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Abstract 

One of the key challenges to  predict odor from molecular structure is unarguably our limited 
understanding of the odor space and the complexity of the underlying structure-odor 
relationships. Here, we show that the predictive performance of machine learning models for 
structure-based odor predictions can be improved using both, an expert and a data-driven 
odor taxonomy. The expert taxonomy is based on semantic and perceptual similarities, while 
the data-driven taxonomy is based on clustering co-occurrence patterns of odor descriptors 
directly from the prepared dataset. Both taxonomies improve the predictions of different 
machine learning models and outperform random groupings of descriptors that do not reflect 
existing relations between odor descriptors. We assess the quality of both taxonomies through 
their predictive performance across different odor classes and perform an in-depth error 
analysis highlighting the complexity of odor-structure relationships and identifying potential 
inconsistencies within the taxonomies by showcasing pear odorants used in perfumery. The 
data-driven taxonomy allows us to critically evaluate our expert taxonomy and better 
understand the molecular odor space. Both taxonomies as well as a full dataset are made 
available to the community, providing a stepping stone for a future community-driven 
exploration of the molecular basis of smell. In addition, we provide a detailed multi-layer expert 
taxonomy including a total of 777 different descriptors from the Pyrfume repository.   
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1 Introduction 
Despite numerous rules of thumb proposed by fragrance chemists over the years, predicting 
the smell of molecules directly from molecular structure remains a challenging task1. One of 
the main goals in fragrance chemistry is to relate the physical and structural properties of 
odorants to their perceptual odor properties in order to rationally design new compounds of a 
desired smell. The complexity of predicting smell directly from structure arises from the fact 
that molecules with similar structures can possess very distinct odors, while structurally 
unrelated molecules with different structures may produce close to identical odors2 . Figure 1 
shows selected examples of odorant molecules (odorants) and their reported odor descriptors. 
In the different cases, it can be seen that the addition of a simple methyl group (depicted in 
blue) has different effects on the smell of the original odorant, ranging from no effect to a 
complete loss of the biological activity.  

 

Figure 1. Impact of a small structural modification (addition of a single methyl group, symbolized by 
blue line). The effect ranges from no change to a complete loss of odor. Figure adapted from ref.2. 

In addition to this and the complex underlying biology, describing a smell and quantifying it 
directly depends on semantic language and individual perception of trained experts. This is a 
different situation from other senses such as vision and hearing that do not necessitate 
subjective input. Nonetheless, the overall complexity of the sense of smell provides a unique 
opportunity to explore the usefulness of machine learning techniques, for instance to identify 
relevant structural patterns directly from available molecular data without the necessity to 
elucidate the complex biology. While several machine learning approaches have been 
reported for this purpose over the past decade3–5, the most recent breakthrough was achieved 
using a graph neural network (GNN) to generate an embedding for molecular representation 
which is plotted as Principal Odor Map (POM)6. Using this GNN-derived embedding space 
allowed for accurate structure-based odor predictions of novel odorants that outperformed 
median human panelists. Despite this success, it is still difficult to discern which facets of the 
molecular structure contribute to the odor classification task due to the limited interpretability 
of deep learning technologies. Still, the POM provides additional insight into the underlying 
perceptual odor similarity between odor descriptors and suggests an intrinsic conceptual 
hierarchy between the descriptors that may be explored to build a taxonomy. Therefore, we 
hypothesize that structuring odor descriptors into a taxonomy that captures hierarchical and 

https://www.zotero.org/google-docs/?gfsMwT
https://www.zotero.org/google-docs/?hkdZqg
https://www.zotero.org/google-docs/?y6EVAr
https://www.zotero.org/google-docs/?aH05O7
https://www.zotero.org/google-docs/?XOokst
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correlated relationships can enable machine learning models to learn more robust and 
generalizable patterns from molecular-odor data. This concept is visualized in Figure 2, where 
our proposed odor taxonomy is applied in the classification of two popular molecular examples 
from perfumery and the flavor industry: geraniol and grapefruit mercaptan.  

 

Figure 2. Example of applying the expert taxonomy on geraniol and grapefruit mercaptan. By 
introducing the taxonomy, the output space is reduced from six to three and seven to four descriptors 
for geraniol and grapefruit mercaptan, respectively. The taxonomy is imposed upon the dataset by 
replacing the odor descriptor annotations of each molecule with their respective higher level umbrella 
terms (descriptors falling under a higher level umbrella term are color coded with matching colors). 
Note that in the case of grapefruit mercaptan the smell impression gradually shifts from fruity 
to sulfur within increasing concentration. This dosage-dependent effect is not taken into 
account for the ML classifiers trained in this work. 

 

Although simple taxonomies based on clustering odor descriptors on co-occurrence from 
structure-odor data via web scraping have been reported before,7 there is no available open 
source taxonomy for molecular descriptors that can be used to improve structure–odor 
prediction by organizing odor descriptors into semantically or perceptually meaningful groups. 
To address this gap, we use a selection of several datasets available on the Pyrfume 
repository8 that comprises more than 40 stimulus-linked olfactory datasets across different 
species. In total, Pyrfume provides a selection of over 20,000 odorants and over 770 distinct 
odor descriptors. However, the repository also contains data that was obtained through web 
scraping and needs to be carefully checked before usage. For this work, we selected all the 
useful datasets from the Pyrfume collection and aggregated a molecular dataset that can be 
used to explore structure-based odor prediction using machine learning models. Thus, we 
investigate whether the hierarchical ordering of odor descriptors helps convey essential 
information that allows us to deepen our understanding of structure-odor relationships. Our 
work provides three main deliverables, namely (i) a compiled molecular dataset for structure-
based odor prediction tasks, (ii) an expert and a data driven taxonomy for odor descriptors; 
and (iii) insight into model prediction and interpretability by way of linking molecular structural 
patterns to odor profiles. All the data, taxonomies, and models are openly accessible on the 
GitHub repository (see section 6). We provide an improved predictive performance of 

https://www.zotero.org/google-docs/?6J7xnc
https://www.zotero.org/google-docs/?8qs7QM
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interpretable machine learning models for structure-based odor predictions based on an 
expert and a data-driven odor taxonomy. Both taxonomies improve the predictions of Logistic 
Regression, random forest, and XGBoost9 models, and outperform random groupings of odor 
descriptors that do not reflect existing relations between odor descriptors. We evaluated the 
quality of both taxonomies based on their predictive performance across diverse odor classes 
and conducted a detailed error analysis that reveals the underlying complexity of odor–
structure relationships. Finally, we discussed current limitations, challenges, and future 
opportunities and directions of structure-based odor predictions using machine learning. 
Although there are more aspects of the olfaction sense where data has been gathered to 
leverage machine learning techniques, for instance in the physiology of odor recognition or 
genetic patterns in olfactory phenotypes, our work focuses on the task of structure-based odor 
prediction. For other purposes, the interested reader may consult several reviews that have 
treated these topics10,11.  

   

 

 

 

 

 

 

  

https://www.zotero.org/google-docs/?SHF6RM
https://www.zotero.org/google-docs/?NVLMr1
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2 Methods 

In order to circumvent the complex biology and leverage conceptual hierarchies between odor 
descriptors to improve the performance of interpretable machine learning models, we build 
two different taxonomies: an expert-derived taxonomy and a data-driven taxonomy based on 
the co-occurence of odor descriptors within the molecular dataset. In our approach, we built a 
curated structure-odor dataset, containing expert-annotated odor descriptors. The odor 
descriptors from the merged datasets are used as a basis to build the taxonomies that are 
subsequently used to benchmark the predictive performance of interpretable machine models. 
A birds eye view of the approach is depicted in Figure 3. 

 

Figure 3. Schematic overview of the implementation used in this work. Expert and data driven 
taxonomies are leveraged to improve machine learning based odor prediction from openly accessible 
molecular datasets. We use randomized grouping of the 146 unique descriptors to benchmark the 
usefulness of the two taxonomies. Subsequently, the predictive performance of both taxonomies across 
different odor classes serves as a quality metric that allows for an in-depth error analysis which 
highlights the inherent complexity of odor-structure relationships.        

 

2.1 Dataset preparation 

The molecular datasets used in this study were assembled using the open access repository 
Pyrfume. Pyrfume is an open-source project aimed at analyzing odorants and their features, 
providing both tools and access to diverse datasets. These datasets include molecular 
structures, perceptual data, and physicochemical properties, making it a valuable resource for 
researchers in the field. 

From around fifty datasets in the repository, 14 datasets contained data about odor descriptors 
and compounds : Arctander12, aromaDB13, Dravnieks, FooDB14, FlavorDB15, Flavornet16, 
Goodscents17, IFRA18, Keller (201219 and 201620), National Geographic’s Smell Survey21, 

https://www.zotero.org/google-docs/?sGnYP6
https://www.zotero.org/google-docs/?sOBonD
https://www.zotero.org/google-docs/?AqWSEt
https://www.zotero.org/google-docs/?u7IBVr
https://www.zotero.org/google-docs/?JxTXNq
https://www.zotero.org/google-docs/?5eDHNK
https://www.zotero.org/google-docs/?6VeImI
https://www.zotero.org/google-docs/?LWCuZi
https://www.zotero.org/google-docs/?VLS7m9
https://www.zotero.org/google-docs/?YrvhbM
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Sharma (2021a22 and 2021b23), Sigma Fragrance and Flavor Catalog (2014)24, Snitz25 and 
Leffingwell26.  

Among these, 7 datasets were selected to be used for the classification task: Arctander, 
aromaDB, FlavorDB, Flavornet, Goodscents, IFRA, and Leffingwell. The selection was based 
on: 1) datasets that concern human subjects (excluding animal based datasets), 2) datasets 
that contain descriptors for single odorants (molecules, not mixtures). Furthermore, these are 
the most relevant datasets with respect to the reliability of the reported odorants, their odor 
descriptors, and listed physicochemical properties. The datasets were merged and processed 
to create a comprehensive dataset with 6711 molecules and 146 distinct odor descriptors. In 
the remainder of this paper, we will refer to this aggregation as Merged molecular dataset 
(MMD). Table 1 provides a summary of the merged datasets, the publication year, the number 
of chemical compounds, and the number of odor descriptors.  

Table 1. Summary of the datasets retrieved from the Pyrfume repository to (i) build the molecular 
dataset (comprising a total of 6711 different molecules with 146 unique odor descriptors) used to train 
different ML classifiers, and (ii) merge a maximum number of odor descriptors for the open access 
expert taxonomy, which now comprises a total of 557 unique odor descriptors and 60 hedonic odor 
qualities (see section 2.2.1 for additional details).    

dataset Publication year # Compounds # Odor Descriptors 

Arctander12 1960 2580 762 

AromaDB13 2018 869 127 

FlavorDB15 2018 525 255 

Flavornet16 2004 716 195 

Goodscents17 2004 4622 667 

IFRA18 2019 1146 191 

Leffingwell26 2001 3487 113 

MMD1,2) This work 6711 146 

Expert Taxonomy (ET) This work n.a. 617 
1) The number of compounds is not an exact addition over all datasets due to the overlap of samples that needed 
to be removed to avoid duplicates. Henceforward, this aggregation is referred to as Merged molecular dataset 
(MMD) 
2) Note that the data-driven taxonomy (DT) is based on the 146 odor descriptors of the MMD  
 

Selected results from the initial data exploration, e.g., distribution of molecular weights, 
number of descriptors per molecular sample, and general statistics of the dataset are provided 
in Figures S4-S11. The majority of the compounds possess 1 to 5 labels, while 32 compounds 
exhibit 13 odor labels or more descriptors, with a maximum of 17 descriptors. It should be 
noted that for each molecule the strength of the individual odor descriptors is not provided and 
the descriptors are considered to be equally strong. In addition, the data is imbalanced towards 
“nice” smells that are linked to the food and perfume industry. There are more instances within 

https://www.zotero.org/google-docs/?ml9J7N
https://www.zotero.org/google-docs/?0mumu5
https://www.zotero.org/google-docs/?nQ72lw
https://www.zotero.org/google-docs/?XNZMK4
https://www.zotero.org/google-docs/?agi5Fk
https://www.zotero.org/google-docs/?5Le7Qu
https://www.zotero.org/google-docs/?uqfiR8
https://www.zotero.org/google-docs/?x3Xlrq
https://www.zotero.org/google-docs/?WYD47Y
https://www.zotero.org/google-docs/?cNIyvN
https://www.zotero.org/google-docs/?1oA8Gp
https://www.zotero.org/google-docs/?DCd8zg
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the fruity class and floral class of the training dataset, 1982 and 1410 respectively, then in the 
camphor class with only 215 molecular samples. 

