Pre prints.org

Article Not peer-reviewed version

Efficient Querying of Federated Large-
Scale Clinical RDF Knowledge Graphs in
the Swiss Personalized Health Network

Andrea Brites Marto "t , Philip Krauss t , Katie Kalt t , Vasundra Touré , Deepak Unni, Sabine Osterle

Posted Date: 22 December 2025
doi: 10.20944/preprints202512.1909.v1

Keywords: clinical routine data; real world data; knowledge graph; RDF; SPARQL; performance

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4981277
https://sciprofiles.com/profile/1836067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2025 d0i:10.20944/preprints202512.1909.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Efficient Querying of Federated Large-Scale Clinical
RDF Knowledge Graphs in the Swiss Personalized
Health Network

Andrea Brites Marto 1%, Philip Krauss 2*, Katie Kalt 3%, Vasundra Touré !, Deepak Unni !
and Sabine Osterle 1*

1 Swiss Personalized Health Network, SIB Swiss Institute of Bioinformatics, Basel, Switzerland

2 Accenture AG, Basel, Switzerland

3 University Hospital of Zurich, Zurich, Switzerland

* Correspondence: sabine.oesterle@sib.swiss

t These authors contributed equally.

Abstract

The Swiss Personalized Health Network developed a national federated framework for semantically
described medical data, in particular hospital clinical routine data. Instead of centralizing patient-
level information, hospitals perform semantic coding and standardization locally and store SPHN-
compliant data in a triple store. These decentralized RDF datasets, following the FAIR (Findable,
Accessible, Interoperable, Reusable) principles, together exceed 12 billion triples across more than
800,000 patients, all signed a broad consent. In this work, we address the computational challenge of
efficiently querying and integrating these distributed RDF resources through SPARQL. Our use cases
focus on feasibility queries and value distribution, which allow researchers to assess the potential
availability of patient cohorts across hospitals without disclosing sensitive patient-level information.
We present methods for optimizing SPARQL querying, tailored to the characteristics of large-scale
federated and complex clinical data. We evaluate these approaches by iteratively testing optimized
queries on the SPHN Federated Clinical Routine Dataset, which spans 125 SPHN concepts including
demographics, diagnoses, procedures, medications, laboratory results, vital signs, clinical scores,
allergies, microbiology, intensive care data, oncology, and biological samples. With this approach,
we’ve built a set of rules to consider for gradually optimizing SPARQL queries. Our results
demonstrate that optimized SPARQL query planning and execution can significantly
reduce response times without compromising semantic interoperability.

Keywords: clinical routine data; real world data; knowledge graph; RDF; SPARQL; performance

1. Introduction

The Swiss Personalized Health Network (SPHN) is a national initiative designed to enable FAIR
(Findable, Accessible, Interoperable, and Reusable) [1] use of health data for research across
Switzerland. Within a landscape of diverse technical solutions for clinical data platforms and data
standards, SPHN provides the foundation and tooling for data exploration and sharing with a
federated infrastructure connecting hospitals and research institutions. Its goal is to make routine
clinical data semantically interoperable and computationally accessible for secondary use.

To achieve interoperability, SPHN developed an overarching semantic framework [2] based on
Resource Description Framework (RDF) and clinical terminologies such as the Systematized
Nomenclature of Medicine - Clinical Terms (SNOMED CT) [3], Logical Observation Identifiers
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Names and Codes (LOINC) [4], Anatomical Therapeutic Chemical Classification System (ATC) [5],
German Modification of the International Statistical Classification of Diseases and Related Health
Problems, 10th revision (ICD-10-GM) [6] and Swiss Classification of Surgical Interventions (CHOP)
[7]. This framework, implemented through the SPHN RDF Schema, defines a shared vocabulary and
structure for representing key healthcare concepts such as diagnoses, laboratory tests, drug
administrations, and demographic information. Each participating institution uses the SPHN
Connector [8], a tool to convert local clinical data into standardized RDF according to the SPHN RDF
Schema. The resulting semantically enriched and standardized knowledge graphs (KGs) are locally
stored in each hospital using a scalable OpenLink Virtuoso RDF triple store [9] and the data can be
shared with researchers in a trusted research environment [10]. This design ensures that hospitals
retain full control over their data while adhering to a common semantic model. The platform provides
the technical layer that allows querying these KGs using SPARQL.

