
Article Not peer-reviewed version

Efficient Querying of Federated Large-
Scale Clinical RDF Knowledge Graphs in
the Swiss Personalized Health Network

Andrea Brites Marto *,† , Philip Krauss † , Katie Kalt † , Vasundra Touré , Deepak Unni , Sabine Österle

Posted Date: 22 December 2025

doi: 10.20944/preprints202512.1909.v1

Keywords: clinical routine data; real world data; knowledge graph; RDF; SPARQL; performance

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4981277
https://sciprofiles.com/profile/1836067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Article 

Efficient Querying of Federated Large-Scale Clinical 

RDF Knowledge Graphs in the Swiss Personalized 

Health Network1 

Andrea Brites Marto 1,†, Philip Krauss 2,†, Katie Kalt 3,†, Vasundra Touré 1, Deepak Unni 1 

and Sabine Österle 1,* 

1  Swiss Personalized Health Network, SIB Swiss Institute of Bioinformatics, Basel, Switzerland 

2  Accenture AG, Basel, Switzerland 

3  University Hospital of Zurich, Zurich, Switzerland 

* Correspondence: sabine.oesterle@sib.swiss

†  These authors contributed equally.

Abstract 

The Swiss Personalized Health Network developed a national federated framework for semantically 

described medical data, in particular hospital clinical routine data. Instead of centralizing patient‐

level information, hospitals perform semantic coding and standardization locally and store SPHN‐

compliant data  in a  triple store. These decentralized RDF datasets,  following  the FAIR  (Findable, 

Accessible, Interoperable, Reusable) principles, together exceed 12 billion triples across more than 

800,000 patients, all signed a broad consent. In this work, we address the computational challenge of 

efficiently querying and integrating these distributed RDF resources through SPARQL. Our use cases 

focus on feasibility queries and value distribution, which allow researchers to assess the potential 

availability of patient cohorts across hospitals without disclosing sensitive patient‐level information. 

We present methods for optimizing SPARQL querying, tailored to the characteristics of large‐scale 

federated and complex clinical data. We evaluate these approaches by iteratively testing optimized 

queries on the SPHN Federated Clinical Routine Dataset, which spans 125 SPHN concepts including 

demographics,  diagnoses,  procedures,  medications,  laboratory  results,  vital  signs,  clinical  scores,  
allergies, microbiology, intensive care data, oncology, and biological samples. With this approach, 

we’ve  built  a  set  of  rules  to  consider  for  gradually  optimizing  SPARQL  queries.  Our  results  
demonstrate   that   optimized   SPARQL   query   planning   and   execution   can   significantly  
reduce response times without compromising semantic interoperability.

Keywords: clinical routine data; real world data; knowledge graph; RDF; SPARQL; performance 

1. Introduction

The Swiss Personalized Health Network (SPHN) is a national initiative designed to enable FAIR

(Findable,  Accessible,  Interoperable,  and  Reusable)  [1]  use  of  health  data  for  research  across 

Switzerland. Within a landscape of diverse technical solutions for clinical data platforms and data 

standards,  SPHN  provides  the  foundation  and  tooling  for  data  exploration  and  sharing with  a 

federated  infrastructure connecting hospitals and research  institutions.  Its goal  is  to make routine 

clinical data semantically interoperable and computationally accessible for secondary use. 

To achieve interoperability, SPHN developed an overarching semantic framework [2] based on 

Resource  Description  Framework  (RDF)  and  clinical  terminologies  such  as  the  Systematized 

Nomenclature  of Medicine  ‐  Clinical  Terms  (SNOMED  CT)  [3],  Logical Observation  Identifiers 

0009‐0005‐4104‐256X  (A. Brites Marto);  0009‐0007‐3673‐8583  (K. T. Kalt); 0000‐0003‐4639‐4431  (V. Touré);     

0000‐0002‐3583‐7340 (D. Unni); 0000‐0003‐3248‐7899 (S. Österle) 
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Names and Codes (LOINC) [4], Anatomical Therapeutic Chemical Classification System (ATC) [5], 

German Modification of  the  International Statistical Classification of Diseases and Related Health 

Problems, 10th revision (ICD‐10‐GM) [6] and Swiss Classification of Surgical Interventions (CHOP) 

[7]. This framework, implemented through the SPHN RDF Schema, defines a shared vocabulary and 

structure  for  representing  key  healthcare  concepts  such  as  diagnoses,  laboratory  tests,  drug 

administrations,  and  demographic  information.  Each  participating  institution  uses  the  SPHN 

Connector [8], a tool to convert local clinical data into standardized RDF according to the SPHN RDF 

Schema. The resulting semantically enriched and standardized knowledge graphs (KGs) are locally 

stored in each hospital using a scalable OpenLink Virtuoso RDF triple store [9] and the data can be 

shared with researchers in a trusted research environment [10]. This design ensures that hospitals 

retain full control over their data while adhering to a common semantic model. The platform provides 

the technical layer that allows querying these KGs using SPARQL. 