To train and validate the machine learning models (see section 2.3 for details), the dataset 
was split into a training and test dataset using a second-order iterative stratification to take the 
higher-order relationships between labels into account when doing a data split and make sure 
that the distribution of label pairs between splits stays consistent. The class distribution of the 
datasets is consistent across splits and is the case as well after imposing both taxonomies as 
can be seen in Figures S9-S10. 

 

2.2 Taxonomy derivation 

To leverage the hierarchical connections within the odor descriptors for the machine learning 
classification, we rely on two different approaches: benefiting from expert domain knowledge 
by manually going through all 617 odor descriptors across the 14 previously-mentioned 
datasets in Pyrfume and grouping them into classes that reflect existing relations between 
them, as well as generating a data-driven correlation-based clustering directly from the MMD. 
The detailed process to compile both taxonomies is described below. 

   

2.2.1 Expert-derived multi-domain taxonomy of odor descriptors (ET) 

In order to have a complete list of all descriptors, we aggregated descriptors coming from all 
14 datasets if they had an identical label or if the Levenshtein distance between labels was 
<1. This enabled us to consider as a single concept small differences in spelling like ‘fish’ and 
‘fishy’ or ‘wine-like’ and ‘winelike’. The aggregations have been manually validated by experts 
to avoid any possible mismatch. This aggregation leads to 617 distinct descriptors. Most of 
these descriptors are present in only one source dataset. 

Our team  possesses expertise in chemistry, perfumery and historical smell culture, which 
allows us to propose a taxonomy to group the gathered 617 odor descriptors in different 
classes based on our domain knowledge. We decided to indicate descriptor groups: (i) source-
based descriptors: descriptors relating the smell to a single odor (lemonlike, yeasty, 
wormwood) or overarching class of scents (fruity, woody, green) [557 concepts] and (ii)  
olfactory qualities: general adjectives expressing hedonic, trigeminal or emotional responses, 
or intensifiers (nice, fresh, fragrant, putrid, dry, light, heavy) [60 concepts]. 

The Source-based descriptors were divided in 16 different classes ’scent families’ and 31 
subclasses, e.g., the “Alcohol” class contains the sub-classes “Acid” and “Alcohol”, which each 
contains their own odor descriptors. The list of classes and sub-classes are provided in the 
supporting information, the hierarchical expert taxonomy is provided on the ODEUROPA 
website.   

Henceforward, the taxonomy will be referred to as Expert derived Taxonomy (ET). For this 
paper we only consider the 557 source-based descriptors, since the quality descriptors are 
harder to relate to specific odorant molecules. General statistics of the dataset after imposing 
the expert dataset are provided as supporting information. 

https://vocab.odeuropa.eu/expert-taxonomy/en/
https://vocab.odeuropa.eu/expert-taxonomy/en/
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2.2.2 Data driven taxonomy (DT) 

Next to the expert taxonomy, it is useful to generate a data-driven taxonomy directly from co-
occurence of descriptors within the MMD. This allows to avoid (or identify) bias from experts 
and can help to later finetune the expert taxonomy. 

The odor descriptors of the MMD co-occur frequently with perceptually similar odor 
descriptors. A correlation matrix based on this co-occurrence was used to group the odor 
descriptors into 16 clusters using Agglomerative hierarchical clustering, a clustering method 
that iteratively merges individual descriptors to form groups with minimal internal distances, 
Euclidean in our case, as well as using Ward linkage to minimize inter-cluster variance (see 
ESI for parameters used). The number of clusters was set to 16 to allow the comparison with 
the ET, where 16 classes are used to group conceptually related odor descriptors. It should 
be noted, that while the data-driven taxonomy has been intentionally limited to 16 classes, the 
elbow method suggests an ideal number of 43 groupings based on co-occurence, which may 
be used to generate a co-occurrence based hierarchical multi-domain taxonomy in future 
work. Figure 4 depicts a zoom into 19 odor descriptors of the correlation matrix, based on the 
co-occurrence of the odor descriptors within the training split of MMD. The figure shows two 
main clusters that can intuitively be attributed to an “alcohol” and a “fruity” odor cluster. Note 
that the odor descriptors “wine” and “fruity”, as well as “apricot” and “peach” have a high 
frequency of co-occurence, which would also be an intuitive association to most people. The 
full correlation matrix containing all 146 descriptors is provided as supporting information 
(Figure S4). Henceforward this taxonomy will be referred to as Data driven Taxonomy (DT). 
The complete list of all clusters is provided in the supplementary materials. In the discussion, 
the 16 classes from both taxonomies are compared against one another to elucidate the 
choices made by the experts compared to the clusters revealed directly from the co-
occurrence matrix of odor descriptors. 

 

2.3 Machine learning model, feature selection and hyper-parameter tuning 

To evaluate whether the grouping of higher order odor descriptors helps the machine learning 
task, we compare the performance of machine learning models applied on the MMD using 
both taxonomies (ET and DT). Three interpretable machine learning models were selected to 
benchmark the usefulness of taxonomies for structure-based odor predictions: Logistic 
regression, Random Forest, and XGBoost9. The hyperparameter tuning of the model was 
done using Bayesian optimization through skopt27. The final features and hyperparameters 
used are provided in the supporting information (Table S1-S3). Modred, a free open-source 
molecular descriptor calculator28, was used to generate molecular features from the simplified 
molecular input line entry system (SMILES) of all the molecules in our datasets. The resulting 
descriptors consist of a total of 713 molecular features, after removing columns with missing 
values, ranging from atom types, number of specific atom types, acid/base counts, as well as 
older obscure chemoinformatic descriptors like Burden matrices and Chi-descriptors. The 
derived molecular descriptors can consist of features using topological representations (2D) 
and geometrical representations (3D). The generated features then underwent an exhaustive 
feature selection procedure. 0 variance features were removed and then ANOVA F values 
were used to filter the features and the best feature for each of the 146 classes was selected. 

https://www.zotero.org/google-docs/?UIVOg1
https://www.zotero.org/google-docs/?Mnp3aH
https://www.zotero.org/google-docs/?cH6B5v
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This was then narrowed down further through recursive feature elimination, using a random 
forest with Permutation Feature Importance, the features are narrowed down to 23.  

  

 

Figure 4. Selection of  the correlation matrix based on the co-occurrence of 19 odor descriptors of the 
MDD. The full correlation matrix is provided as supporting information (Figure S4). The indices are 
sorted based on the clustering made using hierarchical agglomerative clustering with ‘ward’ linkage and 
using Euclidean distances. A cluster of labels that often co-occur appears as a dark area on the 
heatmap. The data-driven taxonomy leverages these co-occurrence patterns to generate the classes 
and group the descriptors based on the occurrence throughout the data (see methods section for 
additional details).    
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2.4 Randomized grouping of odor descriptors 

In order to validate our approach and benchmark the predictive performance of the proposed 
taxonomies, we generated 1000 randomized groupings of all odor descriptors to provide 
taxonomies that group odors randomly, independently from any conceptual similarities. This 
validation step is crucial to guarantee that performance increase is not due to reducing the 
complexity of the classification task, but also because the model catches upon existing links 
that can help to interpret structure-odor correlation. Therefore, the odor descriptors are 
randomized throughout the 16 classes of the ET and DT. Hereby, the randomization maintains 
the template of the original taxonomical structure, i.e., the number of odor descriptors in a 
given class (see Table S8-S9). 

For each randomized grouping, the performance of the machine learning models are stored 
and their scores are assessed through the macro AUROC, F1, Precision and Recall. Due to 
computational constraints, the features and hyperparameters derived from the original 
descriptor dataset, in the previous section, are used here. 

Permuting all 146 descriptors within their respective umbrella terms yields 146 factorial (146!) 
possible combinations. While this is not computationally feasible, an approximation of the 
score distribution, from the reduction of the output space for all metrics, can be obtained using 
the central limit theorem. The central limit theorem states that with the increase in sample size, 
the sampling distribution converges toward the population distribution29. The randomization 
sampling has been limited to 1000 trials for both taxonomies. To ascertain if the distribution of 
all metrics have converged, we plot the running mean and standard distribution for all metrics. 
This is checked for the score metrics for both taxonomies as well as their summations since 
there might be differences due to variations in taxonomical structure. We use this combined 
distribution for all metrics as representative of the increase in performance for all metrics due 
to the reduction of the output space. We then validate both taxonomies by comparing the 
metric scores against this distribution: if the taxonomies outperform the distribution, it would 
imply that there is more to the performance gain than just the reduction of the output space.  

2.5 Interpretability  

To investigate the most relevant features that the machine learning model uses for its 
predictions we investigated the feature importance of the different models. Firstly, the 
permutation feature importance (PFI) was used to assess the impact of each feature on the 
model performance. Here, permutations are added randomly to the features of the test data 
to rank features by measuring the decrease of a given score metric. A key limitation of PFI is 
the lack of class-specific insight it can provide as it focuses mainly on the overall macro scores. 
To circumvent this, we subsequently carried out a SHapley Additive exPlanation (SHAP) value 
analysis30. This method makes use of cooperative game-theory to assign a value to each 
feature representing its contribution to the classification decision of the model. The SHAP 
values are plotted in summary plots for each class to understand the feature contributions for 
each class for both taxonomies to interpret the model output and the decision making that 
went behind it.  

 
 

https://www.zotero.org/google-docs/?HnuJZl
https://www.zotero.org/google-docs/?FlmTUj
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3 Results and Discussion 

3.1 Taxonomy validation through randomized grouping of odor descriptors 

To evaluate the predictions using the two structured taxonomies, we first established a 
baseline model using the full unstructured set of odor descriptors. This initial step allows us to 
assess the inherent difficulty of predicting individual odors directly from molecular features, 
and to quantify the benefit of using structured hierarchical taxonomies. The baseline model 
performance of the XGBoost classifier trained to perform multi-class classification over 146 
classes (using the MMD) achieved an overall score of 0.6 AUC, which is above random and 
suggests that the model is able to capture some meaningful signal in the data. However, this 
performance remains modest indicating that this is not a trivial classification task. There are 
several potential limitations that can lead to this such as difficult feature representation, the 
limited data quality, and potentially difficult class separability based on underlying structural 
patterns in the data. Despite extensive hyperparameter tuning, none of the models yielded 
performances as reported in previous work5. We thus use this model as a baseline and 
compare it to the performance for the different models when the derived taxonomies are 
imposed and classification task is simplified to 16 classes. 