The SPHN federated infrastructure comprises the SPHN Federated Clinical Routine Dataset
(SPHN FedData) [11], with data from approximately 800,000 patients and over 12 billion RDF triples.
Each individual hospital hosts datasets with up to 2 to 3 billion triples, including approximately
100,000 patients. Despite schema standardization, there is heterogeneity in data completeness, value
codings, and population densities across hospitals. For instance, some hospitals use more SNOMED
CT than ATC codes and vice versa. There are cases in which different laboratory machines emit
different codes for the same type of observation. Another important factor towards data
heterogeneity is based on institutions having divergent scopes where codes relevant to children are
more present, for instance, in children’s hospitals. The SPHN RDF Schema with the external
terminologies provides a composable and semantically consistent framework for representing data.
It is designed to have readability, correctness and flexibility following structural patterns such as
Event - Test - Result, the explicit separation of Quantity in Value and Unit, or on more complex
entities a hierarchical model is applied such as “DrugAdministrationEvent” - “Drug” - “Substance”
- “Activelngredient”. Additionally, the framework supports historized terminology version (e.g.,
ICD-10-GM, ATC, CHOP), allowing queries on older but semantically equal codes. Within these
considerations, even though query performance is an important factor, it was not the primary goal
of the schema as it is to maintain semantic interoperability across heterogeneous data. The integrated
RDF data platform uses the SPHN RDF Schema unchanged and does not introduce any read-
optimized data model such as having a “HeightMeasurementQuantity” and a
“WeightMeasurementQuantity” instead of “Quantity” for both. The advantage is that the schema
updates once without requiring to adapt query patterns and user interfaces or re-alignment in
general. Querying caching is implemented only on the frontend side. Since most of the SPARQL
queries are highly specific and infrequent, the cache offers low benefits. On a very detailed level,
Virtuoso offers per table partition which was not offered in other triple store alternatives. An RDFS
inference model is built for the global graph and no triples are materialized making Virtuoso the
natural choice for our environment setting.

Within this infrastructure, each patient’s data is stored in an individual named graph, and
hospitals provide their RDF datasets through SPARQL endpoints backed by scalable Virtuoso
deployments. Virtuoso was selected for its open-source nature, Software Bill of Materials (SBOM)
transparency, and proven scalability in large, production-grade RDF installations such as UniProt
[12]. It supports RDF quad storage, a key requirement for enabling fine-grained management of
patient-level data, including updates and deletions, and offers RDFS reasoning capabilities. In the
context of SPHN, a lightweight RDFES inference layer is used to apply minimal but essential RDFS-
level reasoning over the global schema and terminology hierarchies. This enables basic RDFS
features, such as interpreting subclass and sub property relationships, allowing queries to traverse
the ontology structure without requiring full RDFS entailment. Materializing all inferred triples
would be infeasible as Virtuoso must execute rdfs:subClassOf reasoning efficiently at query time.

The size and complexity of SPHN FedData, due to high-cardinality relationships and individual
patients having thousands of associated instances, such as >10,000 laboratory results or >50,000 drug
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administrations, can quickly make SPARQL queries computationally expensive when they are built
without a proper execution planning. In this paper, we describe the challenges and optimization
strategy for our two key use cases: feasibility queries and value distribution. Feasibility queries
compute the number of patients matching a combination of specified clinical, temporal, and logical
criteria, whereas value distribution queries characterize cohort-level attributes such as age, sex, or
BMI. Both types of queries rely on complex joins across multiple named graphs, hierarchical
reasoning, and filtering over high-cardinality relationships, which contributes substantially to
computational cost.

To support these use cases, feasibility and value distribution queries follow structured templates
and patterns that include:

e  Temporal relations between instances, particularly events

¢ Boolean operators such as AND, OR, XOR, and NEG

e  Filters on codes from multiple terminologies, including inference and code versioning
e  Filters on values and value ranges

e  Filters on dates and date ranges

e Age calculation from BirthDate, with filtering on age or age ranges

e  Entities such as “DrugAdministrationEvents” and “LabTestEvents”

These patterns define the analytical workload characteristics and set the constraints for SPARQL
optimization.

