) [11]. SBERT modifies the
pretrained BERT network using Siamese and Triplet network[12],
enabling faster and more accurate semantic search by deriving se-
mantically meaningful sentence embeddings that can be compared
using cosine similarity. We utilized the all-MiniLM-L6-v2[16] model
from the MiniLM (Miniature Language Model) family. This model
encodes both merchants and transactions into 384-dimensional
dense vectors. During fine-tuning stage, we employed online con-
trastive loss to enhance the model’s performance.
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Transaction. Text Transaction Zipcode | Merchant ID | Merchant Name

SQ *HM SP NTW P2FJOC4 12345 JPMCo001 Home Shopping Network
AUTOMA MSFT * CORPO008 67890 JPMC002 Microsoft

SWA * EARLYBRD XQQJWQOV4F4 | 13579 JPMC003 Southwest Air

FAM EXP LDGX 24680 JPMC004 Family Express

GOOGL * ADSJLOCZIDN 98765 JPMCO005 Google Ads

Data in the table is synthetic.
Table 1: Financial Transaction Examples

3.1.2  Proprietary Encoder-Only Model. We developed a proprietary
encoder-only model using PyTorch by implementing the Trans-
formerEncoderLayer module. This custom model is designed to
encode both transactions and merchants with a unified encoder
architecture. To train the model, we prepared a comprehensive
dataset (see Section 4) and ensured it was properly tokenized (see
Section 5.2.1). We configured hyperparameters, such as learning
rate and weight decay, with Ray Tune [7] and Optuna [1], but for
other model structure hyperparamters, we setup a series experi-
ments to find the best ones(see Section 5). The model was trained
using a contrastive loss function, as specified in Equation 1.

L = (1 — pos_sim) + max(0, neg_sim — margin) (1)

where the pos_sim indicates the cosine similarity between trans-
action and the positive merchant name, and neg_sim indicates the
cosine similarity between transaction and the negative merchant
name. We set margin as 0.5 on our data to achieve optimal results.

3.2 Decoder Only Model

When using the Decoder-Only model, we treat this transaction
understanding problem as a translation problem, which generates a
standardized merchant name from the messy transaction text. With
the generated merchant name, we search our merchant database to
find the most possible merchant ID with Lucene String Search.

3.2.1 Llama3-8b. Transaction data is confidential, so we only uti-
lize open-source models that can be deployed internally, which is
why we opted for Llama3 instead of GPT-4. Llama3[14] is the latest
foundational LLM from Meta and achieves comparable results to
GPT-4 in various benchmarks. Since the full version of Llama3 is
unnecessary, we implement the Llama3-8b, which is optimized for
dialogue use cases. Here is the given prompt to Llama3-8b:

You are provided with raw merchant transaction text
and the transaction’s zipcode. Based on the provided
information, please output the merchant name. Your
answer should only include the predicted merchant
name and nothing else.

followed with a user message with a transaction text and zipcode.

During the fine-tuning stage, we also include the corresponding
merchant name in the assistant message. We applied QLoRA[4] to
fine-tune the model.

3.2.2  Proprietary Decoder-Only Model. The proprietary Decoder-
Only model is built using PyTorch’s TransformerDecoderLayer
module. In our implementation, the model takes transactions text
as input and decodes them to desired merchant names as output.
The model is trained in the similar way as described in Proprietary

Encoder-Only Model part(Section 3.1.2). We applied Cross Entropy
(Equation2) as the loss function to train the model.

1 e )
L= N Z Z Yic log(Jic) (2

i=1 c=1
where N is the number of tokens in the sequence, C is the vocabu-
lary size.

3.3 Encoder-Decoder Model

The Encoder-Decoder model also translates transactions to mer-
chant names, the same as Decoder-Only model does. The primary
distinction between the Decoder-Only model and the Encoder-
Decoder model lies in the additional encoding step present in the
latter. Specifically, the Encoder-Decoder model employs several
layers of encoders to transform a transaction into a context rep-
resentation. The decoder then uses this representation, instead of
transaction tokens, to generate output.

3.3.1 Flan-T5. Flan-T5[3] is a widely used pretrained Encoder-
Decoder model, which is a family of models that enhances T5[10].
While fine-tuning, we follow the same settings to Llama3-8b.

