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Abstract

One of the key challenges to predict odor from molecular structure is unarguably our limited
understanding of the odor space and the complexity of the underlying structure-odor
relationships. Here, we show that the predictive performance of machine learning models for
structure-based odor predictions can be improved using both, an expert and a data-driven
odor taxonomy. The expert taxonomy is based on semantic and perceptual similarities, while
the data-driven taxonomy is based on clustering co-occurrence patterns of odor descriptors
directly from the prepared dataset. Both taxonomies improve the predictions of different
machine learning models and outperform random groupings of descriptors that do not reflect
existing relations between odor descriptors. We assess the quality of both taxonomies through
their predictive performance across different odor classes and perform an in-depth error
analysis highlighting the complexity of odor-structure relationships and identifying potential
inconsistencies within the taxonomies by showcasing pear odorants used in perfumery. The
data-driven taxonomy allows us to critically evaluate our expert taxonomy and better
understand the molecular odor space. Both taxonomies as well as a full dataset are made
available to the community, providing a stepping stone for a future community-driven
exploration of the molecular basis of smell. In addition, we provide a detailed multi-layer expert
taxonomy including a total of 777 different descriptors from the Pyrfume repository.
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1 Introduction

Despite numerous rules of thumb proposed by fragrance chemists over the years, predicting
the smell of molecules directly from molecular structure remains a challenging task’. One of
the main goals in fragrance chemistry is to relate the physical and structural properties of
odorants to their perceptual odor properties in order to rationally design new compounds of a
desired smell. The complexity of predicting smell directly from structure arises from the fact
that molecules with similar structures can possess very distinct odors, while structurally
unrelated molecules with different structures may produce close to identical odors? . Figure 1
shows selected examples of odorant molecules (odorants) and their reported odor descriptors.
In the different cases, it can be seen that the addition of a simple methyl group (depicted in
blue) has different effects on the smell of the original odorant, ranging from no effect to a
complete loss of the biological activity.
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Figure 1. Impact of a small structural modification (addition of a single methyl group, symbolized by
blue line). The effect ranges from no change to a complete loss of odor. Figure adapted from ref.2.

In addition to this and the complex underlying biology, describing a smell and quantifying it
directly depends on semantic language and individual perception of trained experts. This is a
different situation from other senses such as vision and hearing that do not necessitate
subjective input. Nonetheless, the overall complexity of the sense of smell provides a unique
opportunity to explore the usefulness of machine learning techniques, for instance to identify
relevant structural patterns directly from available molecular data without the necessity to
elucidate the complex biology. While several machine learning approaches have been
reported for this purpose over the past decade®-°, the most recent breakthrough was achieved
using a graph neural network (GNN) to generate an embedding for molecular representation
which is plotted as Principal Odor Map (POM)®. Using this GNN-derived embedding space
allowed for accurate structure-based odor predictions of novel odorants that outperformed
median human panelists. Despite this success, it is still difficult to discern which facets of the
molecular structure contribute to the odor classification task due to the limited interpretability
of deep learning technologies. Still, the POM provides additional insight into the underlying
perceptual odor similarity between odor descriptors and suggests an intrinsic conceptual
hierarchy between the descriptors that may be explored to build a taxonomy. Therefore, we
hypothesize that structuring odor descriptors into a taxonomy that captures hierarchical and
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correlated relationships can enable machine learning models to learn more robust and
generalizable patterns from molecular-odor data. This concept is visualized in Figure 2, where
our proposed odor taxonomy is applied in the classification of two popular molecular examples
from perfumery and the flavor industry: geraniol and grapefruit mercaptan.
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Figure 2. Example of applying the expert taxonomy on geraniol and grapefruit mercaptan. By
introducing the taxonomy, the output space is reduced from six to three and seven to four descriptors
for geraniol and grapefruit mercaptan, respectively. The taxonomy is imposed upon the dataset by
replacing the odor descriptor annotations of each molecule with their respective higher level umbrella
terms (descriptors falling under a higher level umbrella term are color coded with matching colors).
Note that in the case of grapefruit mercaptan the smell impression gradually shifts from fruity
to sulfur within increasing concentration. This dosage-dependent effect is not taken into
account for the ML classifiers trained in this work.

Although simple taxonomies based on clustering odor descriptors on co-occurrence from
structure-odor data via web scraping have been reported before,” there is no available open
source taxonomy for molecular descriptors that can be used to improve structure—odor
prediction by organizing odor descriptors into semantically or perceptually meaningful groups.
To address this gap, we use a selection of several datasets available on the Pyrfume
repository® that comprises more than 40 stimulus-linked olfactory datasets across different
species. In total, Pyrfume provides a selection of over 20,000 odorants and over 770 distinct
odor descriptors. However, the repository also contains data that was obtained through web
scraping and needs to be carefully checked before usage. For this work, we selected all the
useful datasets from the Pyrfume collection and aggregated a molecular dataset that can be
used to explore structure-based odor prediction using machine learning models. Thus, we
investigate whether the hierarchical ordering of odor descriptors helps convey essential
information that allows us to deepen our understanding of structure-odor relationships. Our
work provides three main deliverables, namely (i) a compiled molecular dataset for structure-
based odor prediction tasks, (ii) an expert and a data driven taxonomy for odor descriptors;
and (iii) insight into model prediction and interpretability by way of linking molecular structural
patterns to odor profiles. All the data, taxonomies, and models are openly accessible on the
GitHub repository (see section 6). We provide an improved predictive performance of
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interpretable machine learning models for structure-based odor predictions based on an
expert and a data-driven odor taxonomy. Both taxonomies improve the predictions of Logistic
Regression, random forest, and XGBoost® models, and outperform random groupings of odor
descriptors that do not reflect existing relations between odor descriptors. We evaluated the
quality of both taxonomies based on their predictive performance across diverse odor classes
and conducted a detailed error analysis that reveals the underlying complexity of odor—
structure relationships. Finally, we discussed current limitations, challenges, and future
opportunities and directions of structure-based odor predictions using machine learning.
Although there are more aspects of the olfaction sense where data has been gathered to
leverage machine learning techniques, for instance in the physiology of odor recognition or
genetic patterns in olfactory phenotypes, our work focuses on the task of structure-based odor
prediction. For other purposes, the interested reader may consult several reviews that have
treated these topics'% 1.
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2 Methods

In order to circumvent the complex biology and leverage conceptual hierarchies between odor
descriptors to improve the performance of interpretable machine learning models, we build
two different taxonomies: an expert-derived taxonomy and a data-driven taxonomy based on
the co-occurence of odor descriptors within the molecular dataset. In our approach, we built a
curated structure-odor dataset, containing expert-annotated odor descriptors. The odor
descriptors from the merged datasets are used as a basis to build the taxonomies that are
subsequently used to benchmark the predictive performance of interpretable machine models.
A birds eye view of the approach is depicted in Figure 3.
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Figure 3. Schematic overview of the implementation used in this work. Expert and data driven
taxonomies are leveraged to improve machine learning based odor prediction from openly accessible
molecular datasets. We use randomized grouping of the 146 unique descriptors to benchmark the
usefulness of the two taxonomies. Subsequently, the predictive performance of both taxonomies across
different odor classes serves as a quality metric that allows for an in-depth error analysis which
highlights the inherent complexity of odor-structure relationships.

2.1 Dataset preparation

The molecular datasets used in this study were assembled using the open access repository
Pyrfume. Pyrfume is an open-source project aimed at analyzing odorants and their features,
providing both tools and access to diverse datasets. These datasets include molecular
structures, perceptual data, and physicochemical properties, making it a valuable resource for
researchers in the field.

From around fifty datasets in the repository, 14 datasets contained data about odor descriptors
and compounds : Arctander'?, aromaDB'3, Dravnieks, FooDB', FlavorDB'®, Flavornet'®,
Goodscents'”, IFRA'®, Keller (2012'° and 20162%), National Geographic’s Smell Survey?',
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Sharma (2021a%? and 2021b2%), Sigma Fragrance and Flavor Catalog (2014)2*, Snitz?° and
Leffingwell?5.