The SPHN  federated  infrastructure  comprises  the SPHN Federated Clinical Routine Dataset 

(SPHN FedData) [11], with data from approximately 800,000 patients and over 12 billion RDF triples. 

Each  individual hospital hosts datasets with up  to 2  to 3 billion  triples,  including approximately 

100,000 patients. Despite schema standardization, there is heterogeneity in data completeness, value 

codings, and population densities across hospitals. For instance, some hospitals use more SNOMED 

CT  than ATC  codes and vice versa. There are  cases  in which different  laboratory machines emit 

different  codes  for  the  same  type  of  observation.  Another  important  factor  towards  data 

heterogeneity is based on institutions having divergent scopes where codes relevant to children are 

more  present,  for  instance,  in  children’s  hospitals.  The  SPHN  RDF  Schema  with  the  external 

terminologies provides a composable and semantically consistent framework for representing data. 

It  is designed  to have  readability, correctness and flexibility  following structural patterns such as 

Event  ‐ Test  ‐ Result,  the explicit  separation of Quantity  in Value and Unit, or on more complex 

entities a hierarchical model is applied such as “DrugAdministrationEvent” ‐ “Drug” ‐ “Substance” 

‐  “ActiveIngredient”. Additionally,  the  framework  supports historized  terminology version  (e.g., 

ICD‐10‐GM, ATC, CHOP), allowing queries on older but  semantically  equal  codes. Within  these 

considerations, even though query performance is an important factor, it was not the primary goal 

of the schema as it is to maintain semantic interoperability across heterogeneous data. The integrated 

RDF  data  platform  uses  the  SPHN  RDF  Schema  unchanged  and  does  not  introduce  any  read‐

optimized  data  model  such  as  having  a  “HeightMeasurementQuantity”  and  a 

“WeightMeasurementQuantity”  instead of “Quantity” for both. The advantage  is  that  the schema 

updates  once without  requiring  to  adapt  query  patterns  and  user  interfaces  or  re‐alignment  in 

general. Querying caching  is  implemented only on  the  frontend side. Since most of  the SPARQL 

queries are highly specific and  infrequent,  the cache offers  low benefits. On a very detailed  level, 

Virtuoso offers per table partition which was not offered in other triple store alternatives. An RDFS 

inference model  is built  for  the global graph and no  triples are materialized making Virtuoso  the 

natural choice for our environment setting. 

Within  this  infrastructure,  each  patient’s data  is  stored  in  an  individual  named  graph,  and 

hospitals  provide  their  RDF  datasets  through  SPARQL  endpoints  backed  by  scalable  Virtuoso 

deployments. Virtuoso was selected for  its open‐source nature, Software Bill of Materials (SBOM) 

transparency, and proven scalability  in  large, production‐grade RDF  installations such as UniProt 

[12].  It  supports RDF quad  storage, a key  requirement  for  enabling fine‐grained management of 

patient‐level data,  including updates and deletions, and offers RDFS reasoning capabilities. In the 

context of SPHN, a lightweight RDFS inference layer is used to apply minimal but essential RDFS‐

level  reasoning  over  the  global  schema  and  terminology  hierarchies.  This  enables  basic  RDFS 

features, such as interpreting subclass and sub property relationships, allowing queries to traverse 

the  ontology  structure without  requiring  full RDFS  entailment. Materializing  all  inferred  triples 

would be infeasible as Virtuoso must execute rdfs:subClassOf reasoning efficiently at query time. 