3.3.2  Proprietary Encoder-Decoder Model. Similarly, we apply Py-
Torch’s TransfromerLayer to build up our proprietary Encoder-
Decoder model. The transaction data will first go through several
layers of TransformerEncoderLayer and then leverage several lay-
ers of TransformerDecoderLayer to decode out the merchant name.
The model training configuration and loss function is the same with
Decoder-Only model (Section3.2.2).

4 Experiments

4.1 Transaction Dataset

We categorize our transaction data into three types: Rulebased
Data, which consists of transactions managed by existing regex
rules; ESD Data, which includes transactions handled by Enhanced
String Distance (ESD) method; and Rawcleansed Data, which refers
to transactions that are not managed by any existing methods
and stored in their original form as they are received. Rulebased
data takes about 63% of our dataset, ESD takes about 17%, and
Rawcleansed takes about 20%.

e Rulebased Data: We conducted a query of our historical
transactions and extracted a sample of approximately 1,131
rules from our dataset. For the training dataset, we com-
piled 773,653 transactions representing 779 merchants. Ad-
ditionally, we prepared a testing dataset consisting of 1,311
transactions, also covering these 779 merchants.
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e ESD Data: We queried our historical transactions and sam-
pled 574,871 transactions managed by the ESD method, en-
compassing 506,135 merchants. For the testing phase, we
prepared two distinct ESD test datasets. The first dataset,
ESD_RD, includes 40,223 transactions involving merchants
present in the training data. The second dataset, ESD_ZS,
comprises 10,000 transactions involving merchants not pre-
viously seen in the training data.

e Rawcleansed: In the absence of ground truth for the Raw-
cleansed data, we manually labeled the merchants for a set
of 2,541 transactions. This labeled dataset now serves as
the ground truth for evaluating the model’s performance on
Rawcleansed data.

To train the Encoder-Only model effectively, the inclusion of
negative samples is essential (shown as in Equation1). For each
transaction, the corresponding matched merchant serves as the pos-
itive sample. We utilize Jaccard Similarity to compare the positive
merchant with all other merchants. A merchant with a similarity
score greater than 0.75 but less than 1.0 is randomly chosen as the
negative sample. This approach ensures that the encoder model can
differentiate between merchants that are similar but not identical.

4.2 Merchant Dataset

We compiled a dataset of 7.8 million merchants for matching pur-
poses. To refine the candidate pool, we use the merchant’s and
transaction’s zipcode as a filter. Following this, we apply either the
generated merchant names or the encoded transaction vectors to
the filtered candidates for more precise matching via Lucene, and
select the top 1 merchant as the predicted match.

4.3 Evaluation Metrics

In our task, we use ‘Accuracy’ to evaluate models’ performance.
The Accuracy means the ratio of transactions that can be correctly
map to a right merchant. Since we have four datasets, we apply a
‘Weighted Accuracy’ to evaluate each model’s performance. The
Weighted Accuracy is calculated as

Weighted Accuracy =0.63 = Rulebased Accuracy
+ 0.085 * ESD_RD Accuracy
+ 0.085 * ESD_ZS Accuracy

+ 0.2 = Rawcleansed Accuracy

where the weight for each part is derived from the percentage of
this data present in our dataset.

5 Results and Discussions
5.1 Open Sourced or Proprietary Model

In this section, we evaluated three model streams: the out-of-the-
box (OOTB) LLM, the fine-tuned LLM, and the proprietary model.
To cover a broad range of LLMs, we selected Llama3 (decoder-only
model), Flan-T5 (encoder-decoder model), and SBert (encoder-only
model) as our LLM candidates. Correspondingly, we developed
three types of proprietary models: a Proprietary Decoder-Only
model, a Proprietary Encoder-Decoder model, and a Proprietary
Encoder-Only model for comparison (shown as Figure2). The LLMs
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were fine-tuned with the exact same datasets used to train the
proprietary models.

As shown in Figure 2, OOTB models are not well-suited for
our internal uses cases. Although these models are designed for
general purposes, they do not perform effectively on specific busi-
ness scenarios because they lack exposure to the target data. After
fine-tuning, their performance improves significantly since fine-
tuning allows the models to adapt specifically to the nuances and
patterns of the target data. Llama3’s performance increases 9% and
Flan-T5’s performance increases 13% after fine-tuning. However,
SBert’s performance decreases 4%. The possible reason is that the
transaction data is not well aligned with the model structure and
original dataset so the transaction data introduces noises and biases
that the model was not previously exposed to.