The comparative evaluation of the different performances using an XGBoost classifier are 
provided in Table 3 and Figure 4. The results show that models trained on the dataset with 
imposed taxonomies outperform models trained on the original descriptors across all metrics 
for all the classifiers. Both taxonomies perform better than the distribution of the performance 
metrics of the randomized groupings of odor descriptors. It should be noted that the 
performance metrics of the randomized taxonomies is higher than 0.5 which would mean that 
the models are still picking up on a signal or structure in the data despite the loss of meaningful 
class groupings from the taxonomies. This is because the randomized taxonomies, for the 
most part, are not entirely meaningless due to the intercorrelation of many odor descriptors. 
This demonstrates the inherent complex hierarchical relationships of the odor descriptor space 
and the limitations of a two-layer taxonomy to capture conceptual links between different 
descriptors. 

Despite the high number of possible combinations for the randomized groupings (146! 
(factorial) in total), it is almost unavoidable to create classes where none of the descriptors 
are correlated. The scores for the randomized groupings can serve as a baseline reflecting 
the ability of the model to extract signal from noise and serve as a proxy for the precision of 
ET and DT. Hereby, a higher score indicates a better conceptual clustering and arrangement 
of the odor descriptors. Both taxonomies outperform the random groupings, with the DT 
showing a marginal advantage over the expert taxonomy. 

It should be noted that the reported performances represent the average over all 16 classes. 
For the following sections, we focus on the performance results obtained using the XGBoost 
classifier, which outperformed the logistic regression and the random forest classifiers. The 
performances of the two latter models, as well as the class-wise scores of the XGBoost model 
for both taxonomies are provided in the ESI (Tables S4-S7).  

  

https://www.zotero.org/google-docs/?tbfd2A
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Table 2. Performance metrics of the XGBoost classifier as obtained using the full 146 descriptors, the 
taxonomies, and the randomized grouping. The results are visualized in Figure 4. The corresponding 
performance metrics for the random forest and logistic regression models are provided as supporting 
information.  

Dataset AUROC F1 Precision Recall 

MMD 0.604 0.268 0.393 0.219 

ET1) 0.684 0.496 0.553 0.455 

DT1) 0.698 0.513 0.567 0.474 

Random grouping2) 0.648(07) 0.455(15) 0.511(15) 0.418(15) 
1) The classwise performance metrics are provided in the ESI (TableS6 and TableS7). 
2) The standard deviation for the 1000 randomized grouping is given in parentheses with respect to the 
last 2 digits (see ESI for additional details). 

 

 

 

Figure 5. Box plot comparing the performance metrics of the XGBoost classifier using the randomized 
grouping and the two benchmarked taxonomies (ET and DT) as well as the scores obtained from the 
original descriptors. The numerical values of each metric are provided in Table 2. 
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3.2 Conceptual comparison of derived taxonomies   

To provide insight into how well each taxonomy reflects meaningful relationships between 
odor descriptors and how these align with known concepts in perfumery and sensory science, 
it is essential to go beyond the quantitative metrics-based comparison and include semantic 
coherence, domain knowledge, and structural elements of the taxonomies. Therefore, we 
compare the 16 data-driven groups (Classes A to P) to the 16 expert-derived classes to 
identify conceptual similarities between them. The complete list of odor descriptors and the 
different odors grouped together to build the taxonomies are provided in the supporting 
information (see Tables S8 and S9). While this comparison highlights where the two 
taxonomies overlap and differ from one another, it also raises the question how easily each 
grouping of odor descriptors may be interpreted by a human reader or by a large-language 
model (LLM). To address this, we used the latest version of ChatGPT (GPT-4o) to define class 
names for the 16 classes within the DT (The prompt used to generate the classes is provided 
in the ESI). The comparison is shown in Table 3. While several classes of the DT can be 
directly mapped to the classes defined within the expert taxonomy, i.e., “Gourmand”, “Flower”, 
“Alcohol”, “Savory”, “Fruity”, “Sulfur”, and “Woody”, the others are more difficult to assess. The 
classes that can be directly mapped to expert defined classes reflect groupings of odor 
descriptors that are mainly based on conceptual odor similarities, which was the central 
element to structure the expert taxonomy. Other data-driven classes, e.g., class “E” cannot be 
directly mapped to one of the 16 expert defined classes. Class “E” contains a mix of 
conceptually related odor descriptors such as 'cinnamon', 'clove', 'spicy', and 'vanilla' which 
may be grouped under the higher term ‘spicy’.  However, it also includes seemingly unrelated 
terms such as  'balsamic', 'medicinal', 'phenol', 'smoked'. These descriptors are conceptually 
not similar to the listed ‘spicy’ descriptors, but rather evoke medicinal practices or properties. 
Vanilla is also part of the gourmand family within perfumery and sometimes classified as 
having a green aspect31. The DT derived class “E” can therefore rather be described as a 
“Health” or "Medicinal" category. More in alignment with the ET that shows inherent bias 
towards grouping odor descriptors on conceptual similarities, the suggestion from the 
ChatGPT describes class “E” as “spicy” without taking the outliers  'balsamic', 'medicinal', 
'phenol', 'smoked' into account. It should be noted that “medicinal” and “smoky” do not seem 
source based, whereas the other descriptors do. Often myrrh, which is a resin, is qualified as 
medicinal32.   

 

  

https://www.zotero.org/google-docs/?BdzTpl
https://www.zotero.org/google-docs/?PA838o
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Table 3. Comparison of the 16 odor classes within the 2 defined taxonomies, including the number of 
descriptors within each class. The class definitions for the DT groupings (Classes A to P) are compared 
to the ET categories and to categories provided through a large language model (LLM: GPT-4). Class 
descriptions that are similar between the two taxonomies are highlighted in bold. The full list of 
descriptors within the different classes of the ET and DT are provided as supporting information (Table 
S8 and S9). 

Class1)  # descriptors2)  Class3) # descriptors4) Similarity5)  LLM6)  

Alcohol 10  A 12 Anethole Aromatic 

Animal 4  B 14 Gourmand Gourmand 

Aquatic 3  C 22 Flower7) Floral 

Balsamic 2  D 13 Pungent Pungent 

Chemical  12  E 8 8) Health/Medicinal Spicy 

Earthy 5  F 8 8) Dairy/Cream Lactonic 

Flower 15  G 8 8) Green/Fat Green 

Fruity 28  H 8 Alcohol Alcoholic 

Gourmand 13  I 7 Savory Animalic 

Green 9  J 11 Fruity Fruity 

Herbal 5  K 8 8) Fresh Citrus 

Savory 23  L 6 8) Clean Camphorous 

Smoky 5  M 4 Acid Acidic 

Spices 8  N 3 Sulfur Sulfurous 

Sulfur 3  O 10 Woody Woody  

Woody 9  P 4 Berry Berry 
1) 16 classes defined by domain experts for the expert-derived taxonomy.  
2) Number of descriptors included in each class of the expert-derived taxonomy. 
3) 16 classes obtained from the data driven taxonomy.   
3) Number of descriptors included in each class of the data driven taxonomy. 
5) Conceptual similarity of the data driven classes to the expert defined classes as estimated from the experts’ 
perspectives.  
6) Suggested class name for the descriptors in the different classes of the data taxonomy as suggested using the 
large language model (LLM) ChatGPT-4o. See supporting information for the list of descriptors within the different 
classes.  
7) In perfumery this class is usually called 'floral'.  
8) Note that not all the classes from data taxonomy can be mapped directly to classes within the expert-derived 
taxonomy. The highlighted classes are not fully based on conceptual similarities but also evoke effect or odor 
practices (see text for more details). 
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There are four other DT derived classes that exhibit similar patterns: classes ‘F’, ‘G’, ‘K’, and 
‘L’. Looking closer into the descriptors of class ‘K’ and class ‘L’, the overarching name for these 
classes may be set to “Fresh” and “Clean”, while the LLM suggests “Citrus” and 
“Camphorous”, respectively. Here, we need to keep in mind that odor descriptors such as 
'clean' are often culturally determined and may be linked to different odors in different 
countries. Overall, our comparison shows that the DT does not solely rely on conceptually 
related odor classes but includes the effect and quality that the descriptors share in the human 
world. In contrast, the ET classifies descriptors more on the odor impression let by pre-existing 
expectations from the side of the experts, their knowledge of chemistry, historical scent 
classifications and existing scent wheels used in perfumery1. This is also reflected in the 
selection of the grouping terms generated by the LLM, which tries to flatten the different 
descriptors within the DT classes back to a lower dimension that is similarly biased toward 
conceptual odor similarities as the expert derived classes.  

 

3.3 Error analysis and Interpretability of the classification results using XGBoost  

To shed some light into the underlying structure-odor relationships of our dataset and 
taxonomies, it is important to conduct an error analysis on misclassifications of the model as 
well as interpretability studies such as permutation feature importance (PFI). These insights 
help to verify that the model is learning meaningful patterns rather than artifacts, and allow 
identifying limitations and bottlenecks to guide future feature engineering and model 
refinements. The PFI plots of the XGBoost classifier (the best performing model see Section 
3.1) is provided in Figure 5 for both taxonomies. Notably, several features originating from the 
Burden matrix such as “BCUTZ_1h” and “BCUTare-1l” exhibit significant drops in the AUC 
upon permutation, indicating their strong influence on the model performance. However, it 
should be noted that PFI is more indicative of overall performance of the model and that the 
class-specific relevance still needs to be taken into account to gain deeper insight into the 
underlying feature importance of the model.  

 
Figure 6. Permutation feature importance (PFI) of the XGBoost model for the data-driven taxonomy 
(left) and the expert-derived taxonomy (right). While such as BCUTZ-1h, BCUTare-1l and BCUTc-1l 
are very important to attain good macro scores with the data-driven taxonomy, the most relevant 
features for the expert taxonomy are BCUTZ-1h, BCUTare-1l and Xpc-4dv. Note that class-specific 
relevance needs to be taken into account to obtain more insight into the feature importance of the 
models. 

https://www.zotero.org/google-docs/?qEonjT
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Additionally, the SHAP plots for the Sulfur and Savory class can be seen in Figure 6 and 
Figure 7. The SHAP plots of all remaining  classes for both taxonomies are provided in the  
ESI (FigureS14-S16). Altogether, the "Sulfur” and “Savory” classes are the best performing 
classes for both taxonomies with AUC over 0.75. The feature which contributes significantly 
to the Sulfur class across both taxonomies is ’BCUTZ-1h", which is particularly important within 
the SHAP values of the DT. The BCUTZ-1h feature represents the highest eigenvalue of the 
Burden matrix weighted by the atomic number. This corresponds to the atomic number of the 
heaviest atom in the compound, which  is 16 in sulfur-containing compounds. This feature 
helps in classifying with both the "Sulfur” and “Savory” classes, which are both similar in odor 
profile (see Figure 7). There is also minor variation in the SHAP values of the Sulfur class 
across both taxonomies as well, where in the DT, the influence of BCUTZ-1h is more 
pronounced as compared to the ET where it shares similar weight with other features. This 
might be indicative of the odor descriptors under their respective umbrella terms, wherein the 
‘Sulfur’ class in the DT is more narrow while that of the ET is a bit more general. We can see 
this in the distribution of BCUTZ-1h values across different taxonomies (see Figure S18): 
where in the DT, both the ‘I’ and ‘J’ classes, ‘Savory’ and ‘Sulfur’ respectively, have typically 
a higher BCUTZ-1h score with the Sulfur class being more pronounced, and in the ET the 
distribution of BCUTZ-1h is more similar for ‘Savory’, ‘Smoky’, and ‘Sulfur.’ It is interesting to 
note that there is a distinction between Savory and Sulfur and the features that help predict it. 
While BCUTZ-1h is the top feature for both taxonomies, when considering ‘Savory’, the feature 
SIC0 seems to be the most important predictor across both taxonomies. ’SIC0’ is the structural 
information content of the molecule normalized by atom count. This feature corresponds to 
the degree of structural complexity where a high value suggests distinct atom types or diversity 
in atom degrees and a low value suggests more uniformity in atom types. The SHAP plots that 
for the Savory class, a higher SIC0 value pushes the model with towards a positive 
classification for Savory as compared to ‘Sulfur’ where interestingly, the inverse occur where 
for both taxonomies, a higher SIC0 value pushes the model against classifying Sulfur. This 
could imply that minute variations in distinct atom types or diverse atom degrees could explain 
the minor differences in the odor profiles of both “Sulfur” and “Savory”.  
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Figure 7. SHAP analysis of the XGBoost classifier class in both Taxonomies for the ET-defined “Sulfur” 
class and the corresponding DT class (Class “N”). We can see that the feature ‘BCUTZ-1h’ is listed as 
the most important feature for classifying ‘Sulfur’ across both taxonomies. For the full list of descriptors 
see supporting information.  