The size and complexity of SPHN FedData, due to high‐cardinality relationships and individual 

patients having thousands of associated instances, such as >10,000 laboratory results or >50,000 drug 
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administrations, can quickly make SPARQL queries computationally expensive when they are built 

without a proper execution planning.  In  this paper, we describe  the challenges and optimization 

strategy  for  our  two  key use  cases:  feasibility  queries  and  value distribution.  Feasibility  queries 

compute the number of patients matching a combination of specified clinical, temporal, and logical 

criteria, whereas value distribution queries characterize cohort‐level attributes such as age, sex, or 

BMI.  Both  types  of  queries  rely  on  complex  joins  across  multiple  named  graphs,  hierarchical 

reasoning,  and  filtering  over  high‐cardinality  relationships,  which  contributes  substantially  to 

computational cost. 

To support these use cases, feasibility and value distribution queries follow structured templates 

and patterns that include: 

 Temporal relations between instances, particularly events 

 Boolean operators such as AND, OR, XOR, and NEG 

 Filters on codes from multiple terminologies, including inference and code versioning 

 Filters on values and value ranges 

 Filters on dates and date ranges 

 Age calculation from BirthDate, with filtering on age or age ranges 

 Entities such as “DrugAdministrationEvents” and “LabTestEvents” 

These patterns define the analytical workload characteristics and set the constraints for SPARQL 

optimization. 

This  paper  presents methods  for  optimizing  SPARQL  queries  in  this  federated  healthcare 

context, with a  focus on making  feasibility and distribution queries performant across billions of 

triples  in  SPHN  FedData  and  different  infrastructure  setups  across  hospitals.  We  explore 

optimization strategies that leverage query structure, join ordering, selective pattern evaluation, and 

targeted inference, all while respecting the constraints of the SPHN RDF Schema and the federated 

infrastructure. By grounding optimization in the real‐world use cases, query patterns, and dataset 

characteristics, we demonstrate how large‐scale, heterogeneous clinical RDF datasets can be queried 

efficiently without compromising semantic interoperability or data governance. 

2. Methods 

2.1. Requirements 

The optimization methods were chosen to address three performance dimensions that are rather 

uncommon in a homogenous setting: 

1. The slowest datasource needs to be as fast as possible. It is not sufficient if a query is very fast 

for 5 out of 6 datasources. In the federated approach, the overall query time is constrained by 

the slowest datasource, even if the remaining datasources perform well. 

2. The  runtime variability  should  be minimized  both  across  queries  and datasources.  It  is not 

sufficient that very specific queries run fast. Instead, we aim to have repeatable patterns that 

give predictable runtimes even when changing codes (e.g., queries targeting rare diseases should 

not be several orders of magnitude slower than equivalent ones on common diseases). 

3. Defined patterns should ensure computability on the platform without running    into 

complexity issues and timeouts where it is usually set to 600 s. To better understand what users, 

consider  acceptable  performance, we  conducted  a  survey with  50  potential  users,  offering 

runtime options ranging from “<1 minute” to “>24 hours.” Most respondents (66%) selected the 

option “1–10 minutes”. 

The methods can be categorized into three main categories: 

 Setup of the database environment; 

 Developing queries and assessing  their performance on both mock data and real data of one 

hospital; 

 Assessing the queries performance with all participating datasources and iterating. 
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2.2. Local Database Setup 

All participating university hospitals have the same core component to create the data, and the 

Virtuoso database is set up locally in a comparable manner. 

While the content of patient data is heterogeneous across hospitals, some elements are constant: 

 The SPHN RDF Schema and its terminologies. 

 The version and configuration of Virtuoso used but scaled to the number of patients. 

 The data modelling inside the database with the graph partitioning. 

 The generation of patient RDF data with the SPHN Connector guarantees conformance to the 

SPHN RDF Schema and a consistent instance of generation. 

The infrastructure used to run Virtuoso is comparable among the university hospitals, but the 

actual size is scaled on the number of patients. The available main memory for the database ranges 

between 56 GB to 116 GB and the number of available central processing unit (CPU) cores (logical 

core or thread) is between 7 and 14. While the scaling of the memory ensures that the indices can be 

held  in memory  and  enough  space  for  aggregate queries  is  reserved,  the CPU  scaling  is mainly 

intended to scale the loading speed and satisfy a higher amount of parallel and potentially longer 

sessions. 