However, upon examining the proprietary models, we find that
they can actually perform comparably or even better than LLMs
with significantly fewer parameters. For instance, the Proprietary
Decoder-Only model achieves 72.07% accuracy with just 1.7M pa-
rameters, compared to Llama3’s 72.89% accuracy with 8B param-
eters. Proprietary Encoder-Decoder model performs better than
Flan-T5 by 2% (70.14% vs. 68.31%) with much less parameters (1.5M
vs 220M), and proprietary Encoder-Only model also performances
better than SBert by 6% (60.06% vs. 54.63%) with smaller size (11M
vs 22.7M). This suggests that proprietary models can be more effi-
cient in certain tasks compared to larger pretrained models. Table 2
! provides detailed insights into the speed and cost of training/fine-
tuning each of these models. It is evident that proprietary models
are smaller and faster in both training and inference, resulting in
budget savings. Given that we need to process over 50+ million
transactions per day, a 100-millisecond upper limit for inference
time is crucial. Although Llama3 achieves 0.8% higher accuracy,
it requires more than 700 milliseconds to infer one transaction.
In contrast, the Proprietary Decoder-Only model takes only 95.02
milliseconds to achieve comparable accuracy, offering much faster
inference time and reduced costs. Proprietary Decoder-Only model
achieves better accuracy compared to the Proprietary Encoder-
Decoder model (72.07% vs. 70.14%), but it is significantly slower in
inference despite having similar model sizes. The possible reason is
that the encoder-decoder model architecture can efficiently utilize
parallel processing during the encoding phase and make use of the
encoded context for effective decoding. In contrast, the decoder-
only model architecture has to access a rich context from the start,
which increases the complexity of each decoding step. Additionally,
in a decoder-only model, the entire process of understanding the
input and generating the output is handled in a single pass. This
requires the model to rely on previously generated tokens to predict
the next one, known as autoregressive generation, which can slow
down the overall process. Encoder models are faster and cheaper,
even with much larger model size. This is because the encoding
process can be well paralleled. However, their performance on this
task is not as good as models with decoders.

'The price is estimated according to the AWS pricing page:
https://aws.amazon.com/sagemaker-ai/pricing/
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Open Sourced LLMs vs. Proprietary Small Transformers on Task Accuracy
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Figure 2: Open Sourced LLMs vs. Proprietary Small Transformers on Task Accuracy
Model Model Size Machine Training Speed | Training Cost | Inference Time | Inference Cost
Training : g4dn.12xlarge 735 ms/txn
Llama 3 8B Inference: gadn 2xlarge 166h/IM txn | $812/1M txn 204.17h/1M txn $191/1M txn
Training : g4dn.12xlarge 284.7 ms/txn
Flan-T5 220M Inference: gadn 2xlarge 108h/1M txn $528/1M txn 3.59h/1M txn $22.56/1M txn
5.77 ms/txn
SBert 22.7M g4dn.xlarge 1.7h/1M txn $1.60/1M txn 1.60 h/IM txn $1.51/1M txn
Proprietary 95.02 ms/txn
Decoder Only 1.7M g4dn.xlarge 0.33h/1M txn | $0.24/1M txn 26.39h/1M txn $19.43/1M txn
Proprietary 26.50 ms/txn
Encoder-Decoder 1.5M g4dn.xlarge 0.11h/1M txn | $0.08/1M txn 7.36h/1M txn $5.42/1M txn
Proprietary 7.62 ms/txn
Encoder Only 11.3M g4dn.xlarge 0.46h/1M txn | $0.34/1M txn 2. 11h/IM txn $1.57/1M txn

Table 2: Open Sourced LLMs vs. Proprietary Small Transformers on Speed and Cost

5.2 The Larger the Better?

From the results in Figure 2, we are prompted to ask whether a
larger model necessarily leads to better outcomes. We use a series of
experiments to explore this question. Speaking of model size, three
factors contribute to it, the vocabulary size, and number of layers,
and embedding size. So, we discuss from these three dimensions.