Among these, 7 datasets were selected to be used for the classification task: Arctander,
aromaDB, FlavorDB, Flavornet, Goodscents, IFRA, and Leffingwell. The selection was based
on: 1) datasets that concern human subjects (excluding animal based datasets), 2) datasets
that contain descriptors for single odorants (molecules, not mixtures). Furthermore, these are
the most relevant datasets with respect to the reliability of the reported odorants, their odor
descriptors, and listed physicochemical properties. The datasets were merged and processed
to create a comprehensive dataset with 6711 molecules and 146 distinct odor descriptors. In
the remainder of this paper, we will refer to this aggregation as Merged molecular dataset
(MMD). Table 1 provides a summary of the merged datasets, the publication year, the number
of chemical compounds, and the number of odor descriptors.

Table 1. Summary of the datasets retrieved from the Pyrfume repository to (i) build the molecular
dataset (comprising a total of 6711 different molecules with 146 unique odor descriptors) used to train
different ML classifiers, and (ii) merge a maximum number of odor descriptors for the open access
expert taxonomy, which now comprises a total of 557 unique odor descriptors and 60 hedonic odor
qualities (see section 2.2.1 for additional details).

dataset Publication year | # Compounds # Odor Descriptors
Arctander'? 1960 2580 762
AromaDB'3 2018 869 127
FlavorDB'® 2018 525 255
Flavornet'® 2004 716 195
Goodscents’ 2004 4622 667
IFRA'8 2019 1146 191
Leffingwell2® 2001 3487 113
MMD"2) This work 6711 146
Expert Taxonomy (ET) This work n.a. 617

1 The number of compounds is not an exact addition over all datasets due to the overlap of samples that needed
to be removed to avoid duplicates. Henceforward, this aggregation is referred to as Merged molecular dataset
(MMD)

2) Note that the data-driven taxonomy (DT) is based on the 146 odor descriptors of the MMD

Selected results from the initial data exploration, e.g., distribution of molecular weights,
number of descriptors per molecular sample, and general statistics of the dataset are provided
in Figures S4-S11. The majority of the compounds possess 1 to 5 labels, while 32 compounds
exhibit 13 odor labels or more descriptors, with a maximum of 17 descriptors. It should be
noted that for each molecule the strength of the individual odor descriptors is not provided and
the descriptors are considered to be equally strong. In addition, the data is imbalanced towards
“nice” smells that are linked to the food and perfume industry. There are more instances within
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the fruity class and floral class of the training dataset, 1982 and 1410 respectively, then in the
camphor class with only 215 molecular samples.

To train and validate the machine learning models (see section 2.3 for details), the dataset
was split into a training and test dataset using a second-order iterative stratification to take the
higher-order relationships between labels into account when doing a data split and make sure
that the distribution of label pairs between splits stays consistent. The class distribution of the
datasets is consistent across splits and is the case as well after imposing both taxonomies as
can be seen in Figures S9-S10.

2.2 Taxonomy derivation

To leverage the hierarchical connections within the odor descriptors for the machine learning
classification, we rely on two different approaches: benefiting from expert domain knowledge
by manually going through all 617 odor descriptors across the 14 previously-mentioned
datasets in Pyrfume and grouping them into classes that reflect existing relations between
them, as well as generating a data-driven correlation-based clustering directly from the MMD.
The detailed process to compile both taxonomies is described below.

2.2.1 Expert-derived multi-domain taxonomy of odor descriptors (ET)

In order to have a complete list of all descriptors, we aggregated descriptors coming from all
14 datasets if they had an identical label or if the Levenshtein distance between labels was
<1. This enabled us to consider as a single concept small differences in spelling like ‘fish’ and
fishy’” or ‘wine-like’ and ‘winelike’. The aggregations have been manually validated by experts
to avoid any possible mismatch. This aggregation leads to 617 distinct descriptors. Most of
these descriptors are present in only one source dataset.

Our team possesses expertise in chemistry, perfumery and historical smell culture, which
allows us to propose a taxonomy to group the gathered 617 odor descriptors in different
classes based on our domain knowledge. We decided to indicate descriptor groups: (i) source-
based descriptors: descriptors relating the smell to a single odor (lemonlike, yeasty,
wormwood) or overarching class of scents (fruity, woody, green) [557 concepts] and (ii)
olfactory qualities: general adjectives expressing hedonic, trigeminal or emotional responses,
or intensifiers (nice, fresh, fragrant, putrid, dry, light, heavy) [60 concepts].

The Source-based descriptors were divided in 16 different classes ’scent families’ and 31
subclasses, e.g., the “Alcohol” class contains the sub-classes “Acid” and “Alcohol”, which each
contains their own odor descriptors. The list of classes and sub-classes are provided in the
supporting information, the hierarchical expert taxonomy is provided on the ODEUROPA
website.

Henceforward, the taxonomy will be referred to as Expert derived Taxonomy (ET). For this
paper we only consider the 557 source-based descriptors, since the quality descriptors are
harder to relate to specific odorant molecules. General statistics of the dataset after imposing
the expert dataset are provided as supporting information.
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2.2.2 Data driven taxonomy (DT)

Next to the expert taxonomy, it is useful to generate a data-driven taxonomy directly from co-
occurence of descriptors within the MMD. This allows to avoid (or identify) bias from experts
and can help to later finetune the expert taxonomy.

The odor descriptors of the MMD co-occur frequently with perceptually similar odor
descriptors. A correlation matrix based on this co-occurrence was used to group the odor
descriptors into 16 clusters using Agglomerative hierarchical clustering, a clustering method
that iteratively merges individual descriptors to form groups with minimal internal distances,
Euclidean in our case, as well as using Ward linkage to minimize inter-cluster variance (see
ESI for parameters used). The number of clusters was set to 16 to allow the comparison with
the ET, where 16 classes are used to group conceptually related odor descriptors. It should
be noted, that while the data-driven taxonomy has been intentionally limited to 16 classes, the
elbow method suggests an ideal number of 43 groupings based on co-occurence, which may
be used to generate a co-occurrence based hierarchical multi-domain taxonomy in future
work. Figure 4 depicts a zoom into 19 odor descriptors of the correlation matrix, based on the
co-occurrence of the odor descriptors within the training split of MMD. The figure shows two
main clusters that can intuitively be attributed to an “alcohol” and a “fruity” odor cluster. Note
that the odor descriptors “wine” and “fruity”, as well as “apricot” and “peach” have a high
frequency of co-occurence, which would also be an intuitive association to most people. The
full correlation matrix containing all 146 descriptors is provided as supporting information
(Figure S4). Henceforward this taxonomy will be referred to as Data driven Taxonomy (DT).
The complete list of all clusters is provided in the supplementary materials. In the discussion,
the 16 classes from both taxonomies are compared against one another to elucidate the
choices made by the experts compared to the clusters revealed directly from the co-
occurrence matrix of odor descriptors.

2.3 Machine learning model, feature selection and hyper-parameter tuning

To evaluate whether the grouping of higher order odor descriptors helps the machine learning
task, we compare the performance of machine learning models applied on the MMD using
both taxonomies (ET and DT). Three interpretable machine learning models were selected to
benchmark the usefulness of taxonomies for structure-based odor predictions: Logistic
regression, Random Forest, and XGBoost®. The hyperparameter tuning of the model was
done using Bayesian optimization through skopt?’. The final features and hyperparameters
used are provided in the supporting information (Table S1-S3). Modred, a free open-source
molecular descriptor calculator?®, was used to generate molecular features from the simplified
molecular input line entry system (SMILES) of all the molecules in our datasets. The resulting
descriptors consist of a total of 713 molecular features, after removing columns with missing
values, ranging from atom types, number of specific atom types, acid/base counts, as well as
older obscure chemoinformatic descriptors like Burden matrices and Chi-descriptors. The
derived molecular descriptors can consist of features using topological representations (2D)
and geometrical representations (3D). The generated features then underwent an exhaustive
feature selection procedure. 0 variance features were removed and then ANOVA F values
were used to filter the features and the best feature for each of the 146 classes was selected.
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This was then narrowed down further through recursive feature elimination, using a random
forest with Permutation Feature Importance, the features are narrowed down to 23.
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Figure 4. Selection of the correlation matrix based on the co-occurrence of 19 odor descriptors of the
MDD. The full correlation matrix is provided as supporting information (Figure S4). The indices are
sorted based on the clustering made using hierarchical agglomerative clustering with ‘ward’ linkage and
using Euclidean distances. A cluster of labels that often co-occur appears as a dark area on the
heatmap. The data-driven taxonomy leverages these co-occurrence patterns to generate the classes
and group the descriptors based on the occurrence throughout the data (see methods section for
additional details).