 

Figure 8. SHAP analysis of the XGBoost classifier class in both Taxonomies for the ET-defined 
“Savory” class and the corresponding DT class (class “I”). Note that in both taxonomies, the feature 
‘SIC0’ has the biggest contribution, overtaking ‘BCUTZ-1h’ from the ‘Sulfur’ class for both taxonomies. 
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3.4 Testing the taxonomy models for class prediction: The case of pear odorants 

To evaluate the applicability of the taxonomy models on interesting odorants used in 
perfumery, we selected five pear odorants and classified their odor description using the two 
XGBoost taxonomy based models. Pear odorants play a well-established role in perfumery 
due to their popularity as a top note in perfumes where they are often used to design fresh, 
bright, and juicy fragrances. 

The molecular structures of the 4 pear odorant molecules used in perfumery, as well as their 
reported odor descriptors, are depicted in Figure 8. It should be noted that Pearadise (2) is an 
artificial odorant that was rationally designed based on known structures of pear odorants with 
the aim to be fully biodegradable and sustainable33. In future, next to specific odor and smell 
impressions, biodegradability and biocompatibility will become increasingly important and 
raise the challenge and requirements on machine learning methodologies within the fields of 
fragrance chemistry and in silico molecular design34.       

 
Figure 9. Selected examples of pear odorants. Note that all are correctly classified as ‘fruity’ using both 
taxonomies.  

The selected subset of odorants serves as domain specific test cases to assess how well our 
models generalize to a broader training distribution. The selected type of odorants from this 
odor family are clearly related to the ”Fruity” and the “J” classes of the ET and DT, respectively. 
The classifications results are shown in Table 4. Interestingly, both models are able to classify 
the most relevant odor descriptors of the pear odorants, namely “Fruity” and “Green”. Going 
forward, it will be interesting to look into the explicit odor descriptors within the taxonomy 
groupings to distinguish more specific odors and continue to delineate the odor space and the 
structure-odor relationships linked to it.        

 

https://www.zotero.org/google-docs/?gqq3V5
https://www.zotero.org/google-docs/?9MQMtY
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Table 4. Classification results using the XGBoost model at the expert- and data-driven 
taxonomies for five selected pear odorant use for top notes in perfumery (see Figure 8 for the 
corresponding chemical structures).   

Pear Odorants Data-driven Taxonomy1) Expert-derived Taxonomy 

Poirenate (1) C, J, O Animal Body, Flower, Fruity, 
Woody 

Pearadise (2) J  Fruity 

Helvetolide (3) C, G, J Fruity, Green, Woody 

Quinceester (4) G, J  Fruity, Green 
1) Classes C, G, J, O can be conceptually mapped to the expert classes Flower, Green/Fat, 
Fruity, and Woody, respectively (see also Table 3 for a complete overview). 
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4 Outlook and perspectives 

Currently, the most promising machine learning models for structure-based odor prediction 
are deep learning approaches, which have shown reliable performance in QSAR tasks35,36. 
However, conventional deep learning methods do not offer much in terms of interpretability. 
Therefore, our approach goes back to simpler models which offer more interpretability to aid 
insight into structure-odor relationships by leveraging the conceptual hierarchy between smell. 
Moving forward, graph-based architectures, particularly more recent ones like Fragnet37 and 
KerGNNs38, offer the potential for improved interpretability and more refined modeling of 
structure–activity relationships using deep learning. Odor taxonomies could be integrated into 
these GNNs not only to explore higher-level odor classes but also potentially within the loss 
function itself, guiding fine-grained classification across all descriptors. The ET, although 
explicitly flattened for this study, consists of multiple hierarchical layers that can be applied to 
design the GNN architecture. For the DT, the correlations between different odor descriptor 
groupings can also be further leveraged to create a multi-layer hierarchical taxonomy. Such 
methods could pave the way toward a deeper understanding of structure–odor relationships 
and the rational design of novel odorant molecules.  

Despite the relevance of taxonomies for odor classification, there are several bottlenecks still 
limiting the progress that can be achieved in structure-odor prediction tasks.  One important 
aspect is unarguably the 3D molecular structure of odorants. This work, as well as the current 
state-of-the-art rely on 2D molecular graphs as input, which omit conformational variability and 
spatial features that are likely relevant to odor perception. Odorants are inherently three-
dimensional and can adopt multiple conformations, some of which may be more relevant to 
receptor binding and perceived odor than others. Incorporating 3D molecular geometry has 
already shown promise in related molecular classification tasks39, and methods such as 
HamNet40 that leverage molecular dynamics to represent conformations may extend this 
potential further. Still, receptor-level specificity adds another layer of complexity—olfactory 
receptors may respond differently to different conformers, but we currently lack sufficient 
experimental data to explore this41. 

In future, research that focuses on receptor-odorant dynamics and mechanisms could be 
leveraged to make better datasets and consequently, more well informed machine learning 
models. This would also allow us to account for differences between enantiomers and explore 
the impact of chirality42. Additionally, current datasets do not account for concentration-
dependent effects and do not provide any information on the weight of odor descriptors, i.e., 
the dominant descriptors compared to less relevant side-notes. Concentration dependence is 
crucial, as the perceived odor of a molecule can vary with concentration. This effect is 
particularly strong for sulfur and nitrogen-containing compounds. To address these 
shortcomings, more high quality sensory data with different concentrations is required. Our 
work currently focuses on single odorant odor prediction without considering the effect of 
odorant mixture. In Olfaction however, smell sources emit hundreds of molecules that interact 
together to create a specific smell43–45. Therefore, to digitize smell and recreate odor 
compositions, it is necessary to move towards the study of odorant mixtures, concentrations, 
while keeping in mind that in some cases, olfactory groups and descriptors can additionally 
depend on social, religious, linguistic or other culturally induced categories46,47. 

https://www.zotero.org/google-docs/?TN97FS
https://www.zotero.org/google-docs/?BbE3mH
https://www.zotero.org/google-docs/?HDxD0e
https://www.zotero.org/google-docs/?QEJRWX
https://www.zotero.org/google-docs/?zseA4H
https://www.zotero.org/google-docs/?g2Thji
https://www.zotero.org/google-docs/?TZwhTl
https://www.zotero.org/google-docs/?GJKvmk
https://www.zotero.org/google-docs/?dc7y7K
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5 Conclusion 

In this work, we provide an openly accessible, well curated and structurally organized 
molecular odor dataset including two taxonomies (expert-derived and data-driven) that group 
odor descriptors in meaningful groupings that can be used to train machine learning models. 
We show that perceptual odor taxonomies can be incorporated into molecular structure–odor 
datasets as a form of data augmentation, allowing us to shift the classification task from high 
to low granularity, thereby improving the performance of machine learning tasks beyond a 
reduction in output space. A systematic benchmark using randomized groupings of odor 
descriptors shows that groupings without any conceptually meaningful connections do not 
improve the performance of machine learning models. In contrast, meaningful taxonomies 
based on grouping odors allow to address this challenge. Hereby, that data-driven taxonomy 
performs marginally better than the expert derived taxonomy. This study shows how multi-
faceted odor taxonomies can be, from the comparison of our pre-conceived notions of 
distances between odor descriptors in the odor space according to expert taxonomy as well 
as the data taxonomy which takes into account the individual shared experiences with odor 
that shapes the topology of the odor space. Together with interpretable tree-based models 
this allowed us to link molecular structures to the respective odor space and pave the way for 
future machine learning approaches in structure-based odor prediction. Our framework thus 
lays the foundation for more accurate, interpretable, and scalable approaches to decoding the 
language of smell, and help us move closer towards the digitization of one of our most 
enigmatic senses.  

 

 

6. Data availability 
 

The MMD, the taxonomies (ET and DT) including their taxonomy augmented datasets, and 
annotated code, for all the methodology as well as the analyses, are included as Supplementary 
material and will be publicly available on GitHub. 
 

 
  

https://github.com/akshay-sajann/computer_ontology
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‭Molecular‬ ‭odor‬ ‭descriptors‬ ‭for‬ ‭the‬ ‭provided‬ ‭molecular‬ ‭data‬ ‭set‬ ‭used‬ ‭to‬ ‭build‬ ‭the‬
‭machine learning models (in alphabetical order).‬

‭['acid',‬ ‭'alcohol',‬ ‭'aldehyde',‬ ‭'almond',‬ ‭'amber',‬ ‭'animal',‬ ‭'anise',‬ ‭'anisic',‬ ‭'apple',‬ ‭'apricot',‬

‭'balsam',‬ ‭'banana',‬ ‭'beef',‬ ‭'bergamot',‬ ‭'berry',‬ ‭'bitter',‬ ‭'black‬‭currant',‬‭'brandy',‬‭'bread',‬‭'broth',‬

‭'burnt',‬ ‭'butter',‬ ‭'cabbage',‬ ‭'camphor',‬ ‭'caramel',‬ ‭'cedar',‬ ‭'celery',‬ ‭'chamomile',‬ ‭'cheese',‬

‭'chemical',‬ ‭'cherry',‬ ‭'chicken',‬ ‭'chocolate',‬ ‭'cinnamon',‬ ‭'citrus',‬ ‭'clove',‬ ‭'cocoa',‬ ‭'coconut',‬

‭'coffee',‬‭'cognac',‬‭'cooked',‬‭'coumarin',‬‭'cream',‬‭'cucumber',‬‭'dairy',‬‭'earth',‬‭'ester',‬‭'ether',‬‭'fat',‬

‭'fermented',‬ ‭'fish',‬ ‭'floral',‬ ‭'flower',‬ ‭'fruity',‬ ‭'gardenia',‬ ‭'garlic',‬ ‭'gasoline',‬ ‭'gassy',‬ ‭'geranium',‬

‭'gourmand',‬‭'grape',‬‭'grapefruit',‬‭'grass',‬‭'green',‬‭'hawthorn',‬‭'hay',‬‭'hazelnut',‬‭'herbal',‬‭'honey',‬

‭'horseradish',‬ ‭'hyacinth',‬ ‭'jam',‬ ‭'jasmine',‬ ‭'juice',‬ ‭'ketonic',‬ ‭'lactonic',‬ ‭'lavender',‬‭'leaf',‬‭'lemon',‬

‭'licorice',‬ ‭'lilac',‬ ‭'lily',‬ ‭'malt',‬ ‭'marine',‬ ‭'meat',‬ ‭'medicinal',‬ ‭'melon',‬ ‭'menthol',‬ ‭'metallic',‬ ‭'milk',‬