5.2.1 Tokenizer and Vocabulary Size. A tokenizer is a key part of
Transformer-based models, essential for preparing text data. It con-
verts raw text into a format the model can process by breaking it
down into smaller units called tokens, which can be words, sub-
words, or characters. Common tokenizers include BPE, WordPiece,
and Unigram. BPE[13] starts with individual characters, and merge
the most frequent pairs of characters, until pre-defined vocabulary
size is reached. WordPiece[18] starts with individual characters and
adds the most frequent subword units to the vocabulary to maxi-
mize the training data’s likelihood. Unigram([6] uses a probabilistic
model treating subword units as independent tokens. It starts with a
large vocabulary and removes the least likely units to maximize the
training data’s likelihood. Given that there is no definitive answer

regarding the best tokenizer or the optimal vocabulary size, we ad-
dress this issue by experimenting with all three popular tokenizers
mentioned above, and vary the vocabulary size from 100 to 10,000
to check whether a larger vocabulary yields better results.

Figure 3 addresses both questions, emphasizing the importance
of selecting the right tokenizer and vocabulary size for optimal
performance. The Encoder-Only model performs best with Word-
Piece and significantly worse with Unigram. On the other hand, the
Encoder-Decoder model yields better results with BPE compared
to WordPiece. The Decoder-Only model seems less affected by the
choice of tokenizer, performing well with all three options.

The Encoder-Only model benefits from WordPiece because Word-
Piece is designed to create a balance between vocabulary size and
token granularity. It segments words into subword units that are
frequent enough to capture meaningful linguistic information. In
contrast, Unigram uses a probabilistic approach to select subword
units, which sometimes leads to less optimal segmentation and
produce a larger variety of subword units that are not meaning-
ful. BPE is designed to iteratively merge the most frequent pairs
of bytes, resulting in a compact set of subword units. This com-
pression is beneficial for the Encoder-Decoder models, which need
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to handle both input and output sequences efficiently, especially
when transforming sequences of similar lengths. The Decoder-Only
model’s insensitivity to tokenizer choice suggests its architecture
is robust enough to handle various tokenization strategies without
significant performance changes.

Regarding vocabulary size, bigger is not always better. The
Encoder-Only model achieves its best performance with a vocabu-
lary size of 1000, which might provide the right balance between
having enough subword units to capture nuances and not over-
whelming the model with too many options, which can complicate
learning. While both the Decoder-Only and Encoder-Decoder mod-
els perform optimally with a smaller vocabulary size of 500, because
it reduces the complexity of the output space, making it easier for
the model to learn and generate sequences effectively.

In our subsequent experiments, we use the WordPiece tokenizer
with a vocabulary size of 1000 for the Encoder-Only model and
BPE tokenizers with a vocabulary size of 500 for both the Encoder-
Decoder model and Decoder-Only model.

5.2.2 Model Size. After setting up the vocabulary and tokenizer,
we will discuss about whether a model with more parameters will
yield better results. We first vary the embedding dimension for
the three models from 16 to 1024 while keeping the model depth
fixed at 8. As shown in Figure 4(a), increasing the embedding size
generally enhances model performance. However, the Encoder-
Only model is particularly sensitive to this parameter, as it requires
a wide embedding size to effectively store context information. The
Encoder-Only model achieves its best performance at an embedding
size of 512, after which performance declines with larger sizes.
Similarly, the Decoder-Only model’s performance improves initially
but drops significantly when the embedding size exceeds 256. The
Encoder-Decoder model, on the other hand, demonstrates stability
across different embedding sizes, although its accuracy slightly
increases and then begins to decline after reaching 128.

We vary the number of layers from 2 to 16 for the three models.
In the Encoder-Decoder model, layers are evenly split, so an 8-layer
Encoder-Decoder model has 4 encoder layers and 4 decoder layers.
As shown in Figure 4(b), the Encoder-Only model is particularly
sensitive to this parameter, with accuracy increasing dramatically
at first, peaking at 8 layers, and then declining. In contrast, the
Decoder-Only and Encoder-Decoder models exhibit greater stability
with respect to the number of layers, indicating that model depth
has less impact on their performance.

Figure 4(c) provides a comprehensive overview of the models’
performances relative to their sizes, which are determined by either
the model’s width (embedding size) or depth (number of layers). The
results indicate that the Encoder-Only model benefits from a larger
model size, achieving better performance with increased width
or depth. In contrast, the Decoder-Only model performs better
with small-to-medium model sizes, as larger sizes tend to introduce
noise rather than useful information. The Encoder-Decoder model
demonstrates greater stability across different model sizes.