2.4 Randomized grouping of odor descriptors

In order to validate our approach and benchmark the predictive performance of the proposed
taxonomies, we generated 1000 randomized groupings of all odor descriptors to provide
taxonomies that group odors randomly, independently from any conceptual similarities. This
validation step is crucial to guarantee that performance increase is not due to reducing the
complexity of the classification task, but also because the model catches upon existing links
that can help to interpret structure-odor correlation. Therefore, the odor descriptors are
randomized throughout the 16 classes of the ET and DT. Hereby, the randomization maintains
the template of the original taxonomical structure, i.e., the number of odor descriptors in a
given class (see Table S8-S9).

For each randomized grouping, the performance of the machine learning models are stored
and their scores are assessed through the macro AUROC, F1, Precision and Recall. Due to
computational constraints, the features and hyperparameters derived from the original
descriptor dataset, in the previous section, are used here.

Permuting all 146 descriptors within their respective umbrella terms yields 146 factorial (146!)
possible combinations. While this is not computationally feasible, an approximation of the
score distribution, from the reduction of the output space for all metrics, can be obtained using
the central limit theorem. The central limit theorem states that with the increase in sample size,
the sampling distribution converges toward the population distribution?®. The randomization
sampling has been limited to 1000 trials for both taxonomies. To ascertain if the distribution of
all metrics have converged, we plot the running mean and standard distribution for all metrics.
This is checked for the score metrics for both taxonomies as well as their summations since
there might be differences due to variations in taxonomical structure. We use this combined
distribution for all metrics as representative of the increase in performance for all metrics due
to the reduction of the output space. We then validate both taxonomies by comparing the
metric scores against this distribution: if the taxonomies outperform the distribution, it would
imply that there is more to the performance gain than just the reduction of the output space.

2.5 Interpretability

To investigate the most relevant features that the machine learning model uses for its
predictions we investigated the feature importance of the different models. Firstly, the
permutation feature importance (PFI) was used to assess the impact of each feature on the
model performance. Here, permutations are added randomly to the features of the test data
to rank features by measuring the decrease of a given score metric. A key limitation of PFl is
the lack of class-specific insight it can provide as it focuses mainly on the overall macro scores.
To circumvent this, we subsequently carried out a SHapley Additive exPlanation (SHAP) value
analysis®. This method makes use of cooperative game-theory to assign a value to each
feature representing its contribution to the classification decision of the model. The SHAP
values are plotted in summary plots for each class to understand the feature contributions for
each class for both taxonomies to interpret the model output and the decision making that
went behind it.
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3 Results and Discussion
3.1 Taxonomy validation through randomized grouping of odor descriptors

To evaluate the predictions using the two structured taxonomies, we first established a
baseline model using the full unstructured set of odor descriptors. This initial step allows us to
assess the inherent difficulty of predicting individual odors directly from molecular features,
and to quantify the benefit of using structured hierarchical taxonomies. The baseline model
performance of the XGBoost classifier trained to perform multi-class classification over 146
classes (using the MMD) achieved an overall score of 0.6 AUC, which is above random and
suggests that the model is able to capture some meaningful signal in the data. However, this
performance remains modest indicating that this is not a trivial classification task. There are
several potential limitations that can lead to this such as difficult feature representation, the
limited data quality, and potentially difficult class separability based on underlying structural
patterns in the data. Despite extensive hyperparameter tuning, none of the models yielded
performances as reported in previous work®. We thus use this model as a baseline and
compare it to the performance for the different models when the derived taxonomies are
imposed and classification task is simplified to 16 classes.

The comparative evaluation of the different performances using an XGBoost classifier are
provided in Table 3 and Figure 4. The results show that models trained on the dataset with
imposed taxonomies outperform models trained on the original descriptors across all metrics
for all the classifiers. Both taxonomies perform better than the distribution of the performance
metrics of the randomized groupings of odor descriptors. It should be noted that the
performance metrics of the randomized taxonomies is higher than 0.5 which would mean that
the models are still picking up on a signal or structure in the data despite the loss of meaningful
class groupings from the taxonomies. This is because the randomized taxonomies, for the
most part, are not entirely meaningless due to the intercorrelation of many odor descriptors.
This demonstrates the inherent complex hierarchical relationships of the odor descriptor space
and the limitations of a two-layer taxonomy to capture conceptual links between different
descriptors.

Despite the high number of possible combinations for the randomized groupings (146!
(factorial) in total), it is almost unavoidable to create classes where none of the descriptors
are correlated. The scores for the randomized groupings can serve as a baseline reflecting
the ability of the model to extract signal from noise and serve as a proxy for the precision of
ET and DT. Hereby, a higher score indicates a better conceptual clustering and arrangement
of the odor descriptors. Both taxonomies outperform the random groupings, with the DT
showing a marginal advantage over the expert taxonomy.

It should be noted that the reported performances represent the average over all 16 classes.
For the following sections, we focus on the performance results obtained using the XGBoost
classifier, which outperformed the logistic regression and the random forest classifiers. The
performances of the two latter models, as well as the class-wise scores of the XGBoost model
for both taxonomies are provided in the ESI (Tables S4-S7).
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Table 2. Performance metrics of the XGBoost classifier as obtained using the full 146 descriptors, the
taxonomies, and the randomized grouping. The results are visualized in Figure 4. The corresponding
performance metrics for the random forest and logistic regression models are provided as supporting
information.

Dataset AUROC F1 Precision Recall
MMD 0.604 0.268 0.393 0.219
ET" 0.684 0.496 0.553 0.455
DT" 0.698 0.513 0.567 0.474
Random grouping? 0.648(07) 0.455(15) 0.511(15) 0.418(15)

" The classwise performance metrics are provided in the ESI (TableS6 and TableS7).
2) The standard deviation for the 1000 randomized grouping is given in parentheses with respect to the
last 2 digits (see ESI for additional details).

Validation of Taxonomies using XGBoost
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Figure 5. Box plot comparing the performance metrics of the XGBoost classifier using the randomized
grouping and the two benchmarked taxonomies (ET and DT) as well as the scores obtained from the
original descriptors. The numerical values of each metric are provided in Table 2.
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3.2 Conceptual comparison of derived taxonomies