This paper presents methods for optimizing SPARQL queries in this federated healthcare
context, with a focus on making feasibility and distribution queries performant across billions of
triples in SPHN FedData and different infrastructure setups across hospitals. We explore
optimization strategies that leverage query structure, join ordering, selective pattern evaluation, and
targeted inference, all while respecting the constraints of the SPHN RDF Schema and the federated
infrastructure. By grounding optimization in the real-world use cases, query patterns, and dataset
characteristics, we demonstrate how large-scale, heterogeneous clinical RDF datasets can be queried
efficiently without compromising semantic interoperability or data governance.

2. Methods

2.1. Requirements

The optimization methods were chosen to address three performance dimensions that are rather
uncommon in a homogenous setting:

1. The slowest datasource needs to be as fast as possible. It is not sufficient if a query is very fast
for 5 out of 6 datasources. In the federated approach, the overall query time is constrained by
the slowest datasource, even if the remaining datasources perform well.

2. The runtime variability should be minimized both across queries and datasources. It is not
sufficient that very specific queries run fast. Instead, we aim to have repeatable patterns that
give predictable runtimes even when changing codes (e.g., queries targeting rare diseases should
not be several orders of magnitude slower than equivalent ones on common diseases).

3. Defined patterns should ensure computability on the platform without running into
complexity issues and timeouts where it is usually set to 600 s. To better understand what users,
consider acceptable performance, we conducted a survey with 50 potential users, offering
runtime options ranging from “<1 minute” to “>24 hours.” Most respondents (66%) selected the
option “1-10 minutes”.

The methods can be categorized into three main categories:

e  Setup of the database environment;

e Developing queries and assessing their performance on both mock data and real data of one
hospital;

e  Assessing the queries performance with all participating datasources and iterating.
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2.2. Local Database Setup

All participating university hospitals have the same core component to create the data, and the
Virtuoso database is set up locally in a comparable manner.
While the content of patient data is heterogeneous across hospitals, some elements are constant:

e  The SPHN RDF Schema and its terminologies.

e  The version and configuration of Virtuoso used but scaled to the number of patients.

e  The data modelling inside the database with the graph partitioning.

e  The generation of patient RDF data with the SPHN Connector guarantees conformance to the
SPHN RDF Schema and a consistent instance of generation.

The infrastructure used to run Virtuoso is comparable among the university hospitals, but the
actual size is scaled on the number of patients. The available main memory for the database ranges
between 56 GB to 116 GB and the number of available central processing unit (CPU) cores (logical
core or thread) is between 7 and 14. While the scaling of the memory ensures that the indices can be
held in memory and enough space for aggregate queries is reserved, the CPU scaling is mainly
intended to scale the loading speed and satisfy a higher amount of parallel and potentially longer
sessions.

In Virtuoso, every patient is loaded into a separate named graph (see Figure 1), partitioning
individual patient data into a dedicated graph. In addition to the patient graphs, the SPHN RDF
Schema and the referenced terminologies are loaded into one separate graph. An RDFS Inference
model is built using the SPHN RDF Schema and the terminologies, to support querying of parent
classes of codes when the data is annotated with specific subClassOf codes. For example, a query for
icd-10-gm:E11 (i.e., Diabetes mellitus, Type 2) can retrieve all relevant data without specifying all
descendant codes such as icd-10-gm:E11.2 (i.e, “Diabetes mellitus, Type 2 with kidney
complications”). Virtuoso does not materialize the inferred information in the database but expands
it in the model during runtime.

Diagnosis

SNOMED-CODE

AdministrativeSex

Patient 1 SPHN Schema and Terminologies Patient 2

Figure 1. Simplified view of the named graph partitioning. The figure shows a simplified view of the named
graph partitioning for two hypothetical patients, Patient 1 and Patient 2. Instance data defined in each patient
named graph can link to the components of the SPHN RDF Schema or directly to terminology code instances

defined there. Most terminologies are provided following a hierarchical code structure.