‭'mimosa',‬ ‭'mint',‬ ‭'moss',‬ ‭'muguet',‬ ‭'mushroom',‬ ‭'musk',‬ ‭'musty',‬ ‭'narcissus',‬ ‭'neroli',‬ ‭'onion',‬

‭'orange',‬‭'orris',‬‭'ozone',‬‭'patchouli',‬‭'peach',‬‭'pear',‬‭'peel',‬‭'pepper',‬‭'phenol',‬‭'pine',‬‭'pineapple',‬

‭'plastic',‬ ‭'plum',‬ ‭'popcorn',‬‭'potato',‬‭'pungent',‬‭'raspberry',‬‭'ripe',‬‭'roasted',‬‭'rooty',‬‭'rose',‬‭'rum',‬

‭'sandalwood',‬‭'savory',‬‭'sharp',‬‭'smoked',‬‭'solvent',‬‭'sour',‬‭'spicy',‬‭'strawberry',‬‭'sulfur',‬‭'sweat',‬

‭'tea',‬ ‭'terpene',‬ ‭'tobacco',‬ ‭'tomato',‬ ‭'tropical',‬ ‭'vanilla',‬ ‭'vegetable',‬ ‭'vetiver',‬ ‭'violet',‬ ‭'watery',‬

‭'wax', 'weedy', 'wine', 'woody']‬‭- total of 146 descriptors‬

‭Feature selection and Hyperparameter tuning‬

‭The‬ ‭features‬ ‭were‬ ‭filtered‬ ‭through‬ ‭an‬ ‭exhaustive‬ ‭feature‬ ‭selection‬ ‭procedure.‬ ‭0‬ ‭variance‬
‭features‬ ‭were‬ ‭removed‬ ‭and‬ ‭then‬ ‭ANOVA‬ ‭F‬ ‭values‬‭were‬‭used‬‭to‬‭filter‬‭the‬‭features‬‭and‬‭the‬
‭best‬‭feature‬‭for‬‭each‬‭of‬‭the‬‭146‬‭classes‬‭was‬‭selected.‬‭This‬‭was‬‭then‬‭narrowed‬‭down‬‭further‬
‭through‬ ‭Recursive‬ ‭Feature‬ ‭Elimination,‬ ‭using‬ ‭a‬ ‭random‬ ‭forest‬ ‭with‬ ‭Permutation‬ ‭Feature‬
‭Importance.‬ ‭The‬ ‭final‬ ‭set‬ ‭contained‬ ‭23‬ ‭features.‬‭The‬‭hyperparameter‬‭tuning‬‭of‬‭the‬‭models‬
‭was done using Bayesian optimization through sk‬‭opt‬‭[‬‭HEA]‬‭.‬

‭Parameters for clustering odor descriptors in Computer Taxonomy‬
‭[n_clusters = 16, metric = 'euclidean', linkage ='ward']‬

‭Final features:‬
‭['BCUTc-1h',‬ ‭'BCUTc-1l',‬ ‭'BCUTZ-1h',‬ ‭'BCUTv-1l',‬ ‭'BCUTare-1l',‬‭'RPCG',‬‭'Xpc-4dv',‬‭'Xp-1dv',‬
‭'Mare',‬ ‭'ETA_shape_y',‬ ‭'ETA_dAlpha_B',‬ ‭'ETA_epsilon_4',‬ ‭'SIC0',‬ ‭'MIC1',‬ ‭'SlogP_VSA5',‬
‭'EState_VSA5',‬ ‭'VSA_EState6',‬ ‭'VSA_EState7',‬ ‭'VSA_EState8',‬ ‭'nRot',‬ ‭'GGI7',‬ ‭'SRW04',‬
‭'SRW10']‬

‭2‬



‭Table‬‭S1.‬‭Search‬‭space‬‭and‬‭final‬‭parameters‬‭of‬‭the‬‭hyperparameter‬‭search‬‭for‬‭the‬‭XGBoost‬
‭model using Bayesian Hyperparameter Optimization.‬

‭Hyperparameter‬ ‭Search Space‬ ‭Chosen Value‬

‭colsample_bynode‬ ‭[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,‬
‭0.7, 0.8, 0.9, 1.0]‬

‭0.9‬

‭learning_rate‬ ‭[0.0001, 0.001, 0.01, 0.1,‬
‭0.2, 0.4, 0.6, 0.8]‬

‭0.4‬

‭max_depth‬ ‭[3, 4, 5, 6, 7, 8, 9, 10, 11,‬
‭12]‬

‭3‬

‭min_child_weight‬ ‭[1, 50, 100, 150, 200, 250]‬ ‭1‬

‭n_estimators‬ ‭[100, 200, 400, 600, 800,‬
‭1000, 2000, 4000, 5000,‬

‭10000]‬

‭2000‬

‭reg_lambda‬ ‭[0.001, 0.01, 0.1, 1, 5, 10,‬
‭15, 20, 25]‬

‭5‬

‭subsample‬ ‭[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,‬
‭0.7, 0.8, 0.9, 1.0]‬

‭0.9‬

‭tree_method‬ ‭['approx', 'hist']‬ ‭‘hist’‬

‭3‬



‭Table‬‭S2.‬‭Search‬‭space‬‭and‬‭final‬‭parameters‬‭of‬‭the‬‭hyperparameter‬‭search‬‭for‬‭the‬‭Random‬
‭Forest model using Bayesian Hyperparameter Optimization.‬

‭Hyperparameter‬ ‭Search Space‬ ‭Chosen Value‬

‭bootstrap‬ ‭[True, False]‬ ‭‘False’‬

‭max_depth‬ ‭[10, 20, 30, 40, 50, 60, 70,‬
‭80, 90, 100, None]‬

‭90‬

‭max_features‬ ‭['log2', 'sqrt']‬ ‭‘log2’‬

‭min_samples_leaf‬ ‭[1, 2, 3, 4]‬ ‭1‬

‭min_samples_split‬ ‭[2, 5, 10]‬ ‭2‬

‭n_estimators‬ ‭[50, 150, 200, 400, 600,‬
‭800, 1000, 1200, 1400,‬

‭1600, 1800, 2000]‬

‭1800‬

‭Table‬ ‭S3.‬ ‭Search‬ ‭space‬ ‭and‬ ‭final‬ ‭parameters‬ ‭of‬ ‭the‬ ‭hyperparameter‬ ‭search‬ ‭for‬ ‭the‬ ‭multi‬
‭output Logistic Regression model using Bayesian Hyperparameter Optimization.‬

‭Hyperparameter‬ ‭Search Space‬ ‭Chosen Value‬

‭penalty‬ ‭['l2']‬ ‭‘l2’‬

‭C‬ ‭np.logspace(-4, 4, 20)‬ ‭10000.0‬

‭solver‬ ‭['lbfgs','newton-cg','liblinear','‬
‭sag','saga']‬

‭'lbfgs'‬

‭max_iter‬ ‭[100, 1000,2500, 5000]‬ ‭2500‬

‭Table‬ ‭S4.‬ ‭Performance‬ ‭results‬ ‭using‬ ‭a‬ ‭Logistic‬ ‭Regression‬ ‭model‬ ‭after‬ ‭extensive‬ ‭feature‬
‭selection and hyperparameter tuning.‬

‭Dataset‬ ‭AUROC‬ ‭F1 Score‬ ‭Precision‬ ‭Recall‬
‭Original Descriptors‬ ‭0.527‬ ‭0.079‬ ‭0.170‬ ‭0.059‬

‭Expert Taxonomy‬ ‭0.603‬ ‭0.334‬ ‭0.547‬ ‭0.260‬
‭Computer Taxonomy‬ ‭0.609‬ ‭0.319‬ ‭0.528‬ ‭0.262‬

‭Table‬ ‭S5.‬ ‭Performance‬ ‭results‬ ‭using‬ ‭a‬ ‭Random‬ ‭Forest‬ ‭model‬ ‭after‬ ‭extensive‬ ‭feature‬
‭selection and hyperparameter tuning.‬

‭Dataset‬ ‭AUROC‬ ‭F1 Score‬ ‭Precision‬ ‭Recall‬
‭Original Descriptors‬ ‭0.589‬ ‭0.243‬ ‭0.408‬ ‭0.186‬

‭Expert Taxonomy‬ ‭0.676‬ ‭0.488‬ ‭0.601‬ ‭0.421‬
‭Computer Taxonomy‬ ‭0.693‬ ‭0.511‬ ‭0.623‬ ‭0.444‬
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‭Table‬ ‭S6.‬ ‭Classwise‬ ‭performance‬ ‭of‬ ‭the‬ ‭XGBoost‬ ‭model‬ ‭using‬ ‭the‬ ‭computer‬ ‭derived‬
‭taxonomy.‬ ‭The‬ ‭16‬ ‭classes‬ ‭(A-P)‬ ‭as‬ ‭well‬ ‭as‬ ‭their‬ ‭scores‬ ‭across‬ ‭all‬ ‭metrics.‬ ‭The‬ ‭macro‬
‭(unweighted) average of all the classes is provided in the last row.‬

‭Classes‬ ‭AUROC‬ ‭F1‬ ‭Precision‬ ‭Recall‬

‭A‬ ‭0.659429‬ ‭0.404762‬ ‭0.485714‬ ‭0.346939‬

‭B‬ ‭0.674819‬ ‭0.486275‬ ‭0.529915‬ ‭0.449275‬

‭C‬ ‭0.726494‬ ‭0.647120‬ ‭0.674672‬ ‭0.621730‬

‭D‬ ‭0.654029‬ ‭0.422330‬ ‭0.446154‬ ‭0.400922‬

‭E‬ ‭0.702355‬ ‭0.526971‬ ‭0.569507‬ ‭0.490348‬

‭F‬ ‭0.664019‬ ‭0.421569‬ ‭0.505882‬ ‭0.361345‬

‭G‬ ‭0.717981‬ ‭0.646245‬ ‭0.670082‬ ‭0.624046‬

‭H‬ ‭0.708859‬ ‭0.515406‬ ‭0.557576‬ ‭0.479167‬

‭I‬ ‭0.756446‬ ‭0.606335‬ ‭0.697917‬ ‭0.536000‬

‭J‬ ‭0.720628‬ ‭0.654369‬ ‭0.693416‬ ‭0.619485‬

‭K‬ ‭0.699158‬ ‭0.503704‬ ‭0.596491‬ ‭0.435897‬

‭L‬ ‭0.708253‬ ‭0.563107‬ ‭0.610526‬ ‭0.522523‬

‭M‬ ‭0.641302‬ ‭0.355140‬ ‭0.431818‬ ‭0.301587‬

‭N‬ ‭0.885479‬ ‭0.750000‬ ‭0.709091‬ ‭0.795918‬

‭O‬ ‭0.696117‬ ‭0.526733‬ ‭0.588496‬ ‭0.476703‬

‭P‬ ‭0.558067‬ ‭0.183908‬ ‭0.320000‬ ‭0.129032‬

‭Average‬ ‭0.698340‬ ‭0.513373‬ ‭0.567954‬ ‭0.474432‬
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‭Table‬‭S7.‬‭Classwise‬‭performance‬‭of‬‭the‬‭XGBoost‬‭model‬‭using‬‭the‬‭expert‬‭derived‬‭taxonomy.‬
‭The‬‭16‬‭classes‬‭as‬‭well‬‭as‬‭their‬‭scores‬‭across‬‭all‬‭metrics.‬‭The‬‭macro‬‭(unweighted)‬‭average‬
‭of all the classes is provided in the last row.‬