To provide insight into how well each taxonomy reflects meaningful relationships between
odor descriptors and how these align with known concepts in perfumery and sensory science,
it is essential to go beyond the quantitative metrics-based comparison and include semantic
coherence, domain knowledge, and structural elements of the taxonomies. Therefore, we
compare the 16 data-driven groups (Classes A to P) to the 16 expert-derived classes to
identify conceptual similarities between them. The complete list of odor descriptors and the
different odors grouped together to build the taxonomies are provided in the supporting
information (see Tables S8 and S9). While this comparison highlights where the two
taxonomies overlap and differ from one another, it also raises the question how easily each
grouping of odor descriptors may be interpreted by a human reader or by a large-language
model (LLM). To address this, we used the latest version of ChatGPT (GPT-40) to define class
names for the 16 classes within the DT (The prompt used to generate the classes is provided
in the ESI). The comparison is shown in Table 3. While several classes of the DT can be
directly mapped to the classes defined within the expert taxonomy, i.e., “Gourmand”, “Flower”,
“Alcohol”, “Savory”, “Fruity”, “Sulfur”, and “Woody”, the others are more difficult to assess. The
classes that can be directly mapped to expert defined classes reflect groupings of odor
descriptors that are mainly based on conceptual odor similarities, which was the central
element to structure the expert taxonomy. Other data-driven classes, e.g., class “E” cannot be
directly mapped to one of the 16 expert defined classes. Class “E” contains a mix of
conceptually related odor descriptors such as 'cinnamon’, 'clove’, 'spicy’, and 'vanilla' which
may be grouped under the higher term ‘spicy’. However, it also includes seemingly unrelated
terms such as 'balsamic’, 'medicinal’, 'phenol’, 'smoked'. These descriptors are conceptually
not similar to the listed ‘spicy’ descriptors, but rather evoke medicinal practices or properties.
Vanilla is also part of the gourmand family within perfumery and sometimes classified as
having a green aspect3'. The DT derived class “E” can therefore rather be described as a
“Health” or "Medicinal" category. More in alignment with the ET that shows inherent bias
towards grouping odor descriptors on conceptual similarities, the suggestion from the
ChatGPT describes class “E” as “spicy” without taking the outliers 'balsamic’, 'medicinal’,
'phenol’, 'smoked' into account. It should be noted that “medicinal” and “smoky” do not seem
source based, whereas the other descriptors do. Often myrrh, which is a resin, is qualified as
medicinal®2.

13


https://www.zotero.org/google-docs/?BdzTpl
https://www.zotero.org/google-docs/?PA838o

Table 3. Comparison of the 16 odor classes within the 2 defined taxonomies, including the number of
descriptors within each class. The class definitions for the DT groupings (Classes A to P) are compared
to the ET categories and to categories provided through a large language model (LLM: GPT-4). Class
descriptions that are similar between the two taxonomies are highlighted in bold. The full list of
descriptors within the different classes of the ET and DT are provided as supporting information (Table

S8 and S9).

Class" # descriptors? Class?® # descriptors? | Similarity® LLM®
Alcohol 10 A 12 | Anethole Aromatic
Animal 4 B 14 | Gourmand Gourmand
Aquatic 3 C 22 | Flower” Floral
Balsamic 2 D 13 | Pungent Pungent
Chemical 12 E 8 | ® Health/Medicinal | Spicy
Earthy 5 F 8 | ® Dairy/Cream Lactonic
Flower 15 G 8 | ® Green/Fat Green
Fruity 28 H 8 | Alcohol Alcoholic
Gourmand 13 I 7 | Savory Animalic
Green 9 J 11 | Fruity Fruity
Herbal 5 K 8 | ® Fresh Citrus
Savory 23 L 6 | ® Clean Camphorous
Smoky 5 M 4 | Acid Acidic
Spices 8 N 3 | Sulfur Sulfurous
Sulfur 3 0] 10 | Woody Woody
Woody 9 P 4 | Berry Berry

1) 16 classes defined by domain experts for the expert-derived taxonomy.

2) Number of descriptors included in each class of the expert-derived taxonomy.

3)16 classes obtained from the data driven taxonomy.

3) Number of descriptors included in each class of the data driven taxonomy.

5 Conceptual similarity of the data driven classes to the expert defined classes as estimated from the experts’
perspectives.

8 Suggested class name for the descriptors in the different classes of the data taxonomy as suggested using the
large language model (LLM) ChatGPT-40. See supporting information for the list of descriptors within the different
classes.

) In perfumery this class is usually called 'floral'.

8) Note that not all the classes from data taxonomy can be mapped directly to classes within the expert-derived
taxonomy. The highlighted classes are not fully based on conceptual similarities but also evoke effect or odor
practices (see text for more details).
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There are four other DT derived classes that exhibit similar patterns: classes ‘F’, ‘G’, ‘K’, and
‘L’. Looking closer into the descriptors of class ‘K’ and class ‘L', the overarching name for these
classes may be set to “Fresh” and “Clean”, while the LLM suggests “Citrus” and
“Camphorous”, respectively. Here, we need to keep in mind that odor descriptors such as
‘clean' are often culturally determined and may be linked to different odors in different
countries. Overall, our comparison shows that the DT does not solely rely on conceptually
related odor classes but includes the effect and quality that the descriptors share in the human
world. In contrast, the ET classifies descriptors more on the odor impression let by pre-existing
expectations from the side of the experts, their knowledge of chemistry, historical scent
classifications and existing scent wheels used in perfumery'. This is also reflected in the
selection of the grouping terms generated by the LLM, which tries to flatten the different
descriptors within the DT classes back to a lower dimension that is similarly biased toward
conceptual odor similarities as the expert derived classes.

3.3 Error analysis and Interpretability of the classification results using XGBoost

To shed some light into the underlying structure-odor relationships of our dataset and
taxonomies, it is important to conduct an error analysis on misclassifications of the model as
well as interpretability studies such as permutation feature importance (PFl). These insights
help to verify that the model is learning meaningful patterns rather than artifacts, and allow
identifying limitations and bottlenecks to guide future feature engineering and model
refinements. The PFI plots of the XGBoost classifier (the best performing model see Section
3.1) is provided in Figure 5 for both taxonomies. Notably, several features originating from the
Burden matrix such as “BCUTZ_1h” and “BCUTare-1I" exhibit significant drops in the AUC
upon permutation, indicating their strong influence on the model performance. However, it
should be noted that PFI is more indicative of overall performance of the model and that the
class-specific relevance still needs to be taken into account to gain deeper insight into the
underlying feature importance of the model.
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Figure 6. Permutation feature importance (PFI) of the XGBoost model for the data-driven taxonomy
(left) and the expert-derived taxonomy (right). While such as BCUTZ-1h, BCUTare-1l and BCUTc-1I
are very important to attain good macro scores with the data-driven taxonomy, the most relevant
features for the expert taxonomy are BCUTZ-1h, BCUTare-1l and Xpc-4dv. Note that class-specific
relevance needs to be taken into account to obtain more insight into the feature importance of the
models.
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Additionally, the SHAP plots for the Sulfur and Savory class can be seen in Figure 6 and
Figure 7. The SHAP plots of all remaining classes for both taxonomies are provided in the
ESI (FigureS14-S16). Altogether, the "Sulfur’ and “Savory” classes are the best performing
classes for both taxonomies with AUC over 0.75. The feature which contributes significantly
to the Sulfur class across both taxonomies is 'BCUTZ-1h", which is particularly important within
the SHAP values of the DT. The BCUTZ-1h feature represents the highest eigenvalue of the
Burden matrix weighted by the atomic number. This corresponds to the atomic number of the
heaviest atom in the compound, which is 16 in sulfur-containing compounds. This feature
helps in classifying with both the "Sulfur’ and “Savory” classes, which are both similar in odor
profile (see Figure 7). There is also minor variation in the SHAP values of the Sulfur class
across both taxonomies as well, where in the DT, the influence of BCUTZ-1h is more
pronounced as compared to the ET where it shares similar weight with other features. This
might be indicative of the odor descriptors under their respective umbrella terms, wherein the
‘Sulfur’ class in the DT is more narrow while that of the ET is a bit more general. We can see
this in the distribution of BCUTZ-1h values across different taxonomies (see Figure S18):
where in the DT, both the ‘I’ and ‘J’ classes, ‘Savory’ and ‘Sulfur’ respectively, have typically
a higher BCUTZ-1h score with the Sulfur class being more pronounced, and in the ET the
distribution of BCUTZ-1h is more similar for ‘Savory’, ‘Smoky’, and ‘Sulfur.’ It is interesting to
note that there is a distinction between Savory and Sulfur and the features that help predict it.
While BCUTZ-1h is the top feature for both taxonomies, when considering ‘Savory’, the feature
SICO seems to be the most important predictor across both taxonomies. 'SICQ’ is the structural
information content of the molecule normalized by atom count. This feature corresponds to
the degree of structural complexity where a high value suggests distinct atom types or diversity
in atom degrees and a low value suggests more uniformity in atom types. The SHAP plots that
for the Savory class, a higher SICO value pushes the model with towards a positive
classification for Savory as compared to ‘Sulfur’ where interestingly, the inverse occur where
for both taxonomies, a higher SICO value pushes the model against classifying Sulfur. This
could imply that minute variations in distinct atom types or diverse atom degrees could explain
the minor differences in the odor profiles of both “Sulfur” and “Savory”.
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Figure 7. SHAP analysis of the XGBoost classifier class in both Taxonomies for the ET-defined “Sulfur’
class and the corresponding DT class (Class “N”). We can see that the feature ‘BCUTZ-1h’ is listed as
the most important feature for classifying ‘Sulfur’ across both taxonomies. For the full list of descriptors

see supporting information.
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Figure 8. SHAP analysis of the XGBoost classifier class in both Taxonomies for the ET-defined