5.2.3 Model Type. We have tried three different types of Trans-
former model in our task, namely Encoder-Only, Decoder-Only, and
Encoder-Decoder model. As shown in Figure3 and Figure4, Decoder-
Only and Encoder-Decoder models outperform Encoder-Only mod-
els. Decoder-Only model and Encoder-Decoder model benefit from
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their autoregressive nature in the decoder part, which allows them
to generate tokens sequentially and maintain coherence, making
them particularly effective for tasks like text generation. When
comparing the Encoder-Decoder model to the Decoder-Only model,
the Decoder-Only model slightly outperforms the Encoder-Decoder
model. This performance difference may be attributed to the po-
tential information loss that occurs during the encoding process,
leading to less accurate decoding compared to the Decoder-Only
model, which does not undergo this encoding step.

Table 3 presents a comparison among the three types of propri-
etary models. For a fair evaluation, we selected the best-performing
model from each category. The Encoder-Only model converges
quickly, requiring only 899 iterations, while the Decoder-Only
model takes longer to train, converging after 10,499 iterations. De-
spite the Encoder-Only model being larger, both models take a
similar amount of time to converge. During inference, the Encoder-
Only model is significantly faster, even with its larger number of
parameters. However, the Encoder-Only model requires a longer
time for the vector level indexing, and the index must be rebuilt
each time the model is updated. In contrast, the Decoder-Only and
Encoder-Decoder model are quicker to index and does not require
re-indexing upon model updates, as the indexing is performed at the
merchant level. Although both models are slower during inference,
they still satisfy our 100ms/txn requirement.

If we investigate the Accuracy on each type of dataset, all mod-
els perform comparably better on ESD data compared to Rule-
based data and Rawcleansed data. This indicates that the model
effectively leverages similar patterns within the data for match-
ing purposes. The performance on Rulebased transactions falls
significantly,which is likely due to that Rulebased data contains
business logic that could be captured by string-level patterns. The
Rawcleansed data is unseen in our training data and of higher
complexity, but Decoder-Only model can still get 72% accuracy,
dramatically higher than the other two models. This highlights
the potential to utilize the Decoder-Only model to improve the
coverage of our transaction system.

6 Model Deployment

Since the Decoder-Only model achieves 72% accuracy on Raw-
cleansed data, and our business priority is expanding coverage on
Rawcleansed data. In the initial deployment, we use the Proprietary
Decoder-Only model for Rawcleansed data data while retaining the
Rulebased and ESD components for further enhancement.

The deployment pipeline is illustrated in Figure 5. For POS trans-
actions, we first apply general string cleaning, including lowercase
conversion and non-alphanumeric removal. The transaction then
passes through our Rulebased matching and ESD matching compo-
nents. Transactions that do not find a match, known as Rawcleansed
transactions, are processed by the Proprietary Decoder-Only model
via API calls. The model outputs a confidence score and a generated
merchant name for each transaction. We then use the generated
merchant name for a Lucene search to identify the top merchant.
However, this top merchant is only correct 72% of the time, and
we aim to avoid showing incorrect predictions to users. Therefore,
we use the similarity between the top merchant’s name and the
generated merchant name, along with the model’s confidence score,
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The number showing in the heatmap is the Weighted Accuracy with the corresponding tokenizer and vocabulary size. To make a fair
comparison, all the models are using similar configurations with 8 layers and 128 embedding size.

Figure 3: Models’ performance on with different tokenizers and vocabulary size
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Figure 4: Models’ performances with different Model Size

. Train | Train Index Infer Accurac
Model Type Tokenizer v DL N Iters | Time Time | Time (/txn) | Top-1 | Top-5 Precisi(}ln Recall | F1
Rule | ERD EZS Raw | WT
Decoder Only BPE 500 | 128 | 8 | 1.72M | 10499 | 2.3 hrs | 6.5 mins 95.02 ms 0.66 0.95 0.91 0.72 | 0.72
Encoder Decoder BPE 500 | 128 | 8 | 1.52M | 4599 | 1.3 hrs | 6.5 mins 26.50 ms 0.66 0.92 0.90 0.66 | 0.70
Encoder Only | WordPiece | 1000 | 512 | 8 | 11.03M | 899 | 2.2hrs | 80 hrs 11.62 ms 0.56 0.87 0.82 0.52 | 0.60

V indicates the vocabulary size, D indicates the embedding dimension, L indicates the number of layers, and N indicates the number of
parameters. Rule is the Accuracy on Rulebased dataset, ERD is the Accuracy on ESD_RD dataset, EZS is the Accuracy on ESD_ZS dataset,
and Raw is the Accuracy on Rawcleansed dataset, and WT is the final Weighted Accuracy. All these models are trained with the same batch

size and similar learning rate.
Table 3: Comparison Among Proprietary Models

as filters to eliminate incorrect predictions. Monthly, we manu-
ally sample and review results, gathering incorrectly matched and
inquired transactions to fine-tune the model.