‭Classes‬ ‭AUROC‬ ‭F1‬ ‭Precision‬ ‭Recall‬

‭Alcohol‬ ‭0.697169‬ ‭0.502283‬ ‭0.526316‬ ‭0.480349‬

‭Animal Body‬ ‭0.668494‬ ‭0.433566‬ ‭0.553571‬ ‭0.356322‬

‭Aquatic‬ ‭0.587067‬ ‭0.256410‬ ‭0.454545‬ ‭0.178571‬

‭Balsamic‬ ‭0.685158‬ ‭0.482385‬ ‭0.542683‬ ‭0.434146‬

‭Chemicals‬ ‭0.644282‬ ‭0.419913‬ ‭0.451163‬ ‭0.392713‬

‭Earthy‬ ‭0.592802‬ ‭0.284615‬ ‭0.342593‬ ‭0.243421‬

‭Flower‬ ‭0.748530‬ ‭0.650246‬ ‭0.668354‬ ‭0.633094‬

‭Fruity‬ ‭0.738040‬ ‭0.715421‬ ‭0.748752‬ ‭0.684932‬

‭Gourmand‬ ‭0.674920‬ ‭0.483940‬ ‭0.548544‬ ‭0.432950‬

‭Green‬ ‭0.681113‬ ‭0.631034‬ ‭0.640981‬ ‭0.621392‬

‭Herbal‬ ‭0.668194‬ ‭0.424581‬ ‭0.506667‬ ‭0.365385‬

‭Savory‬ ‭0.763273‬ ‭0.664935‬ ‭0.684492‬ ‭0.646465‬

‭Smoky‬ ‭0.692512‬ ‭0.472441‬ ‭0.526316‬ ‭0.428571‬

‭Spices‬ ‭0.647363‬ ‭0.397260‬ ‭0.456693‬ ‭0.351515‬

‭Sulfur‬ ‭0.761012‬ ‭0.588710‬ ‭0.623932‬ ‭0.557252‬

‭Woody‬ ‭0.696945‬ ‭0.528958‬ ‭0.585470‬ ‭0.482394‬

‭Average‬ ‭0.684180‬ ‭0.496044‬ ‭0.553817‬ ‭0.455592‬
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‭Table S8. Odor descriptors falling under the 16 expert derived classes.‬
‭Class‬ ‭# descriptors‬ ‭List of descriptors‬

‭Alcohol‬ ‭10‬ ‭['acid', 'sharp', 'pungent', 'brandy', 'cognac', 'ether', 'malt', 'rum',‬
‭'wine', 'alcohol']‬

‭Animal‬
‭Body‬

‭4‬ ‭['amber', 'musk', 'sweat', 'animal']‬

‭Aquatic‬ ‭3‬ ‭['fish', 'marine', 'watery']‬

‭Balsamic‬ ‭2‬ ‭['balsam', 'wax']‬

‭Chemicals‬ ‭12‬ ‭['ether', 'ozone', 'aldehyde', 'gasoline', 'ketonic', 'medicinal',‬
‭'metallic', 'phenol', 'plastic', 'solvent', 'terpene', 'chemical']‬

‭Earthy‬ ‭5‬ ‭['moss', 'mushroom', 'musty', 'earth', 'rooty']‬

‭Flower‬ ‭15‬ ‭['geranium', 'lavender', 'mimosa', 'narcissus', 'orris', 'rose',‬
‭'violet', 'gardenia', 'hyacinth', 'jasmine', 'lilac', 'lily', 'muguet',‬
‭'flower', 'floral']‬

‭Fruity‬ ‭28‬ ‭['berry', 'cherry', 'black currant', 'raspberry', 'strawberry',‬
‭'bergamot', 'citrus', 'grapefruit', 'lemon', 'neroli', 'orange', 'peel',‬
‭'apple', 'apricot', 'banana', 'coconut', 'ester', 'grape', 'hawthorn',‬
‭'juice', 'melon', 'peach', 'pear', 'pineapple', 'plum',‬
‭['ripe','tropical', 'fruity']‬

‭Gourmand‬ ‭13‬ ‭'almond', 'roasted', 'bitter', 'caramel', 'cocoa', 'cream', 'hazelnut',‬
‭'honey', 'jam', 'popcorn', 'vanilla', 'chocolate', 'gourmand']‬

‭Green‬ ‭9‬ ‭['celery', 'cucumber', 'grass', 'green', 'leaf', 'herbal', 'weedy',‬
‭'coumarin', 'hay']‬

‭Herbal‬ ‭5‬ ‭['menthol', 'mint', 'chamomile', 'tea', 'vetiver']‬

‭Savory‬ ‭23‬ ‭['garlic', 'onion', 'cooked', 'cabbage', 'roasted', 'bread', 'butter',‬
‭'cheese', 'cream', 'milk', 'lactonic', 'sour', 'fat', 'peel', 'beef',‬
‭'chicken', 'meat', 'broth', 'vegetable', 'potato', 'tomato', 'dairy',‬
‭'savory']‬

‭Smoky‬ ‭5‬ ‭['burnt', 'smoked', 'coffee', 'roasted', 'tobacco']‬

‭Spices‬ ‭8‬ ‭['anisic', 'cinnamon', 'clove', 'horseradish', 'licorice', 'pepper',‬
‭'anise', 'spicy']‬

‭Sulfur‬ ‭3‬ ‭['fermented', 'gassy', 'sulfur']‬

‭Woody‬ ‭9‬ ‭['camphor', 'cognac', 'patchouli', 'rooty', 'sandalwood', 'woody',‬
‭'lactonic', 'cedar', 'pine']‬
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‭As‬ ‭described‬ ‭in‬ ‭Section‬ ‭2.2.1‬ ‭of‬ ‭the‬ ‭ms.‬ ‭for‬ ‭the‬ ‭expert‬ ‭taxonomy‬ ‭on‬ ‭the‬ ‭ODEUROPA‬
‭website‬‭,‬ ‭the‬ ‭source-based‬ ‭descriptors‬ ‭were‬ ‭divided‬ ‭in‬ ‭16‬‭different‬‭classes‬‭’scent‬‭families’)‬
‭and‬ ‭31‬ ‭Subclasses,‬ ‭e.g.,‬‭the‬‭“Alcohol”‬‭class‬‭contains‬‭the‬‭sub-classes‬‭“Acid”‬‭and‬‭“Alcohol”,‬
‭which‬‭each‬‭contains‬‭their‬‭own‬‭odor‬‭descriptors.‬‭The‬‭classes‬‭(‬‭bold‬‭)‬‭and‬‭sub-classes‬‭(‬‭italic‬‭)‬
‭are‬ ‭provided‬ ‭below,‬ ‭the‬ ‭hierarchical‬ ‭expert‬ ‭taxonomy‬ ‭is‬ ‭provided‬ ‭on‬ ‭the‬ ‭ODEUROPA‬
‭website.‬

‭1.‬ ‭Alcohol‬
‭1.1.‬ ‭Acid‬
‭1.2.‬ ‭Alcohol‬

‭2.‬ ‭Animal‬
‭2.1.‬ ‭Animal‬
‭2.2.‬ ‭Body‬

‭3.‬ ‭Aquatic‬
‭3.1.‬ ‭Fish‬
‭3.2.‬ ‭Sea‬

‭4.‬ ‭Balsamic‬
‭5.‬ ‭Chemical‬

‭5.1.‬ ‭Ether‬
‭5.2.‬ ‭Other‬

‭6.‬ ‭Earthy‬
‭6.1.‬ ‭White flowers‬
‭6.2.‬ ‭Other‬

‭7.‬ ‭Flower‬
‭7.1.‬ ‭Berry‬
‭7.2.‬ ‭Citrus‬
‭7.3.‬ ‭Other‬

‭8.‬ ‭Fruity‬
‭8.1.‬ ‭Ether‬
‭8.2.‬ ‭Other‬

‭9.‬ ‭Gourmand‬

‭10.‬ ‭Green‬
‭10.1.‬ ‭Grass‬
‭10.2.‬ ‭Hay‬

‭11.‬ ‭Herbal‬
‭11.1.‬ ‭Methol‬
‭11.2.‬ ‭Other‬

‭12.‬ ‭Savory‬
‭12.1.‬ ‭Allium‬
‭12.2.‬ ‭Brassica‬
‭12.3.‬ ‭Bread‬
‭12.4.‬ ‭Dairy‬
‭12.5.‬ ‭Fat‬
‭12.6.‬ ‭Meat‬
‭12.7.‬ ‭Umami‬
‭12.8.‬ ‭Other‬

‭13.‬ ‭Smoky‬
‭14.‬ ‭Spices‬
‭15.‬ ‭Sulfur‬

‭15.1.‬ ‭Decay‬
‭15.2.‬ ‭Excrement‬
‭15.3.‬ ‭Sulfur‬

‭16.‬ ‭Woody‬
‭16.1.‬ ‭Ether‬
‭16.2.‬ ‭Other‬
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‭Table S9. Descriptors falling under the 16 computer derived classes.‬
‭Class‬ ‭# descriptors‬ ‭List of descriptors‬

‭A‬ ‭12‬ ‭['almond', 'anise', 'anisic', 'bitter', 'cherry', 'hawthorn', 'hyacinth',‬
‭'licorice', 'lilac','mimosa', 'narcissus', 'plastic']‬

‭B‬ ‭14‬ ‭['bread', 'burnt', 'caramel', 'chocolate', 'cocoa', 'coffee', 'earth',‬
‭'gourmand', 'hazelnut',‬ ‭'malt', 'mushroom', 'musty',‬
‭'popcorn', 'potato']‬

‭C‬ ‭22‬ ‭['bergamot', 'black currant', 'celery', 'chamomile', 'floral', 'flower',‬
‭'gardenia',‬ ‭'geranium', 'grape', 'grapefruit', 'honey', 'jasmine',‬
‭'lavender', 'lily', 'muguet', 'neroli','orris', 'plum', 'rose', 'tea',‬
‭'tobacco', 'violet']‬

‭D‬ ‭13‬ ‭['cabbage', 'chemical', 'fish', 'gasoline', 'gassy', 'horseradish',‬
‭'ketonic', 'metallic', 'pepper', 'pungent', 'sharp', 'tomato',‬
‭'vegetable']‬

‭E‬ ‭8‬ ‭['balsam', 'cinnamon', 'clove', 'medicinal', 'phenol', 'smoked',‬
‭'spicy', 'vanilla']‬

‭F‬ ‭8‬ ‭['butter', 'coconut', 'coumarin', 'cream', 'dairy', 'hay', 'lactonic',‬
‭'milk']‬

‭G‬ ‭8‬ ‭['cucumber', 'fat', 'grass', 'green', 'leaf', 'melon', 'wax', 'weedy']‬

‭H‬ ‭8‬ ‭['alcohol', 'brandy', 'cognac', 'ether', 'fermented', 'rum', 'solvent',‬
‭'wine']‬

‭I‬ ‭7‬ ‭['beef', 'broth', 'chicken', 'cooked', 'meat', 'roasted', 'savory']‬

‭J‬ ‭11‬ ‭['apple', 'apricot', 'banana', 'ester', 'fruity', 'juice', 'peach', 'pear',‬
‭'pineapple', 'ripe', 'tropical']‬

‭K‬ ‭8‬ ‭['aldehyde', 'citrus', 'lemon', 'marine', 'orange', 'ozone', 'peel',‬
‭'watery']‬