“Savory” class and the corresponding DT class (class “I”). Note that in both taxonomies, the feature
‘SICO’ has the biggest contribution, overtaking ‘BCUTZ-1h’ from the ‘Sulfur’ class for both taxonomies.
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3.4 Testing the taxonomy models for class prediction: The case of pear odorants

To evaluate the applicability of the taxonomy models on interesting odorants used in
perfumery, we selected five pear odorants and classified their odor description using the two
XGBoost taxonomy based models. Pear odorants play a well-established role in perfumery
due to their popularity as a top note in perfumes where they are often used to design fresh,
bright, and juicy fragrances.

The molecular structures of the 4 pear odorant molecules used in perfumery, as well as their
reported odor descriptors, are depicted in Figure 8. It should be noted that Pearadise (2) is an
artificial odorant that was rationally designed based on known structures of pear odorants with
the aim to be fully biodegradable and sustainable33. In future, next to specific odor and smell
impressions, biodegradability and biocompatibility will become increasingly important and
raise the challenge and requirements on machine learning methodologies within the fields of
fragrance chemistry and in silico molecular design3*.

OEt
=
O/\ EtO

O

Poirenate (1) Pearadise (2)
fruity, green, pear pear, fruity, sweetl

Helvetolide (3)
musky, fruity, pear

/\:/E/\)J\O/\

Quince Ester (4)
pear, green, violet leaves

Figure 9. Selected examples of pear odorants. Note that all are correctly classified as ‘fruity’ using both
taxonomies.

The selected subset of odorants serves as domain specific test cases to assess how well our
models generalize to a broader training distribution. The selected type of odorants from this
odor family are clearly related to the "Fruity” and the “J” classes of the ET and DT, respectively.
The classifications results are shown in Table 4. Interestingly, both models are able to classify
the most relevant odor descriptors of the pear odorants, namely “Fruity” and “Green”. Going
forward, it will be interesting to look into the explicit odor descriptors within the taxonomy
groupings to distinguish more specific odors and continue to delineate the odor space and the
structure-odor relationships linked to it.
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Table 4. Classification results using the XGBoost model at the expert- and data-driven
taxonomies for five selected pear odorant use for top notes in perfumery (see Figure 8 for the
corresponding chemical structures).

Pear Odorants

Data-driven Taxonomy"

Expert-derived Taxonomy

Poirenate (1) C,J,0 Animal Body, Flower, Fruity,
Woody

Pearadise (2) J Fruity

Helvetolide (3) CG,J Fruity, Green, Woody

Quinceester (4) G J Fruity, Green

) Classes C, G, J, O can be conceptually mapped to the expert classes Flower, Green/Fat,
Fruity, and Woody, respectively (see also Table 3 for a complete overview).
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4 Outlook and perspectives

Currently, the most promising machine learning models for structure-based odor prediction
are deep learning approaches, which have shown reliable performance in QSAR tasks3%:36,
However, conventional deep learning methods do not offer much in terms of interpretability.
Therefore, our approach goes back to simpler models which offer more interpretability to aid
insight into structure-odor relationships by leveraging the conceptual hierarchy between smell.
Moving forward, graph-based architectures, particularly more recent ones like Fragnet3” and
KerGNNs38, offer the potential for improved interpretability and more refined modeling of
structure—activity relationships using deep learning. Odor taxonomies could be integrated into
these GNNs not only to explore higher-level odor classes but also potentially within the loss
function itself, guiding fine-grained classification across all descriptors. The ET, although
explicitly flattened for this study, consists of multiple hierarchical layers that can be applied to
design the GNN architecture. For the DT, the correlations between different odor descriptor
groupings can also be further leveraged to create a multi-layer hierarchical taxonomy. Such
methods could pave the way toward a deeper understanding of structure—odor relationships
and the rational design of novel odorant molecules.

Despite the relevance of taxonomies for odor classification, there are several bottlenecks still
limiting the progress that can be achieved in structure-odor prediction tasks. One important
aspect is unarguably the 3D molecular structure of odorants. This work, as well as the current
state-of-the-art rely on 2D molecular graphs as input, which omit conformational variability and
spatial features that are likely relevant to odor perception. Odorants are inherently three-
dimensional and can adopt multiple conformations, some of which may be more relevant to
receptor binding and perceived odor than others. Incorporating 3D molecular geometry has
already shown promise in related molecular classification tasks®?, and methods such as
HamNet*® that leverage molecular dynamics to represent conformations may extend this
potential further. Still, receptor-level specificity adds another layer of complexity—olfactory
receptors may respond differently to different conformers, but we currently lack sufficient
experimental data to explore this*!.

In future, research that focuses on receptor-odorant dynamics and mechanisms could be
leveraged to make better datasets and consequently, more well informed machine learning
models. This would also allow us to account for differences between enantiomers and explore
the impact of chirality*2. Additionally, current datasets do not account for concentration-
dependent effects and do not provide any information on the weight of odor descriptors, i.e.,
the dominant descriptors compared to less relevant side-notes. Concentration dependence is
crucial, as the perceived odor of a molecule can vary with concentration. This effect is
particularly strong for sulfur and nitrogen-containing compounds. To address these
shortcomings, more high quality sensory data with different concentrations is required. Our
work currently focuses on single odorant odor prediction without considering the effect of
odorant mixture. In Olfaction however, smell sources emit hundreds of molecules that interact
together to create a specific smell*3*5. Therefore, to digitize smell and recreate odor
compositions, it is necessary to move towards the study of odorant mixtures, concentrations,
while keeping in mind that in some cases, olfactory groups and descriptors can additionally
depend on social, religious, linguistic or other culturally induced categories*6:47.
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5 Conclusion

In this work, we provide an openly accessible, well curated and structurally organized
molecular odor dataset including two taxonomies (expert-derived and data-driven) that group
odor descriptors in meaningful groupings that can be used to train machine learning models.
We show that perceptual odor taxonomies can be incorporated into molecular structure—odor
datasets as a form of data augmentation, allowing us to shift the classification task from high
to low granularity, thereby improving the performance of machine learning tasks beyond a
reduction in output space. A systematic benchmark using randomized groupings of odor
descriptors shows that groupings without any conceptually meaningful connections do not
improve the performance of machine learning models. In contrast, meaningful taxonomies
based on grouping odors allow to address this challenge. Hereby, that data-driven taxonomy
performs marginally better than the expert derived taxonomy. This study shows how multi-
faceted odor taxonomies can be, from the comparison of our pre-conceived notions of
distances between odor descriptors in the odor space according to expert taxonomy as well
as the data taxonomy which takes into account the individual shared experiences with odor
that shapes the topology of the odor space. Together with interpretable tree-based models
this allowed us to link molecular structures to the respective odor space and pave the way for
future machine learning approaches in structure-based odor prediction. Our framework thus
lays the foundation for more accurate, interpretable, and scalable approaches to decoding the
language of smell, and help us move closer towards the digitization of one of our most
enigmatic senses.