2.3. Performance Testing and Profiling of SPARQL Queries

Our optimization strategies evolved through iterative testing and performance profiling. We
first defined reusable query patterns and built SPARQL queries based on these patterns. These
queries were initially executed on mock datasets to establish the baseline performance and were
subsequently tested on real data at University Hospital of Zurich (USZ), our main partner hospital.
Only a few special queries showed suboptimal performance at other sites because of the difference
in amount of data or data heterogeneity needed to be further analyzed in all hospitals. To further

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202512.1909.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2025 d0i:10.20944/preprints202512.1909.v1

5 of 12

ensure robustness in our optimization strategy, we developed performance scripts to systematically
evaluate the behaviour and runtime of each query type across all sites.

The performance profiling was carried out using the EXPLAIN and PROFILE functionality of
the Virtuoso Database [13]. With this information we were able to assess which access patterns and
what order the database planned to use and how effective they were. In some cases, there were
differences in the access patterns on mock data compared to real data distributions. Evaluation of the
same query on mock data vs real data with query profiling enabled us to study and understand the
differences and behaviours of the database on this dataset and use mock data to develop the queries
further and without the need to rely on real data at all times and be able to extrapolate whether a
query will work on other real data according to the SPHN RDF Schema as well.

As shown in the results (see 3.2.1) the start was using straightforward queries and analyzing
their query behaviour. We analyze the behavior of reordering Basic Graph Patterns (BGP), the
expansion of SPARQL 1.1 property paths [14] and the different access paths used through the
database. In addition, the PROFILE of a working query indicates the intermediary result of bindings.

A first step chosen to ensure that the order of the BGP is done correctly and in the same manner
as we intended to, is to use the ‘sql:select-option “order”” pragma ([15]). Using this pragma, the query
is executed in the order of appearance, which enables us to overcome the need for deeply nested sub-
queries or bad queries where the instantiation of SPHN classes was given precedence. A downside
of using this pragma was that the support of the database for optimizing the query order was disabled
and the query had to be written in the most optimal way already.

In the process of optimizing the queries, it always has been cross checked whether the queries
produce the right result. Sometimes corner cases have been missed which required another approach
to the development of the queries and adaptation of the patterns.

After the correctness and performance of the queries in USZ was confirmed, a structured
approach to running these queries was developed and the results were captured on the other
datasources.

3. Results
3.1. SPARQL Optimization Strategies

Based on hands-on experience and detailed technical profiling, applying optimization techniques
significantly improved the performance of SPARQL queries in the SPHN FedData setting. The most

significant ones are highlighted below and can be considered as general optimization guidelines.

3.1.1. Leverage Named Graph Partitioning

Each patient’s data resides in its own named subgraph. This structure improves the QUAD
pattern execution by allowing the query engine to restrict its evaluation to a specific graph rather
than scanning the entire data. This enables efficient per-patient evaluation of eligibility criteria.
Because the patient’s subject pseudo identifier is implicit in the named graph, explicit filtering of it is
no longer required.

3.1.2. Prioritize Coded Elements

Coded elements (e.g., SNOMED, LOINC) are the most selective components in the data. Query
execution should therefore begin with triple patterns involving these codes, forcing the engine to
reduce the result space early. SPARQL query plans are manually tuned to enforce this order when
automatic optimization fails. The goal of the query plan is to maximize the usage of full indices such
as predicate-object-graph-subject (POGS) and predicate-subject-object-graph (PSOG), as well as
partial indices with filter pushdown, to reduce the amount of data processed. Moreover, since the
SPHN schema contains a lot of codes, there is no realistic use case for querying textual fields.
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3.1.3. Avoid Expensive Constructs

Knowing the approximate cardinalities in the data helps in the query design process that
operates from entities with smaller upper-bound result sets. This reduces the search space right from
the beginning and prevents constructs that would otherwise generate very large intermediate results.
For example, if a hospital has around 200,000 patients but 10 million Drug Administration Events,
starting the query from patients instead of the drug administration significantly limits the search
space.

Where possible:

e  Avoid OPTIONAL; instead, split queries and use UNION.

e Avoid DISTINCT and GROUP BY on large, unfiltered sets.

e  Avoid multiple unrelated BGPs lacking a common patient identifier.

e  Replace SPARQL 1.1 property paths with explicit property chains.

e  Use the identity filter (comparison to all patients) only when explicitly required (e.g., for the
NOT filter).

e Avoid SPARQL 1.1 paths, as they are often evaluated back to front, which is not the intended
order.