‭L‬ ‭6‬ ‭['camphor', 'herbal', 'menthol', 'mint', 'pine', 'terpene']‬

‭M‬ ‭4‬ ‭['acid', 'cheese', 'sour', 'sweat']‬

‭N‬ ‭3‬ ‭['garlic', 'onion', 'sulfur']‬

‭O‬ ‭10‬ ‭['amber', 'animal', 'cedar', 'moss', 'musk', 'patchouli', 'rooty',‬
‭'sandalwood', 'vetiver', 'woody']‬

‭P‬ ‭4‬ ‭['berry', 'jam', 'raspberry', 'strawberry']‬

‭The prompt used to generate the class names with ChatGPT (GPT-4o) is the following:‬
‭“I‬ ‭am‬ ‭working‬ ‭on‬ ‭a‬ ‭taxonomy‬ ‭(or‬ ‭ontology)‬ ‭to‬ ‭describe‬ ‭the‬ ‭conceptual‬ ‭hierarchy‬ ‭between‬
‭odor‬ ‭descriptors‬ ‭for‬ ‭molecules.‬ ‭This‬‭will‬‭be‬‭leveraged‬‭to‬‭improve‬‭machine‬‭learning‬‭models‬
‭for‬ ‭structure-odor‬ ‭predictions.‬ ‭I‬ ‭have‬ ‭groups‬ ‭of‬ ‭several‬ ‭descriptors,‬ ‭e.g.,‬ ‭"rose",‬ ‭"meat",‬
‭"blackcurrant"‬ ‭etc‬ ‭and‬ ‭I‬ ‭want‬‭to‬‭give‬‭a‬‭name‬‭to‬‭each‬‭group,‬‭an‬‭umbrella‬‭term‬‭under‬‭which‬
‭different descriptors can fall. The descriptors’ groups are the following: [...]‬
‭I‬ ‭need‬ ‭only‬ ‭a‬ ‭single‬ ‭word‬ ‭to‬ ‭best‬ ‭describe‬ ‭each‬ ‭group,‬ ‭with‬ ‭vocabulary‬ ‭that‬ ‭is‬ ‭mainly‬
‭associated with perfumery and smell experts. Please go in the right order that I provide.”‬

‭See Section 3.2 of the ms. and Table 3 for the list of class names.‬
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‭Randomization‬ ‭convergence.‬ ‭The‬ ‭total‬ ‭number‬ ‭of‬ ‭possible‬ ‭randomized‬ ‭taxonomies‬ ‭that‬
‭can‬ ‭be‬ ‭generated‬ ‭using‬ ‭the‬‭odor‬‭descriptors‬‭in‬‭their‬‭respective‬‭parent‬‭term‬‭is‬‭146‬‭factorial‬
‭(146!).‬ ‭However,‬ ‭to‬ ‭get‬ ‭an‬ ‭overview‬ ‭of‬ ‭the‬ ‭score‬ ‭distribution‬ ‭of‬ ‭each‬ ‭metric‬ ‭it‬ ‭is‬ ‭not‬
‭necessary‬‭to‬‭use‬‭all‬‭the‬‭146!‬‭possible‬‭combinations.‬‭According‬‭to‬‭the‬‭central‬‭limit‬‭theorem,‬
‭the‬‭sample‬‭distribution‬‭converges‬‭to‬‭the‬‭population‬‭distribution‬‭with‬‭increasing‬‭sample‬‭size.‬
‭It‬‭is‬‭therefore‬‭possible‬‭to‬‭approximate‬‭the‬‭population‬‭mean‬‭with‬‭a‬‭lower‬‭number‬‭of‬‭samples.‬
‭To‬‭verify‬‭if‬‭the‬‭running‬‭mean‬‭and‬‭running‬‭standard‬‭deviation‬‭for‬‭all‬‭metrics‬‭have‬‭converged,‬
‭we‬ ‭use‬ ‭1000‬ ‭randomized‬ ‭taxonomies.‬ ‭The‬ ‭randomization‬ ‭convergence‬ ‭plots‬ ‭of‬‭the‬‭expert‬
‭taxonomy‬ ‭(1000),‬ ‭computer‬ ‭taxonomy‬ ‭(1000)‬ ‭and‬ ‭the‬ ‭combined‬ ‭taxonomies‬ ‭(2000)‬ ‭are‬
‭shown below.‬

‭Figure‬ ‭S1-1.‬ ‭Development‬ ‭of‬ ‭the‬ ‭mean‬ ‭and‬ ‭standard‬ ‭deviation‬ ‭with‬ ‭the‬ ‭addition‬ ‭of‬
‭each‬ ‭new‬ ‭metric‬ ‭score‬ ‭for‬ ‭1000‬ ‭randomizations‬ ‭on‬ ‭the‬ ‭expert‬ ‭derived‬ ‭taxonomy.‬
‭Macro‬‭metrics‬‭F1‬‭and‬‭AUROC‬‭over‬‭number‬‭of‬‭samples‬‭(randomized‬‭taxonomies).‬‭Note‬‭that‬
‭all‬‭metrics‬‭converge,‬‭showing‬‭that‬‭the‬‭score‬‭metrics‬‭can‬‭be‬‭taken‬‭as‬‭a‬‭close‬‭representative‬
‭of the randomizations, or the gain in score metrics due to reducing the number of classes.‬
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‭Figure‬ ‭S1-2.‬ ‭Macro‬ ‭metrics‬ ‭precision‬ ‭and‬ ‭recall‬‭(randomization‬‭expert‬‭derived‬‭taxonomy).‬
‭See Caption Figure S1-1 for detailed description.‬

‭11‬



‭Figure‬ ‭S2-1.‬ ‭Development‬ ‭of‬ ‭the‬ ‭mean‬ ‭and‬ ‭standard‬ ‭deviation‬ ‭with‬ ‭the‬ ‭addition‬ ‭of‬
‭each‬ ‭new‬ ‭metric‬ ‭score‬ ‭for‬ ‭1000‬ ‭randomizations‬ ‭on‬ ‭the‬ ‭computer‬‭derived‬‭taxonomy.‬
‭Macro‬‭metrics‬‭F1‬‭and‬‭AUROC‬‭over‬‭number‬‭of‬‭samples‬‭(randomized‬‭taxonomies).‬‭Note‬‭that‬
‭all‬‭metrics‬‭converge,‬‭showing‬‭that‬‭the‬‭score‬‭metrics‬‭can‬‭be‬‭taken‬‭as‬‭a‬‭close‬‭representative‬
‭of the randomizations, or the gain in score metrics due to reducing the number of classes.‬
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‭Figure‬ ‭S2-2.‬ ‭Macro‬ ‭metrics‬ ‭precision‬ ‭and‬ ‭recall‬ ‭(randomization‬ ‭computer‬ ‭derived‬
‭taxonomy). See Caption Figure S2-1 for detailed description.‬
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‭Figure‬‭S3-1.‬‭Mean‬‭and‬‭standard‬‭deviation‬‭over‬‭2000‬‭randomizations‬‭taxonomies‬‭combining‬
‭the‬ ‭macro‬ ‭metrics‬ ‭F1‬‭and‬‭AUROC‬‭for‬‭both‬‭the‬‭expert‬‭and‬‭the‬‭computer‬‭derived‬‭taxonomy‬
‭(see‬ ‭Figures‬ ‭S1‬ ‭and‬‭S2,‬‭respectively).‬‭This‬‭shows‬‭that‬‭the‬‭joint‬‭distribution‬‭converges‬‭and‬
‭can be used to represent the performance gain from reducing class count.‬
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‭Figure‬‭S3-2.‬‭Mean‬‭and‬‭standard‬‭deviation‬‭over‬‭2000‬‭randomizations‬‭taxonomies‬‭combining‬
‭the‬ ‭macro‬ ‭metrics‬ ‭precision‬ ‭and‬ ‭recall‬ ‭for‬ ‭both‬ ‭the‬ ‭expert‬ ‭and‬ ‭the‬ ‭computer‬ ‭derived‬
‭taxonomy‬ ‭(see‬ ‭Figures‬ ‭S1‬ ‭and‬ ‭S13,‬ ‭respectively).‬ ‭See‬ ‭Caption‬ ‭Figure‬ ‭S3-1‬ ‭for‬ ‭detailed‬
‭description.‬
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‭Data Exploration‬

‭Figure‬‭S4.‬‭Clustered‬‭correlation‬‭plot‬‭of‬‭all‬‭146‬‭descriptors‬‭using‬‭the‬‭co-occurrence‬‭from‬‭the‬‭training‬
‭dataset.‬ ‭The‬ ‭co-occurrence‬ ‭of‬ ‭similar‬ ‭odor‬ ‭descriptors‬ ‭allows‬ ‭for‬ ‭a‬ ‭more‬ ‭perceptually‬ ‭meaningful‬
‭clustering.‬ ‭The‬ ‭two‬ ‭clusters‬ ‭highlighted‬ ‭in‬ ‭orange‬ ‭and‬ ‭red‬ ‭correspond‬ ‭to‬ ‭the‬ ‭sulfur/savory‬ ‭and‬ ‭the‬
‭alcohol/fruity‬‭clusters,‬‭respectively.‬‭For‬‭a‬‭zoom‬‭in‬‭on‬‭the‬‭alcohol‬‭and‬‭the‬‭fruity‬‭clusters‬‭see‬‭manuscript‬
‭(Figure 4).‬
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‭Figure‬‭S5.‬‭Overview‬‭of‬‭chemical‬‭compounds‬‭and‬‭the‬‭number‬‭of‬‭corresponding‬‭labels‬‭or‬‭descriptors‬
‭provided‬‭in‬‭the‬‭full‬‭training‬‭dataset‬‭(5331‬‭molecules‬‭-‬‭see‬‭ms.‬‭for‬‭GitHub‬‭repository).‬‭The‬‭majority‬‭of‬
‭compounds‬ ‭have‬ ‭between‬ ‭1‬ ‭and‬ ‭5‬ ‭labels.‬ ‭32‬ ‭compounds‬ ‭have‬‭13‬‭labels‬‭or‬‭more‬‭with‬‭a‬‭maximum‬
‭number of 17 descriptors.‬

‭Figure‬‭S6.‬‭Number‬‭of‬‭compounds‬‭in‬‭each‬‭of‬‭the‬‭different‬‭classes,‬‭i.e.,‬‭provided‬‭smell‬‭descriptors,‬‭for‬
‭a‬‭total‬‭of‬‭146‬‭descriptors.‬‭It‬‭should‬‭be‬‭noted‬‭that‬‭the‬‭number‬‭of‬‭instances‬‭throughout‬‭the‬‭classes‬‭are‬
‭highly imbalanced.‬
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‭Figure S7.‬ ‭Total sum of the number of carbon (C),‬‭oxygen (O), sulphur (S), and nitrogen (N) atoms‬
‭within the all-descriptor training dataset (5331 molecules).‬

‭Figure‬‭S8.‬‭Number‬‭of‬‭different‬‭functional‬‭groups‬‭present‬‭in‬‭the‬‭training‬‭data‬‭set‬‭(5331‬‭compounds‬‭-‬
‭80% of the full dataset with 6711 molecular compounds).‬
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‭Figure‬‭S9.‬‭Overview‬‭of‬‭chemical‬‭compounds‬‭and‬‭the‬‭number‬‭of‬‭corresponding‬‭labels‬‭or‬‭descriptors‬
‭provided‬ ‭in‬‭the‬‭data‬‭set‬‭imposed‬‭using‬‭the‬‭computer‬‭derived‬‭taxonomy.‬‭The‬‭majority‬‭of‬‭compounds‬
‭have‬‭between‬‭1‬‭and‬‭4‬‭labels.‬‭See‬‭Figure‬‭S8‬‭for‬‭the‬‭distribution‬‭of‬‭the‬‭labels‬‭obtained‬‭using‬‭the‬‭expert‬
‭taxonomy.‬