6. Data availability
The MMD, the taxonomies (ET and DT) including their taxonomy augmented datasets, and

annotated code, for all the methodology as well as the analyses, are included as Supplementary
material and will be publicly available on GitHub.
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Molecular odor descriptors for the provided molecular data set used to build the
machine learning models (in alphabetical order).

['acid', 'alcohol', 'aldehyde'’, 'almond', 'amber', 'animal’, 'anise', 'anisic', 'apple’, 'apricot',
'balsam’, 'banana’, 'beef', 'bergamot’, 'berry', 'bitter', 'black currant’, 'brandy', 'bread', 'broth’,
'‘burnt’, 'butter', 'cabbage', 'camphor', 'caramel', 'cedar’, 'celery', 'chamomile', 'cheese',
'‘chemical', 'cherry', 'chicken', 'chocolate’, 'cinnamon', 'citrus', 'clove', 'cocoa’, 'coconut’,
‘coffee’, 'cognac', 'cooked', 'coumarin’, 'cream’, 'cucumber’, 'dairy’, 'earth’, 'ester’, 'ether’, 'fat,
'fermented’, 'fish', 'floral’, 'flower', 'fruity’, 'gardenia’, 'garlic', 'gasoline’, 'gassy', 'geranium’,
'‘gourmand’, 'grape’, 'grapefruit', 'grass’, 'green’, 'hawthorn’, 'hay', 'hazelnut', 'herbal’, 'honey’,
'horseradish’, 'hyacinth', 'jam’, 'jasmine’, 'juice’, 'ketonic', 'lactonic', 'lavender’, 'leaf, 'lemon’,
'licorice', 'lilac’, 'lily', 'malt', 'marine’', 'meat’, 'medicinal’, 'melon’, 'menthol’, 'metallic’, 'milk’,
'mimosa’, 'mint', 'moss', 'muguet’, 'mushroom’, 'musk’, 'musty', 'narcissus’, 'neroli', ‘onion',
'orange’, 'orris', 'ozone', 'patchouli’, 'peach’, 'pear’, 'peel', 'pepper’, 'phenol’, 'pine’, 'pineapple’,
'plastic’, 'plum’, 'popcorn’, 'potato’, 'pungent’, 'raspberry’, 'ripe', 'roasted’, 'rooty', 'rose’, 'rum’,
'sandalwood', 'savory', 'sharp’, 'smoked', 'solvent', 'sour’, 'spicy', 'strawberry', 'sulfur', 'sweat’,
'tea’, 'terpene’, 'tobacco', 'tomato’, 'tropical’, 'vanilla', 'vegetable', 'vetiver', 'violet', 'watery',

'wax', 'weedy', 'wine', 'woody']- total of 146 descriptors

Feature selection and Hyperparameter tuning

The features were filtered through an exhaustive feature selection procedure. O variance
features were removed and then ANOVA F values were used to filter the features and the
best feature for each of the 146 classes was selected. This was then narrowed down further
through Recursive Feature Elimination, using a random forest with Permutation Feature
Importance. The final set contained 23 features. The hyperparameter tuning of the models
was done using Bayesian optimization through skopt [HEA].

Parameters for clustering odor descriptors in Computer Taxonomy
[n_clusters = 16, metric = 'euclidean’, linkage ='ward']

Final features:

[BCUTc-1h', 'BCUTc-1I', 'BCUTZ-1h', 'BCUTv-1I', 'BCUTare-1I', 'RPCG', 'Xpc-4dv', 'Xp-1dv',
'Mare', 'ETA_shape_y', 'ETA_dAlpha_B', 'ETA_epsilon_4', 'SIC0', 'MIC1', 'SlogP_VSA5',
'EState_ VSA5', 'VSA EState6', 'VSA EState7', 'VSA EState8', 'nRot', 'GGI7', 'SRW04',
'SRW10']



Table S1. Search space and final parameters of the hyperparameter search for the XGBoost
model using Bayesian Hyperparameter Optimization.

Hyperparameter Search Space Chosen Value
colsample_bynode [0.1,0.2,0.3,0.4, 0.5, 0.6, 0.9
0.7,0.8, 0.9, 1.0]
learning_rate [0.0001, 0.001, 0.01, 0.1, 0.4
0.2,0.4, 0.6, 0.8]
max_depth [3,4,5,6,7,8,9, 10, 11, 3
12]
min_child_weight [1, 50, 100, 150, 200, 250] 1
n_estimators [100, 200, 400, 600, 800, 2000
1000, 2000, 4000, 5000,
10000]
reg_lambda [0.001, 0.01, 0.1, 1, 5, 10, 5
15, 20, 25]
subsample [0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.9
0.7,0.8, 0.9, 1.0]
tree_method ['approx’, 'hist'] ‘hist’




Table S2. Search space and final parameters of the hyperparameter search for the Random
Forest model using Bayesian Hyperparameter Optimization.

800, 1000, 1200, 1400,
1600, 1800, 2000]

Hyperparameter Search Space Chosen Value
bootstrap [True, False] ‘False’
max_depth [10, 20, 30, 40, 50, 60, 70, 90
80, 90, 100, None]
max_features [log2', 'sqrt'] ‘log2’
min_samples_leaf [1,2,3,4] 1
min_samples_split [2, 5, 10] 2
n_estimators [50, 150, 200, 400, 600, 1800

Table S3. Search space and final parameters of the hyperparameter search for the multi
output Logistic Regression model using Bayesian Hyperparameter Optimization.

Hyperparameter Search Space Chosen Value
penalty ['121 12°
C np.logspace(-4, 4, 20) 10000.0
solver ['Ibfgs','newton-cg','liblinear",' 'Ibfgs'
sag','saga’]
max_iter [100, 1000,2500, 5000] 2500

Table S4. Performance results using a Logistic Regression model after extensive feature

selection and hyperparameter tuning.

Dataset AUROC F1 Score Precision Recall
Original Descriptors 0.527 0.079 0.170 0.059
Expert Taxonomy 0.603 0.334 0.547 0.260
Computer Taxonomy 0.609 0.319 0.528 0.262

Table

S§5. Performance results using a Random Forest model after extensive feature
selection and hyperparameter tuning.
Dataset AUROQOC F1 Score Precision Recall
Original Descriptors 0.589 0.243 0.408 0.186
Expert Taxonomy 0.676 0.488 0.601 0.421
Computer Taxonomy 0.693 0.511 0.623 0.444




Table S6. Classwise performance of the XGBoost model using the computer derived
taxonomy. The 16 classes (A-P) as well as their scores across all metrics. The macro
(unweighted) average of all the classes is provided in the last row.

Classes | AUROC F1 | Precision Recall
A 0.659429 | 0.404762 | 0.485714 | 0.346939

B 0.674819 | 0.486275 | 0.529915 | 0.449275

C 0.726494 | 0.647120 | 0.674672 | 0.621730

D 0.654029 0.422330 0.446154 | 0.400922

E 0.702355 | 0.526971 | 0.569507 | 0.490348

F 0.664019 | 0.421569 | 0.505882 | 0.361345

G 0.717981 0.646245 | 0.670082 | 0.624046

H 0.708859 | 0.515406 | 0.557576 | 0.479167

I 0.756446 | 0.606335 | 0.697917 | 0.536000

J 0.720628 | 0.654369 | 0.693416 | 0.619485

K 0.699158 | 0.503704 | 0.596491 | 0.435897

L 0.708253 | 0.563107 | 0.610526 | 0.522523

M 0.641302 | 0.355140 | 0.431818 | 0.301587

N 0.885479 | 0.750000 | 0.709091 | 0.795918

@) 0.696117 | 0.526733 | 0.588496 | 0.476703

P 0.558067 | 0.183908 | 0.320000 | 0.129032
Average | 0.698340 | 0.513373 | 0.567954 | 0.474432




Table S7. Classwise performance of the XGBoost model using the expert derived taxonomy.
The 16 classes as well as their scores across all metrics. The macro (unweighted) average
of all the classes is provided in the last row.