3.1.4. Precompute and Reuse

Augmented entities (e.g., “DrugAdministrationEvent”, “LabTestEvent)” and computed values
(e.g., hasCalculatedBirthDate) are used to reduce triple traversal depth and improve consistency
across hospitals. Relying on such precomputed structures improves query execution while ensuring
that the derived values retain their semantic meaning.

3.1.5. Optimize Aggregate and Specialized Queries

When queries require the use of MIN, MAX, AVG, or concept counts, the aggregation should be
pushed as close as possible to the datasource to reduce generating intermediate results.

3.2. Example of a Query Optimized Process

To illustrate the query optimization process, we present a representative feasibility query that
counts patients with a specific billed diagnosis (coded with ICD-10-GM E11 Type 2 diabetes mellitus)
and an administrative sex (coded with SNOMED CT 248152002 female). During the optimization
process, the iteratively built queries were tested locally using mock data, followed by execution on
real data in the USZ environment.

3.2.1. Starting Query

The starting query expresses both conditions over the full graph and relies on the Virtuoso
optimizer for doing the join operation. It also filters the patient over the “rdf:type” filtering. As a
result, the query goes into timeout with large intermediate result sets. When running the query
without timeout constraints, even after 3 hours no result was returned. The patterns
“sphn:BilledDiagnosis” and “sphn:AdministrativeSex” are expanded before applying the filtering
conditions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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SELECT (COUNT (?pseudo_id) AS ?countResult)
WHERE {
?pseudo_id rdf:type sphn:SubjectPseudoIdentifier .

?diagnosis rdf:type sphn:BilledDiagnosis .

?diagnosis sphn:hasSubjectPseudoIdentifier ?pseudo_id.

?diagnosis sphn:hasCode ?diagnosis_code .

?diagnosis_code rdf:type <https://biomedit.ch/rdf/sphn-resource/icd-10-gm/
E11> .

?administrativeSex rdf:type sphn:AdministrativeSex.
?administrativeSex sphn:hasSubjectPseudoIdentifier ?pseudo_id.
?administrativeSex sphn:hasCode ?administrativeSex code.
?administrativeSex code rdf:type snomed:248152002 .

Figure 2. Starting feasibility query. The figure shows the starting SPARQL query used to count patients with
specific diagnosis and administrative code (https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-

optimization/-/blob/main/Example_queries/Starting.rq).

3.2.2.Step A

In the first optimized version, the execution is explicitly constrained to the patient named graphs
instead of filtering the type “SubjectPseudoldentifier”. This ensures that only relevant subgraphs are
scanned, preventing global expansion across all patients and each condition is evaluated in its own
subquery reducing the intermediate results. The “UNION” operator is used to combine the results
and apply the filter on it for the presence of Diagnosis and AdministrativeSex. Additionally, we
disallow BGP reordering by the Virtuoso optimizer using the sql:select-option “order”. Query at step
A was stopped after 3 h. (https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-
optimization/-/blob/main/Example_queries/StepA.rq).

3.2.3.Step B

From step B we change the order in which patterns are evaluated within each subquery for the
BilledDiagnosis. The pattern that identifies the coded element is placed first, leading to the
BilledDiagnosis. This optimization is to filter first on the most selective component. Query at step B
runs in 40.7 s (https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-optimization/-
/blob/main/Example_queries/StepB.rq).

3.2.4.Step C

In step C, the query introduces the same approach as in step B. We change the order in which
patterns are evaluated for the AdministrativeSex as well. Starting to filter from the SNOMED CT code
to the AdministrativeSex class. Query at step C runs in 29.9 s (https://git.dcc.sib.swiss/sphn-semantic-
framework/outreach/sparql-optimization/-/blob/main/Example_queries/StepC.rq).