‭Figure‬‭S10.‬‭Number‬‭of‬‭compounds‬‭in‬‭the‬‭16‬‭different‬‭classes‬‭using‬‭the‬‭computer‬‭derived‬‭taxonomy.‬
‭It‬ ‭should‬ ‭be‬ ‭noted‬ ‭that‬ ‭the‬ ‭classes‬ ‭are‬ ‭still‬ ‭imbalanced.‬ ‭See‬ ‭Figure‬ ‭S9‬ ‭for‬ ‭the‬ ‭distribution‬ ‭of‬
‭compounds in the 16 expert derived classes.‬
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‭Figure‬‭S11.‬‭Overview‬‭of‬‭chemical‬‭compounds‬‭and‬‭the‬‭number‬‭of‬‭corresponding‬‭labels‬‭or‬‭descriptors‬
‭provided‬‭for‬‭the‬‭dataset‬‭imposed‬‭with‬‭the‬‭expert‬‭derived‬‭taxonomy.‬‭The‬‭majority‬‭of‬‭compounds‬‭have‬
‭between‬ ‭1‬ ‭and‬ ‭4‬ ‭labels‬ ‭similar‬ ‭to‬ ‭that‬‭of‬‭the‬‭computer‬‭taxonomy.‬‭Likewise,‬‭the‬‭upper‬‭bound‬‭of‬‭the‬
‭possible number of labels has decreased from 15-17 in the dataset with all the descriptors to 8-10.‬

‭Figure‬ ‭S12.‬ ‭Number‬‭of‬‭compounds‬‭in‬‭each‬‭of‬‭the‬‭different‬‭classes,‬‭i.e.,‬‭provided‬‭smell‬‭descriptors,‬
‭for‬‭a‬‭total‬‭of‬‭16‬‭parent‬‭term‬‭descriptors‬‭of‬‭the‬‭expert‬‭taxonomy.‬‭It‬‭should‬‭be‬‭noted‬‭that‬‭the‬‭classes‬‭are‬
‭still imbalanced.‬
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‭Figure‬ ‭S13.‬ ‭Number‬ ‭of‬ ‭compounds‬ ‭in‬ ‭each‬ ‭of‬ ‭the‬ ‭different‬ ‭classes‬ ‭using‬ ‭the‬ ‭computer‬
‭taxonomy across the train and test splits.‬

‭Figure‬ ‭S14.‬ ‭Number‬ ‭of‬ ‭compounds‬ ‭in‬ ‭each‬ ‭of‬ ‭the‬ ‭different‬ ‭classes‬ ‭using‬ ‭the‬ ‭expert‬
‭taxonomy across both train and test splits.‬
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‭ERROR ANALYSIS AND FEATURE IMPORTANCE‬

‭To‬ ‭investigate‬ ‭the‬ ‭most‬ ‭relevant‬ ‭features‬ ‭that‬ ‭the‬ ‭machine‬ ‭learning‬ ‭model‬ ‭uses‬ ‭for‬ ‭its‬
‭predictions,‬ ‭the‬ ‭model’s‬ ‭feature‬ ‭importance‬ ‭is‬ ‭looked‬ ‭at.‬ ‭However,‬ ‭since‬ ‭the‬ ‭feature‬
‭importance‬ ‭of‬ ‭the‬ ‭model‬ ‭is‬ ‭based‬ ‭on‬ ‭how‬ ‭the‬ ‭model‬ ‭fits‬ ‭the‬ ‭training‬ ‭dataset,‬ ‭it’s‬ ‭not‬ ‭as‬
‭reliable.‬ ‭Permutation‬ ‭feature‬ ‭importance‬ ‭(PFI)‬ ‭proves‬ ‭a‬ ‭more‬ ‭reliable‬ ‭technique,‬ ‭where‬
‭permutations‬‭are‬‭added‬‭to‬‭the‬‭features‬‭of‬‭the‬‭test‬‭data‬‭to‬‭rank‬‭features‬‭based‬‭on‬‭how‬‭much‬
‭a‬‭given‬‭score‬‭metric‬‭drops‬‭upon‬‭permuting‬‭a‬‭given‬‭feature.‬‭The‬‭limitation‬‭of‬‭the‬‭PFI‬‭is‬‭that‬‭it‬
‭looks‬ ‭at‬ ‭the‬ ‭drop‬‭of‬‭overall‬‭macro‬‭scores‬‭for‬‭evaluating‬‭feature‬‭importance‬‭and‬‭there‬‭is‬‭no‬
‭class‬ ‭specificity.‬ ‭Therefore,‬ ‭SHAP‬ ‭Value‬ ‭Analysis‬ ‭are‬ ‭used‬ ‭in‬ ‭a‬ ‭second‬ ‭step‬ ‭(see‬ ‭further‬
‭below).‬

‭Figure‬‭S15.‬‭Feature‬‭importance‬‭of‬‭the‬‭XGBoost‬‭model‬‭for‬‭the‬‭Computer‬‭derived‬‭Taxonomy.‬‭The‬‭plot‬
‭shows‬ ‭that‬ ‭the‬ ‭features‬ ‭BCUTZ-1h,‬ ‭BCUTv-1l‬ ‭and‬ ‭VSA-Estate6‬ ‭are‬ ‭relevant‬ ‭for‬ ‭the‬ ‭model‬ ‭to‬
‭complete the classification task. Note that this is based on the training data alone.‬
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‭Figure‬ ‭S16.‬ ‭Feature‬ ‭importance‬ ‭of‬ ‭the‬ ‭XGBoost‬ ‭model‬ ‭for‬ ‭the‬ ‭Expert‬ ‭derived‬ ‭Taxonomy.‬‭The‬‭plot‬
‭shows‬‭that‬‭the‬‭features‬‭BCUTZ-1h,‬‭SIC0‬‭and‬‭VSA-Estate6‬‭are‬‭relevant‬‭for‬‭the‬‭model‬‭to‬‭complete‬‭the‬
‭classification task. Note that this is based on the training data alone.‬
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‭SHAP‬ ‭Value‬ ‭Analysis.‬ ‭The‬ ‭SHapley‬ ‭Additive‬ ‭exPlanations‬ ‭(SHAP)‬ ‭analysis‬ ‭employs‬ ‭a‬
‭game-theoretic‬ ‭approach‬ ‭to‬ ‭assign‬ ‭SHAP‬ ‭values,‬ ‭which‬ ‭represent‬ ‭the‬ ‭contribution‬ ‭or‬
‭importance‬‭of‬‭each‬‭feature‬‭to‬‭a‬‭machine‬‭learning‬‭model’s‬‭output‬‭[LUN].‬‭The‬‭resulting‬‭values‬
‭can‬‭be‬‭used‬‭to‬‭interpret‬‭the‬‭model‬‭predictions.‬‭We‬‭provide‬‭the‬‭SHAP‬‭summary‬‭plots‬‭for‬‭the‬
‭different‬‭classes‬‭in‬‭both‬‭the‬‭computational‬‭and‬‭expert‬‭taxonomies.‬‭The‬‭features‬‭are‬‭listed‬‭on‬
‭the‬‭y-axis,‬‭while‬‭the‬‭x-axis‬‭indicates‬‭the‬‭magnitude‬‭and‬‭direction‬‭of‬‭their‬‭contribution‬‭to‬‭the‬
‭performance‬ ‭output‬ ‭of‬ ‭the‬ ‭XGBoost‬ ‭classifier.‬ ‭Each‬ ‭point‬ ‭in‬ ‭the‬ ‭plots‬ ‭represents‬ ‭an‬
‭individual‬ ‭data‬ ‭instance,‬‭with‬‭color‬‭indicating‬‭the‬‭actual‬‭feature‬‭value‬‭(red‬‭for‬‭high,‬‭blue‬‭for‬
‭low).‬ ‭Features‬ ‭are‬ ‭ranked‬ ‭based‬ ‭on‬ ‭importance,‬ ‭with‬ ‭those‬ ‭at‬ ‭the‬ ‭top‬ ‭contributing‬ ‭most‬
‭significantly.‬ ‭The‬ ‭horizontal‬ ‭spread‬ ‭of‬ ‭points‬ ‭reflects‬ ‭the‬ ‭extent‬ ‭of‬ ‭a‬ ‭feature’s‬ ‭influence‬
‭across‬ ‭the‬ ‭dataset,‬ ‭with‬ ‭wider‬ ‭distributions‬ ‭imply‬ ‭greater‬ ‭overall‬ ‭impact‬ ‭on‬ ‭model‬
‭predictions.‬

‭Figure‬‭S17.‬‭SHAP‬‭analysis‬‭of‬‭the‬‭“Flower”‬‭class‬‭for‬‭the‬‭XGBoost‬‭classifier‬‭in‬‭both‬‭taxonomies,‬‭see‬
‭manuscript for details (right-hand side: computer derived; left-hand side expert derived).‬
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‭Figure‬‭S18.‬‭The‬‭feature‬‭‘BCUTZ-1h’‬‭across‬‭both‬‭taxonomies,‬‭computer‬‭and‬‭expert‬‭derived‬
‭(upper‬ ‭and‬ ‭lower‬ ‭part,‬ ‭respectively).‬ ‭This‬ ‭is‬ ‭the‬ ‭most‬ ‭defining‬‭feature‬‭for‬‭the‬‭‘Sulfur’‬‭class‬
‭across‬ ‭both‬ ‭taxonomies,‬ ‭corresponding‬‭to‬‭the‬‭atomic‬‭number‬‭of‬‭the‬‭atoms‬‭in‬‭the‬‭molecule‬
‭samples,‬‭16‬‭in‬‭the‬‭case‬‭of‬‭sulfur‬‭atoms.‬‭For‬‭the‬‭Computer‬‭Taxonomy,‬‭we‬‭can‬‭see‬‭that‬‭a‬‭lot‬
‭of‬ ‭data‬ ‭points‬ ‭cluster‬ ‭around‬ ‭16‬ ‭for‬ ‭the‬ ‭‘N’‬ ‭class‬ ‭which‬ ‭conceptually‬ ‭corresponds‬ ‭to‬ ‭the‬
‭Sulfur‬‭class,‬‭as‬‭well‬‭as‬‭for‬‭the‬‭‘I’‬‭class,‬‭which‬‭corresponds‬‭to‬‭the‬‭“Savory”‬‭class‬‭of‬‭the‬‭expert‬
‭taxonomy.‬

‭25‬



‭The‬‭remaining‬‭pages‬‭consist‬‭of‬‭classwise‬‭SHAP‬‭plots‬‭for‬‭all‬‭classes‬‭across‬‭both‬‭taxonomies‬
‭which individually show feature contributions for the model's decision making.‬

‭Figure‬ ‭S19:‬ ‭SHAP‬ ‭analysis‬ ‭of‬‭the‬‭XGBoost‬‭classifier‬‭on‬‭the‬‭computer‬‭taxonomy‬‭for‬‭all‬‭16‬
‭classes (pages 24-27). See also manuscript for the available code on the GitHub repository.‬
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‭Figure‬ ‭S20.‬ ‭SHAP‬ ‭analysis‬ ‭of‬ ‭the‬ ‭XGBoost‬ ‭classifier‬ ‭on‬ ‭the‬ ‭expert‬ ‭taxonomy‬ ‭for‬ ‭all‬ ‭16‬
‭classes (pages 28-31). See also manuscript for the available code on the GitHub repository.‬
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