Classes AUROC F1 Precision Recall

Alcohol 0.697169 0.502283 0.526316 | 0.480349

Animal Body 0.668494 0.433566 0.553571 | 0.356322

Aquatic 0.587067 0.256410 0.454545 | 0.178571

Balsamic 0.685158 0.482385 0.542683 | 0.434146

Chemicals 0.644282 0.419913 0.451163 | 0.392713

Earthy 0.592802 0.284615 0.342593 | 0.243421
Flower 0.748530 0.650246 0.668354 | 0.633094
Fruity 0.738040 0.715421 0.748752 | 0.684932

Gourmand 0.674920 0.483940 0.548544 | 0.432950

Green 0.681113 0.631034 0.640981 0.621392
Herbal 0.668194 0.424581 0.506667 | 0.365385
Savory 0.763273 0.664935 0.684492 | 0.646465
Smoky 0.692512 0.472441 0.526316 | 0.428571
Spices 0.647363 0.397260 0.456693 | 0.351515
Sulfur 0.761012 0.588710 0.623932 | 0.557252
Woody 0.696945 0.528958 0.585470 | 0.482394
Average 0.684180 0.496044 0.553817 | 0.455592




Table S8. Odor descriptors falling under the 16 expert derived classes.

Class # descriptors | List of descriptors

Alcohol 10 ['acid', 'sharp’, 'pungent’, 'brandy’, 'cognac’, 'ether', 'malt’, 'rum’,
'‘wine', 'alcohol']

Animal 4 [lamber’, 'musk’, 'sweat', '‘animal']

Body

Aquatic 3 [fish', 'marine’, 'watery']

Balsamic 2 ['balsam’, 'wax']

Chemicals 12 ['ether', 'ozone', 'aldehyde’, 'gasoline’, 'ketonic', 'medicinal’,
'metallic', 'phenol’, 'plastic’, 'solvent’, 'terpene’, 'chemical']

Earthy 5 [moss', 'mushroom’, 'musty’, 'earth’, 'rooty’]

Flower 15 ['geranium’, 'lavender’, 'mimosa’, 'narcissus', 'orris', 'rose’,
'violet', 'gardenia’, 'hyacinth’, 'jasmine’, 'lilac', 'lily', 'muguet’,
'flower', "floral']

Fruity 28 ['berry', 'cherry', 'black currant', 'raspberry', 'strawberry’,
‘bergamot’, 'citrus', 'grapefruit’, 'lemon’, 'neroli', 'orange’, 'peel’,
‘apple', 'apricot’, '‘banana’, 'coconut', 'ester’, 'grape’, 'hawthorn’,
'juice’, 'melon’, 'peach’, 'pear’, 'pineapple’, 'plum’,
[ripe','tropical’, fruity']

Gourmand 13 '‘almond’, 'roasted', 'bitter', 'caramel’, 'cocoa’, 'cream’, 'hazelnut',
'honey', 'jam’, 'popcorn’, 'vanilla', 'chocolate’, 'gourmand’]

Green 9 ['celery', 'cucumber’, 'grass’, 'green’, 'leaf', 'herbal’, 'weedy’,
‘coumarin’, 'hay']

Herbal 5 ['menthol’, 'mint', 'chamomile’, 'tea’, 'vetiver']

Savory 23 ['garlic', 'onion', 'cooked', 'cabbage’, 'roasted’, 'bread’, 'butter’,
‘cheese’, 'cream’, 'milk’, 'lactonic’, 'sour’, 'fat', 'peel’, 'beef’,
‘chicken’, 'meat’, 'broth’, 'vegetable', 'potato’, 'tomato’, 'dairy’,
'savory']

Smoky 5 ['burnt', 'smoked', 'coffee’, 'roasted’, 'tobacco’]

Spices 8 ['anisic', 'cinnamon', 'clove’, 'horseradish’, 'licorice', 'pepper’,
'anise’, 'spicy']

Sulfur 3 [fermented', 'gassy', 'sulfur’]

Woody 9 [‘camphor', 'cognac', 'patchouli’, 'rooty', 'sandalwood', 'woody",

'lactonic’, 'cedar’, 'pine']




As described in Section 2.2.1 of the ms. for the expert taxonomy on the ODEUROPA
website, the source-based descriptors were divided in 16 different classes ’scent families’)
and 31 Subclasses, e.g., the “Alcohol” class contains the sub-classes “Acid” and “Alcohol”,
which each contains their own odor descriptors. The classes (bold) and sub-classes (italic)
are provided below, the hierarchical expert taxonomy is provided on the ODEUROPA
website.

1.  Alcohol 10. Green
1.1.  Acid 10.1. Grass
1.2.  Alcohol 10.2. Hay
2. Animal 11. Herbal
2.1.  Animal 11.1. Methol
2.2. Body 11.2.  Other
3. Aquatic 12. Savory
3.1.  Fish 12.1.  Allium
3.2. Sea 12.2.  Brassica
4. Balsamic 12.3. Bread
5. Chemical 12.4.  Dairy
5.1. Ether 12.5. Fat
5.2. Other 12.6. Meat
6. Earthy 12.7.  Umami
6.1. White flowers 12.8. Other
6.2.  Other 13. Smoky
7. Flower 14. Spices
7.1.  Berry 15.  Sulfur
7.2.  Citrus 156.1.  Decay
7.3. Other 15.2. Excrement
8.  Fruity 16.3.  Sulfur
8.1.  Ether 16. Woody
8.2. Other 16.1.  Ether
9. Gourmand 16.2. Other


https://vocab.odeuropa.eu/expert-taxonomy/en/
https://vocab.odeuropa.eu/expert-taxonomy/en/

Table S9. Descriptors falling under the 16 computer derived classes.

Class | # descriptors | List of descriptors

A 12 ['almond', 'anise’, 'anisic', 'bitter’, ‘cherry’, 'hawthorn’, 'hyacinth’,
"licorice', 'lilac','mimosa’, 'narcissus', 'plastic']

B 14 ['bread', 'burnt', ‘caramel’, 'chocolate', 'cocoa’, 'coffee’, 'earth’,
‘gourmand’, 'hazelnut’, 'malt', 'mushroom’, 'musty’,
'popcorn’, 'potato’]

C 22 ['bergamot’, 'black currant', 'celery’, '‘chamomile’, 'floral’, 'flower’,
'‘gardenia’, ‘geranium’, 'grape’, 'grapefruit’, 'honey', jasmine’,
'lavender’, 'lily', 'muguet’, 'neroli','orris', 'plum’, 'rose’, 'tea’,
'tobacco’, 'violet']

D 13 ['‘cabbage’, 'chemical’, 'fish', 'gasoline’, 'gassy', 'horseradish’,
'ketonic', 'metallic', 'pepper’, 'pungent’, 'sharp’, 'tomato’,
'vegetable']

E 8 ['balsam’, 'cinnamon’, 'clove’, 'medicinal’, 'phenol’, 'smoked',
'spicy’, 'vanilla']

F 8 ['butter’, 'coconut’, 'coumarin’, ‘cream’, 'dairy', 'hay’', 'lactonic’,
'milk’]

G 8 [‘cucumber’, 'fat', 'grass', 'green’, 'leaf', 'melon’, 'wax', 'weedy']

H 8 ['alcohol’, 'brandy', '‘cognac’, 'ether’, 'fermented’, 'rum’, 'solvent’,
‘wine']

| 7 ['beef', 'broth', 'chicken', 'cooked', 'meat’, 'roasted', 'savory']

J 11 ['apple’, 'apricot', 'banana’, 'ester’, 'fruity’, 'juice’, 'peach’, 'pear’,
'pineapple’, 'ripe', 'tropical’]

K 8 ['aldehyde’, 'citrus', 'lemon’, 'marine’, 'orange’, 'ozone', 'peel’,
‘watery']

L 6 [‘camphor', 'herbal', 'menthol’, 'mint’, 'pine’, 'terpene’]

M 4 ['acid', 'cheese’, 'sour’, 'sweat']

N 3 ['garlic', 'onion', 'sulfur']

o) 10 [lamber’, 'animal’, 'cedar’, 'moss', 'musk’, 'patchouli’, 'rooty',
'sandalwood', 'vetiver', 'woody']

P 4 ['berry', 'jam’, 'raspberry', 'strawberry']

The prompt used to generate the class names with ChatGPT (GPT-40) is the following:

‘I am working on a taxonomy (or ontology) to describe the conceptual hierarchy between
odor descriptors for molecules. This will be leveraged to improve machine learning models
for structure-odor predictions. | have groups of several descriptors, e.g., "rose", "meat",

"blackcurrant" etc and | want to give a name to each group, an umbrella term under which
different descriptors can fall. The descriptors’ groups are the following: [...]

| need only a single word to best describe each group, with vocabulary that is mainly

associated with perfumery and smell experts. Please go in the right order that | provide.”