3.2.5. Step D

The version of the query in this step shows how much difference makes applying the inference
where it is needed. The optimization in this query is to use inference only on the pattern that requires
it (e.g., part that is retrieving the ICD-10-GM coded billed diagnosis) rather than applying inference
globally to the entire query. Query at step D runs in 0.94 s. Figure 3 shows the final optimized query
(full  query  available in  the  repository  (https:/git.dcc.sib.swiss/sphn-semantic-
framework/outreach/sparql-optimization/-/blob/main/Example_queries/StepD.rq).
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SELECT (COUNT (?pseudo_id) AS ?countResult)
WHERE {
{
SELECT (MAX (?pseudo_id) as ?pseudo_id) (MAX (?diagnosis_filter) as ?
diagnosis_filter) (MAX (?administrativeSex filter) as 2administrativeSex filter)
WHERE {
{
SELECT ?pseudo_id ?diagnosis_filter
WHERE {
{
SELECT DISTINCT (2?g AS ?pseudo_id)
WHERE {
GRAPH ?g {
?diagnosis0_code rdf:type <.../icd-10-gm/E11>
OPTION (inference "https://biomedit.ch/rdf/sphn-resource/global") .
?diagnosis sphn:hasCode ?diagnosis0O_code .
?diagnosis rdf:type sphn:BilledDiagnosis .

}
}

BIND ("true"~“xsd:boolean AS ?diagnosis_filter)
}

}
UNION

{
SELECT ?pseudo_id ?administrativeSex filter
WHERE {
{
SELECT DISTINCT (?g AS ?pseudo_id)
WHERE {
GRAPH ?g {
?administrativeSex_code rdf:type snomed:248152002 .
?administrativeSex sphn:hasCode ?
administrativeSex_code.
?administrativeSex rdf:type sphn:AdministrativeSex.

}
}

BIND ("true"~“xsd:boolean AS ?administrativeSex filter)

}
GROUP BY ?pseudo_id

}
FILTER (?diagnosis_ filter && ?administrativeSex filter)

Figure 3. Final optimized query. The figure shows the simplified final optimized SPARQL query at step D. For
the full query, see (https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-optimization/-

/blob/main/Example_queries/StepD.rq).

3.2.6. Execution Time

The primary goal is to reduce the execution time after iterative query optimization, as shown in
Table 1. The starting query and the first “optimization” (Step A) were both terminated after 3 h.. From
Step B, the second optimization, the processing time decreased to ~40 s to finally reach less than 1 s
on the fourth optimization (Step D).

Table 1. Execution time across query optimizations. The table shows the decreasing execution time achieved
through successive query optimizations over real data from USZ. Queries marked with * were terminated

without returning a result.

Starting Step A Step B Step C Step D
Query
Time >3 h* >3 h* 40.7 s 299s 0.94s

). Distributed under a Creative Commons CC BY license.
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3.3. Validation of Query Patterns Across Multiple Hospitals

The proposed SPARQL optimization strategies address key performance challenges in federated
cohort queries. The performance was evaluated using a set of feasibility and distribution SPARQL
queries, first executed at USZ, with end-to-end runtime measured in seconds, including the result of
transmission. After identifying a set of performant queries, we validated them using a dedicated
performance notebook executed at all hospitals (see Table 2. for feasibility queries and Table 3. for
distribution queries). This benchmarking approach enabled us to assess overall performance across
sites, highlight remaining gaps, and identify queries requiring further optimization.

Table 2. Hospital-level performance for feasibility queries. The table reports the execution time (in seconds)
for feasibility queries across six hospitals (USZ and H1-H5). Queries with *symbols include a gender and age
distribution for the patient cohort, *indicates queries with zero results. All queries are accessible in the public

repository (https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-optimization/).

Feasibility query usz H1 H2 H3 H4 H5
All 0.77 0.52 0.58 0.55 0.74 0.57
All+ 4.80 3.09 4.10 9.94 4.28 13.11
Diagnosis 0.60 0.49 0.46 0.45 0.55 0.63
Diagnosis* 20.60 4.85 13.06 15.02 1.22 20.28
Medication 0.33 0.37* 0.30 1.08 0.62 6.95
(ATC)
Medication 2.33 16.41 0.29* 0.38* 0.57 0.38*
(SNOMED CT)
OR 2.51 2.38 1.85 0.99 1.28 4.03
EXCLUDING 2.51 2.44 1.66 0.94 1.23 2.42
AND 2.62 2.32 1.67 0.91 1.18 2.43
BEFORE 4.82 4.60 3.20 1.64 1.22% 13.45
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WITHOUT 1.58 1.07 1.06 0.83 0.96 1.25
Lab value 7.05 123.59 5.62 5.71 3.11 17.80
restriction
Lab value 6.45 121.14 492 2.60 22.11 7.12
restriction*

Table 3. Hospital-level performance for distribution queries. The table reports execution time (in seconds) for
distribution queries across six hospitals (H1-H6). All queries are accessible in the public repository

(https://git.dcc.sib.swiss/sphn-semantic-framework/outreach/sparql-optimization/).