In Virtuoso, every patient  is  loaded  into a separate named graph  (see Figure 1), partitioning 

individual patient data  into a dedicated graph.  In addition  to  the patient graphs,  the SPHN RDF 

Schema and  the referenced  terminologies are  loaded  into one separate graph. An RDFS  Inference 

model is built using the SPHN RDF Schema and the terminologies, to support querying of parent 

classes of codes when the data is annotated with specific subClassOf codes. For example, a query for 

icd‐10‐gm:E11  (i.e., Diabetes mellitus, Type 2) can retrieve all relevant data without specifying all 

descendant  codes  such  as  icd‐10‐gm:E11.2  (i.e.,  “Diabetes  mellitus,  Type  2  with  kidney 

complications”). Virtuoso does not materialize the inferred information in the database but expands 

it in the model during runtime. 

 

Figure 1. Simplified view of the named graph partitioning. The figure shows a simplified view of the named 

graph partitioning for two hypothetical patients, Patient 1 and Patient 2. Instance data defined in each patient 

named graph can link to the components of the SPHN RDF Schema or directly to terminology code instances 

defined there. Most terminologies are provided following a hierarchical code structure. 

2.3. Performance Testing and Profiling of SPARQL Queries 

Our optimization  strategies evolved  through  iterative  testing and performance profiling. We 

first  defined  reusable  query  patterns  and  built  SPARQL  queries  based  on  these  patterns.  These 

queries were  initially executed on mock datasets  to establish  the baseline performance and were 

subsequently tested on real data at University Hospital of Zurich (USZ), our main partner hospital. 

Only a few special queries showed suboptimal performance at other sites because of the difference 

in amount of data or data heterogeneity needed to be further analyzed in all hospitals. To further 
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ensure robustness in our optimization strategy, we developed performance scripts to systematically 

evaluate the behaviour and runtime of each query type across all sites. 

The performance profiling was carried out using the EXPLAIN and PROFILE functionality of 

the Virtuoso Database [13]. With this information we were able to assess which access patterns and 

what order  the database planned  to use and how effective  they were.  In  some  cases,  there were 

differences in the access patterns on mock data compared to real data distributions. Evaluation of the 

same query on mock data vs real data with query profiling enabled us to study and understand the 

differences and behaviours of the database on this dataset and use mock data to develop the queries 

further and without the need to rely on real data at all times and be able to extrapolate whether a 

query will work on other real data according to the SPHN RDF Schema as well. 

As shown  in the results (see 3.2.1) the start was using straightforward queries and analyzing 

their  query  behaviour. We  analyze  the  behavior  of  reordering  Basic Graph  Patterns  (BGP),  the 

expansion  of  SPARQL  1.1  property  paths  [14]  and  the  different  access  paths  used  through  the 

database. In addition, the PROFILE of a working query indicates the intermediary result of bindings. 

A first step chosen to ensure that the order of the BGP is done correctly and in the same manner 

as we intended to, is to use the ‘sql:select‐option “order”’ pragma ([15]). Using this pragma, the query 

is executed in the order of appearance, which enables us to overcome the need for deeply nested sub‐

queries or bad queries where the instantiation of SPHN classes was given precedence. A downside 

of using this pragma was that the support of the database for optimizing the query order was disabled 

and the query had to be written in the most optimal way already. 

In the process of optimizing the queries, it always has been cross checked whether the queries 

produce the right result. Sometimes corner cases have been missed which required another approach 

to the development of the queries and adaptation of the patterns. 

After  the  correctness  and  performance  of  the  queries  in USZ was  confirmed,  a  structured 

approach  to  running  these  queries was  developed  and  the  results were  captured  on  the  other 

datasources. 

3. Results 

3.1. SPARQL Optimization Strategies 

Based on hands-on experience and detailed technical profiling, applying optimization techniques 

significantly improved the performance of SPARQL queries in the SPHN FedData setting. The most 

significant ones are highlighted below and can be considered as general optimization guidelines. 

3.1.1. Leverage Named Graph Partitioning 

Each patient’s data  resides  in  its own named  subgraph. This  structure  improves  the QUAD 

pattern execution by allowing the query engine to restrict  its evaluation to a specific graph rather 

than  scanning  the  entire  data.  This  enables  efficient  per‐patient  evaluation  of  eligibility  criteria. 

Because the patient’s subject pseudo identifier is implicit in the named graph, explicit filtering of it is 

no longer required. 