See Section 3.2 of the ms. and Table 3 for the list of class names.




Randomization convergence. The total number of possible randomized taxonomies that
can be generated using the odor descriptors in their respective parent term is 146 factorial
(146!). However, to get an overview of the score distribution of each metric it is not
necessary to use all the 146! possible combinations. According to the central limit theorem,
the sample distribution converges to the population distribution with increasing sample size.
It is therefore possible to approximate the population mean with a lower number of samples.
To verify if the running mean and running standard deviation for all metrics have converged,
we use 1000 randomized taxonomies. The randomization convergence plots of the expert
taxonomy (1000), computer taxonomy (1000) and the combined taxonomies (2000) are

shown below.
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Figure S1-1. Development of the mean and standard deviation with the addition of
each new metric score for 1000 randomizations on the expert derived taxonomy.
Macro metrics F1 and AUROC over number of samples (randomized taxonomies). Note that
all metrics converge, showing that the score metrics can be taken as a close representative
of the randomizations, or the gain in score metrics due to reducing the number of classes.
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Figure S1-2. Macro metrics precision and recall (randomization expert derived taxonomy).

See Caption Figure S1-1 for detailed description.
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all metrics converge, showing that the score metrics can be taken as a close representative
of the randomizations, or the gain in score metrics due to reducing the number of classes.
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Figure S3-1. Mean and standard deviation over 2000 randomizations taxonomies combining
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(see Figures S1 and S2, respectively). This shows that the joint distribution converges and
can be used to represent the performance gain from reducing class count.
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Data Exploration

Clustered Correlation Matrix

All 146 descriptors
-

All 146 descriptors

Figure S4. Clustered correlation plot of all 146 descriptors using the co-occurrence from the training
dataset. The co-occurrence of similar odor descriptors allows for a more perceptually meaningful
clustering. The two clusters highlighted in orange and red correspond to the sulfur/savory and the
alcohol/fruity clusters, respectively. For a zoom in on the alcohol and the fruity clusters see manuscript

(Figure 4).
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Figure S5. Overview of chemical compounds and the number of corresponding labels or descriptors
provided in the full training dataset (5331 molecules - see ms. for GitHub repository). The majority of
compounds have between 1 and 5 labels. 32 compounds have 13 labels or more with a maximum

number of 17 descriptors.
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Figure S6. Number of compounds in each of the different classes, i.e., provided smell descriptors, for
a total of 146 descriptors. It should be noted that the number of instances throughout the classes are
highly imbalanced.
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Figure S7. Total sum of the number of carbon (C), oxygen (O), sulphur (S), and nitrogen (N) atoms
within the all-descriptor training dataset (5331 molecules).
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Figure S8. Number of different functional groups present in the training data set (5331 compounds -
80% of the full dataset with 6711 molecular compounds).
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Figure S9. Overview of chemical compounds and the number of corresponding labels or descriptors
provided in the data set imposed using the computer derived taxonomy. The majority of compounds
have between 1 and 4 labels. See Figure S8 for the distribution of the labels obtained using the expert
taxonomy.
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Figure $10. Number of compounds in the 16 different classes using the computer derived taxonomy.
It should be noted that the classes are still imbalanced. See Figure S9 for the distribution of
compounds in the 16 expert derived classes.
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Figure S$11. Overview of chemical compounds and the number of corresponding labels or descriptors
provided for the dataset imposed with the expert derived taxonomy. The majority of compounds have
between 1 and 4 labels similar to that of the computer taxonomy. Likewise, the upper bound of the
possible number of labels has decreased from 15-17 in the dataset with all the descriptors to 8-10.
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Figure S12. Number of compounds in each of the different classes, i.e., provided smell descriptors,
for a total of 16 parent term descriptors of the expert taxonomy. It should be noted that the classes are
still imbalanced.
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Figure S13. Number of compounds in each of the different classes using the computer
taxonomy across the train and test splits.
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Figure S14. Number of compounds in each of the different classes using the expert
taxonomy across both train and test splits.
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ERROR ANALYSIS AND FEATURE IMPORTANCE

To investigate the most relevant features that the machine learning model uses for its
predictions, the model's feature importance is looked at. However, since the feature
importance of the model is based on how the model fits the training dataset, it's not as
reliable. Permutation feature importance (PFI) proves a more reliable technique, where
permutations are added to the features of the test data to rank features based on how much
a given score metric drops upon permuting a given feature. The limitation of the PFl is that it
looks at the drop of overall macro scores for evaluating feature importance and there is no
class specificity. Therefore, SHAP Value Analysis are used in a second step (see further
below).
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Figure S15. Feature importance of the XGBoost model for the Computer derived Taxonomy. The plot
shows that the features BCUTZ-1h, BCUTv-1l and VSA-Estate6 are relevant for the model to
complete the classification task. Note that this is based on the training data alone.
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Figure S$16. Feature importance of the XGBoost model for the Expert derived Taxonomy. The plot
shows that the features BCUTZ-1h, SIC0 and VSA-Estate6 are relevant for the model to complete the
classification task. Note that this is based on the training data alone.
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SHAP Value Analysis. The SHapley Additive exPlanations (SHAP) analysis employs a
game-theoretic approach to assign SHAP values, which represent the contribution or
importance of each feature to a machine learning model’s output [LUN]. The resulting values
can be used to interpret the model predictions. We provide the SHAP summary plots for the
different classes in both the computational and expert taxonomies. The features are listed on
the y-axis, while the x-axis indicates the magnitude and direction of their contribution to the
performance output of the XGBoost classifier. Each point in the plots represents an
individual data instance, with color indicating the actual feature value (red for high, blue for
low). Features are ranked based on importance, with those at the top contributing most
significantly. The horizontal spread of points reflects the extent of a feature’s influence
across the dataset, with wider distributions imply greater overall impact on model
predictions.
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Figure S17. SHAP analysis of the “Flower” class for the XGBoost classifier in both taxonomies, see
manuscript for details (right-hand side: computer derived; left-hand side expert derived).
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Figure S18. The feature ‘BCUTZ-1h’ across both taxonomies, computer and expert derived
(upper and lower part, respectively). This is the most defining feature for the ‘Sulfur’ class
across both taxonomies, corresponding to the atomic number of the atoms in the molecule
samples, 16 in the case of sulfur atoms. For the Computer Taxonomy, we can see that a lot
of data points cluster around 16 for the ‘N’ class which conceptually corresponds to the
Sulfur class, as well as for the ‘I’ class, which corresponds to the “Savory” class of the expert
taxonomy.
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The remaining pages consist of classwise SHAP plots for all classes across both taxonomies
which individually show feature contributions for the model's decision making.

Figure S19: SHAP analysis of the XGBoost classifier on the computer taxonomy for all 16
classes (pages 24-27). See also manuscript for the available code on the GitHub repository.
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Figure S20. SHAP analysis of the XGBoost classifier on the expert taxonomy for all 16
classes (pages 28-31). See also manuscript for the available code on the GitHub repository.
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