Table 4 provides an overview of the business metrics following
the deployment of the Decoder-Only model. Currently, we retained
the Rulebased and ESD components while focusing solely on the
Rawcleansed data, which our previous system could not process.
Rawcleansed data accounts for 20% of our transactions, and the

Your First Column Transaction Coverage Cost
Rule | ESD | Raw | All Reduction
Before 63% | 17% | 0% | 80% -
After 63% | 17% | 14% | 94% | $13.2M/year

Table 4: Business Metrics After Decoder Model Deployment
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Figure 5: Model Deployment

Decoder-Only model accurately predicts 72% of these transactions.
This leads to a 14% increase in processed transactions, raising our
overall transaction coverage from 80% to 94%. As a result, the im-
proved coverage helps reduce transaction inquiry calls, generating
an estimated annual savings of approximately $13.2 million.

7 Related Work

Transformer models have revolutionized the field of natural lan-
guage processing (NLP) since their introduction[15]. These mod-
els use self-attention to capture sequence dependencies, enabling
efficient and accurate language processing. They fall into three
types: Encoder-Only, Decoder-Only, and Encoder-Decoder mod-
els..Encoder-Only Models such as BERT[5], focus on understand-
ing the input sequence by capturing contextual information from
both directions. A notable example of an encoder-only model is
SBERT[11], which modifies BERT to generate semantically mean-
ingful sentence representations. Decoder-Only Models such as
GPT][2, 9], are designed for text generation tasks. These models
generate text by predicting the next token in a sequence, leveraging
autoregressive mechanisms. Decoder-only models excel in tasks
like text completion and dialogue generation.Encoder-Decoder
Model such as T5 (Text-To-Text Transfer Transformer), combine
the strengths of both encoders and decoders. The encoder processes
the input sequence to generate a context representation, which the
decoder then uses to generate the output sequence. This archi-
tecture is particularly effective for tasks like machine translation,
summarization, and question answering.

Large Language Models (LLMs) are advanced Al systems with
vast parameters and training data, enabling them to capture com-
plex linguistic patterns. Built on Transformer architecture, they
excel in diverse NLP tasks across various fields. LLM integration
into finance also becomes a significant area of research and explo-
ration. Yang et al. introduced FinBERT[21], a BERT-based model
fine-tuned for financial analysis, demonstrating its effectiveness
in capturing the nuances of finance market. Bloomberg released
BloombergGPT[17], a LLM specifically designed to enhance fi-
nancial NLP tasks. Additionally, Xiao-Yang Liu et al. presented
FinGPT[20], aimed at enhancing tasks such as market prediction
and financial data interpretation. However, much of this research
has focused on developing general financial LLMs or applying them
to general tasks like sentiment analysis or named entity resolution.

Few studies have concentrated on specific tasks such as Financial
Transaction Understanding. The Slope company? has proposed
two LLM based transaction understanding models: SlopeGPT® and
SlopeTransFormer*, but both models are fine-tuned from existing
LLMs, and they do not provide detailed accuracy comparisons or
explore the potential of using smaller models to achieve better
performance.

8 Conclusion

This paper presents a comprehensive comparison between LLMs
and small proprietary models within the domain of financial transac-
tion understanding. We conducted extensive experiments on three
types of Transformer models: Encoder-Only, Decoder-Only, and
Encoder-Decoder, using both LLMs and small proprietary models.
Our results indicate that small proprietary models offer comparable
accuracy, faster processing and lower costs, making them more
suitable for real-time financial applications. These findings empha-
size the importance of selecting models based on domain-specific
needs and highlight the potential benefits of customized propri-
etary models in specialized settings. In production, we chose to
deploy the Proprietary Decoder-Only model to handle previously
unmanageable complex transactions. This improved transaction
coverage by 14% and reduced annual costs by over $13 million.
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