3.1.2. Prioritize Coded Elements 

Coded elements (e.g., SNOMED, LOINC) are the most selective components in the data. Query 

execution should  therefore begin with  triple patterns  involving  these codes, forcing  the engine  to 

reduce the result space early. SPARQL query plans are manually tuned to enforce this order when 

automatic optimization fails. The goal of the query plan is to maximize the usage of full indices such 

as  predicate‐object‐graph‐subject  (POGS)  and  predicate‐subject‐object‐graph  (PSOG),  as  well  as 

partial indices with filter pushdown, to reduce the amount of data processed. Moreover, since the 

SPHN schema contains a lot of codes, there is no realistic use case for querying textual fields. 
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3.1.3. Avoid Expensive Constructs 

Knowing  the  approximate  cardinalities  in  the  data  helps  in  the  query  design  process  that 

operates from entities with smaller upper‐bound result sets. This reduces the search space right from 

the beginning and prevents constructs that would otherwise generate very large intermediate results. 

For example, if a hospital has around 200,000 patients but 10 million Drug Administration Events, 

starting  the query  from patients  instead of  the drug administration significantly  limits  the search 

space. 

Where possible: 

 Avoid OPTIONAL; instead, split queries and use UNION. 

 Avoid DISTINCT and GROUP BY on large, unfiltered sets. 

 Avoid multiple unrelated BGPs lacking a common patient identifier. 

 Replace SPARQL 1.1 property paths with explicit property chains. 

 Use the  identity filter  (comparison to all patients) only when explicitly required (e.g.,  for  the 

NOT filter). 

 Avoid SPARQL 1.1 paths, as they are often evaluated back to front, which is not the intended 

order. 

3.1.4. Precompute and Reuse 

Augmented entities (e.g., “DrugAdministrationEvent”, “LabTestEvent)” and computed values 

(e.g., hasCalculatedBirthDate)  are used  to  reduce  triple  traversal depth  and  improve  consistency 

across hospitals. Relying on such precomputed structures improves query execution while ensuring 

that the derived values retain their semantic meaning. 

3.1.5. Optimize Aggregate and Specialized Queries 

When queries require the use of MIN, MAX, AVG, or concept counts, the aggregation should be 

pushed as close as possible to the datasource to reduce generating intermediate results. 

3.2. Example of a Query Optimized Process 

To illustrate the query optimization process, we present a representative feasibility query that 

counts patients with a specific billed diagnosis (coded with ICD‐10‐GM E11 Type 2 diabetes mellitus) 

and an administrative sex  (coded with SNOMED CT 248152002  female). During  the optimization 

process, the iteratively built queries were tested locally using mock data, followed by execution on 

real data in the USZ environment. 

3.2.1. Starting Query 

The  starting query  expresses both  conditions over  the  full graph  and  relies on  the Virtuoso 

optimizer for doing  the  join operation. It also filters the patient over  the “rdf:type” filtering. As a 

result,  the query goes  into  timeout with  large  intermediate  result  sets. When  running  the query 

without  timeout  constraints,  even  after  3  hours  no  result  was  returned.  The  patterns 

“sphn:BilledDiagnosis” and “sphn:AdministrativeSex” are expanded before applying  the filtering 

conditions. 
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Figure 2. Starting feasibility query. The figure shows the starting SPARQL query used to count patients with 

specific diagnosis and administrative code (https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐

optimization/‐/blob/main/Example_queries/Starting.rq). 

3.2.2. Step A 

In the first optimized version, the execution is explicitly constrained to the patient named graphs 

instead of filtering the type “SubjectPseudoIdentifier”. This ensures that only relevant subgraphs are 

scanned, preventing global expansion across all patients and each condition is evaluated in its own 

subquery reducing the intermediate results. The “UNION” operator is used to combine the results 

and apply  the filter on  it  for  the presence of Diagnosis and AdministrativeSex. Additionally, we 

disallow BGP reordering by the Virtuoso optimizer using the sql:select‐option “order”. Query at step 

A  was  stopped  after  3  h.  (https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐

optimization/‐/blob/main/Example_queries/StepA.rq). 

3.2.3. Step B 

From step B we change the order in which patterns are evaluated within each subquery for the 

BilledDiagnosis.  The  pattern  that  identifies  the  coded  element  is  placed  first,  leading  to  the 

BilledDiagnosis. This optimization is to filter first on the most selective component. Query at step B 

runs  in  40.7  s  (https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐optimization/‐

/blob/main/Example_queries/StepB.rq). 