Distribution usz H1 H2 H3 H4 H5
query
Lab result 62.30 73.94 44.75 5.19 1.81 106.72
BMI 131.21 47.65 43.64 1.06 23.94 112.08

Overall, most feasibility queries executed within seconds at all hospitals. The only notable
exception was the Lab value restriction query, which showed substantially slower execution at one
hospital (discussed in the Discussion section). Importantly, even the more computationally intensive
distribution queries executed well below our target of 10 minutes across all sites.

4. Discussion

The optimization strategies demonstrate how query performance can be improved, as
demonstrated in the SPHN FedData setting. While some behaviours of the Virtuoso optimizer may
limit performance, we must consider other aspects such as the scale, heterogeneity of the data
population and the lack of specific statistics to guide preference in terms of BGP and knowledge of
the “Schema”. Equally important is the SPHN RDF Schema, which is semantically correct and highly
reusable, but not specifically designed for low-latency analytical querying. Introducing more
dedicated classes (e.g. make a “HeightMeasurementQuantity” and a
“WeightMeasurementQuantity”) would help the optimizer to find the right element much faster.
Since the SPHN RDF Schema was defined to be implementation agnostic and is continuously
evolving aiming to be general and stable, introducing read-optimized schema is not suitable. Thus,
the approach focuses on query side optimization to preserve semantic interoperability and schema
stability while still having performant feasibility and distribution analysis queries. The optimization
strategies can be further improved by introducing defined assumptions. For instance, the optimized
query at step D can be further improved by reducing the evaluated search space to the minimum for
the clinical conditions. Instead of traversing the full “BilledDiagnosis” or “AdministrativeSex”, the
query now targets only the most selective code elements. Specifically, ICD-10-GM code E11 can only
occur in “Diagnosis” context, and the SNOMED code 248152002 can only be “AdministrativeSex”
already implying the surrounding class structure without the need to traverse the full path. This
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query version (not introduced in the results section as it remains experimental) runs in 0.48s, hence
reducing the runtime to half of the result observed in step D.

In some queries, such as the “Lab value restriction” and the “Lab value restriction*” (including
Age and Sex distribution of the resulting patient cohort) there is still a large variety in the runtime of
this query. This was analyzed in detail and tracked down to the different style of modelling the data.
In this case, the Internationalized Resource Identifiers (IRI) on the “LabResult” instances were
reassigned to different patients. Which results in a sub-optimal performance on these queries. We are
investigating different strategies to further optimize our queries including testing further query
patterns, expanding the compute capacity of infrastructure or change the IRI generation pattern.

5. Conclusion

This work presents an approach for optimizing SPARQL queries over large, interconnected, and
federated clinical RDF datasets, in the context of the Swiss Personalized Health Network. Using key
structural characteristics such as patient-level named graph partitioning, coded clinical
terminologies, and lightweight inference, we developed and validated a set of practical optimization
strategies to improve query performance for feasibility and distribution analyses. Our results show
that careful query planning can avoid building costly constructs and reduce execution times by
several orders of magnitude. The strategies were validated across all participating hospitals,
demonstrating that performance challenges in complex and semantically driven data infrastructures
can be addressed at the query level, without required changes to the underlying data schema. While
SPARQL is not a bottleneck, it is true that efficiency in a semantically rich environment depends on
designing queries on what is not known to the database. The SPHN RDF Schema is intentionally
general supporting interoperability, and it is not read-optimized. Likewise, the triple store lacks
specific statistics such as code cardinalities that would normally guide the optimization. Because the
system cannot make these assumptions, queries can still be optimized following the presented
strategies making queries a lot faster as shown in the example.

6. Appendices

Ethics approval and consent to participate: Ethics approval and Institutional Review Board (IRB) review were
not required for this study because only query run times and aggregated patient counts, and no identifiable

patient-level information was shared outside the hospital.
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