3.2.4. Step C 

In step C, the query introduces the same approach as in step B. We change the order in which 

patterns are evaluated for the AdministrativeSex as well. Starting to filter from the SNOMED CT code 

to the AdministrativeSex class. Query at step C runs in 29.9 s (https://git.dcc.sib.swiss/sphn‐semantic‐

framework/outreach/sparql‐optimization/‐/blob/main/Example_queries/StepC.rq). 

3.2.5. Step D 

The version of the query in this step shows how much difference makes applying the inference 

where it is needed. The optimization in this query is to use inference only on the pattern that requires 

it (e.g., part that is retrieving the ICD‐10‐GM coded billed diagnosis) rather than applying inference 

globally to the entire query. Query at step D runs in 0.94 s. Figure 3 shows the final optimized query 

(full  query  available  in  the  repository  (https://git.dcc.sib.swiss/sphn‐semantic‐

framework/outreach/sparql‐optimization/‐/blob/main/Example_queries/StepD.rq). 
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Figure 3. Final optimized query. The figure shows the simplified final optimized SPARQL query at step D. For 

the  full  query,  see  (https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐optimization/‐

/blob/main/Example_queries/StepD.rq). 

3.2.6. Execution Time 

The primary goal is to reduce the execution time after iterative query optimization, as shown in 

Table 1. The starting query and the first “optimization” (Step A) were both terminated after 3 h.. From 

Step B, the second optimization, the processing time decreased to ~40 s to finally reach less than 1 s 

on the fourth optimization (Step D). 

Table 1. Execution time across query optimizations. The table shows the decreasing execution time achieved 

through  successive  query  optimizations  over  real data  from USZ. Queries marked with  * were  terminated 

without returning a result. 

  Starting 

Query   

Step A    Step B    Step C    Step D   

Time  > 3 h*  > 3 h*  40.7 s  29.9 s  0.94 s 
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3.3. Validation of Query Patterns Across Multiple Hospitals 

The proposed SPARQL optimization strategies address key performance challenges in federated 

cohort queries. The performance was evaluated using a set of feasibility and distribution SPARQL 

queries, first executed at USZ, with end‐to‐end runtime measured in seconds, including the result of 

transmission. After  identifying a set of performant queries, we validated  them using a dedicated 

performance notebook executed at all hospitals (see Table 2. for feasibility queries and Table 3. for 

distribution queries). This benchmarking approach enabled us to assess overall performance across 

sites, highlight remaining gaps, and identify queries requiring further optimization. 

Table 2. Hospital-level performance for feasibility queries. The table reports the execution time (in seconds) 

for feasibility queries across six hospitals (USZ and H1‐H5). Queries with ++symbols include a gender and age 

distribution for the patient cohort, *indicates queries with zero results. All queries are accessible in the public 

repository (https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐optimization/). 

Feasibility query  USZ  H1    H2    H3  H4  H5 

All  0.77  0.52  0.58  0.55  0.74  0.57 

All++  4.80    3.09  4.10  9.94  4.28  13.11 

Diagnosis  0.60    0.49    0.46    0.45  0.55  0.63 

Diagnosis++  20.60  4.85  13.06  15.02  1.22  20.28 

Medication 

(ATC) 

0.33  0.37*  0.30  1.08  0.62  6.95 

Medication 

(SNOMED CT) 

2.33  16.41  0.29*  0.38*  0.57  0.38* 

OR  2.51  2.38  1.85  0.99  1.28  4.03 

EXCLUDING  2.51  2.44  1.66  0.94  1.23  2.42 

AND  2.62  2.32  1.67  0.91  1.18  2.43 

BEFORE  4.82  4.60  3.20  1.64  1.22*  13.45 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 December 2025 doi:10.20944/preprints202512.1909.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.1909.v1
http://creativecommons.org/licenses/by/4.0/


  10  of  12 

 

WITHOUT  1.58  1.07  1.06  0.83  0.96  1.25 

Lab value 

restriction 

7.05  123.59  5.62  5.71  3.11  17.80 

Lab value 

restriction++ 

6.45  121.14  4.92  2.60  22.11  7.12 

Table 3. Hospital-level performance for distribution queries. The table reports execution time (in seconds) for 

distribution  queries  across  six  hospitals  (H1‐H6).  All  queries  are  accessible  in  the  public  repository 

(https://git.dcc.sib.swiss/sphn‐semantic‐framework/outreach/sparql‐optimization/). 

Distribution 

query 

USZ  H1    H2    H3  H4  H5 

Lab result  62.30  73.94  44.75  5.19  1.81  106.72 

BMI  131.21  47.65  43.64  1.06    23.94  112.08 

Overall, most  feasibility  queries  executed within  seconds  at  all  hospitals.  The  only  notable 

exception was  the Lab value restriction query, which showed substantially slower execution at one 

hospital (discussed in the Discussion section). Importantly, even the more computationally intensive 

distribution queries executed well below our target of 10 minutes across all sites. 

4. Discussion 

The  optimization  strategies  demonstrate  how  query  performance  can  be  improved,  as 

demonstrated in the SPHN FedData setting. While some behaviours of the Virtuoso optimizer may 

limit  performance, we must  consider  other  aspects  such  as  the  scale,  heterogeneity  of  the  data 

population and the lack of specific statistics to guide preference in terms of BGP and knowledge of 

the “Schema”. Equally important is the SPHN RDF Schema, which is semantically correct and highly 

reusable,  but  not  specifically  designed  for  low‐latency  analytical  querying.  Introducing  more 

dedicated  classes  (e.g.,  make  a  “HeightMeasurementQuantity”  and  a 

“WeightMeasurementQuantity”) would help  the optimizer  to find  the  right element much  faster. 

Since  the  SPHN  RDF  Schema was  defined  to  be  implementation  agnostic  and  is  continuously 

evolving aiming to be general and stable, introducing read‐optimized schema is not suitable. Thus, 

the approach focuses on query side optimization to preserve semantic interoperability and schema 

stability while still having performant feasibility and distribution analysis queries. The optimization 

strategies can be further improved by introducing defined assumptions. For instance, the optimized 

query at step D can be further improved by reducing the evaluated search space to the minimum for 

the clinical conditions. Instead of traversing the full “BilledDiagnosis” or “AdministrativeSex”, the 

query now targets only the most selective code elements. Specifically, ICD‐10‐GM code E11 can only 

occur  in “Diagnosis” context, and the SNOMED code 248152002 can only be “AdministrativeSex” 

already  implying  the surrounding class  structure without  the need  to  traverse  the  full path. This 
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query version (not introduced in the results section as it remains experimental) runs in 0.48s, hence 

reducing the runtime to half of the result observed in step D. 

In some queries, such as the “Lab value restriction” and the “Lab value restriction++” (including 

Age and Sex distribution of the resulting patient cohort) there is still a large variety in the runtime of 

this query. This was analyzed in detail and tracked down to the different style of modelling the data. 

In  this  case,  the  Internationalized  Resource  Identifiers  (IRI)  on  the  “LabResult”  instances were 

reassigned to different patients. Which results in a sub‐optimal performance on these queries. We are 

investigating  different  strategies  to  further  optimize  our  queries  including  testing  further  query 

patterns, expanding the compute capacity of infrastructure or change the IRI generation pattern. 

5. Conclusion 

This work presents an approach for optimizing SPARQL queries over large, interconnected, and 

federated clinical RDF datasets, in the context of the Swiss Personalized Health Network. Using key 

structural  characteristics  such  as  patient‐level  named  graph  partitioning,  coded  clinical 

terminologies, and lightweight inference, we developed and validated a set of practical optimization 

strategies to improve query performance for feasibility and distribution analyses. Our results show 

that  careful query planning  can  avoid  building  costly  constructs  and  reduce  execution  times  by 

several  orders  of  magnitude.  The  strategies  were  validated  across  all  participating  hospitals, 

demonstrating that performance challenges in complex and semantically driven data infrastructures 

can be addressed at the query level, without required changes to the underlying data schema. While 

SPARQL is not a bottleneck, it is true that efficiency in a semantically rich environment depends on 

designing queries on what  is not known  to  the database. The SPHN RDF Schema  is  intentionally 

general  supporting  interoperability,  and  it  is not  read‐optimized. Likewise,  the  triple  store  lacks 

specific statistics such as code cardinalities that would normally guide the optimization. Because the 

system  cannot make  these  assumptions,  queries  can  still  be  optimized  following  the  presented 

strategies making queries a lot faster as shown in the example. 

6. Appendices 

Ethics approval and consent to participate: Ethics approval and Institutional Review Board (IRB) review were 

not required  for  this study because only query run  times and aggregated patient counts, and no  identifiable 

patient‐level information was shared outside the hospital. 
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