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Large language models (LLMs) are widely described as artificial intelligence, yet their epistemic
profile diverges sharply from human cognition. Here we show that the apparent alignment between
human and machine outputs conceals a deeper structural mismatch in how judgments are produced.
Tracing the historical shift from symbolic AT and information filtering systems to large-scale gener-
ative transformers, we argue that LLMs are not epistemic agents but stochastic pattern-completion
systems, formally describable as walks on high-dimensional graphs of linguistic transitions rather
than as systems that form beliefs or models of the world. By systematically mapping human and ar-
tificial epistemic pipelines, we identify seven epistemic fault lines, divergences in grounding, parsing,
experience, motivation, causal reasoning, metacognition, and value. We call the resulting condition
Epistemia: a structural situation in which linguistic plausibility substitutes for epistemic evalua-
tion, producing the feeling of knowing without the labor of judgment. We conclude by outlining
consequences for evaluation, governance, and epistemic literacy in societies increasingly organized

around generative Al.
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I. INTRODUCTION

The aspiration to build machines capable of mimick-
ing or reproducing human thought long predates the ad-
vent of digital computers. Well before modern technol-
ogy, myths and legends already testified to a fascination
with artificial minds. In Greek mythology, for instance,
Hephaestus is said to have crafted golden automatons
that could move, speak, and reason, while in Jewish
folklore the Golem appears as a man-made being ani-
mated through sacred letters and mystical rituals. By
the late Middle Ages and the Renaissance, scholars such
as Ramon Llull, and later Gottfried Wilhelm Leibniz,
began to entertain the possibility of logical engines, de-
vices that would manipulate symbols to carry out rea-
soning procedures. Leibniz’s proposal of a calculus ra-
tiocinator, a universal symbolic language that could in
principle resolve disputes through computation, antici-
pated both formal logic and, in the long run, theoretical
computer science [1]. In parallel, Enlightenment thinkers
from Descartes to La Mettrie advanced mechanistic ac-
counts of the mind, portraying human cognition as a
system of interacting parts that might someday be re-
produced artificially [2].

The modern notion of machines that ‘think’ emerged
in the mid-20th century, when developments in math-
ematical logic, computation, and electronics converged.
In his seminal 1950 essay, Alan Turing proposed what he
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called the imitation game—mnow widely known as the Tur-
ing Test—as an operational criterion for intelligence [3].
Crucially, Turing shifted the focus from defining think-
ing in the abstract to asking whether a machine’s out-
ward behavior could be indistinguishable from that of a
human interlocutor. Over the subsequent decade, arti-
ficial intelligence crystallized as a distinct research field,
producing early systems for theorem proving, game play-
ing, and symbolic problem solving [4]. The long-standing
philosophical speculation that machines might match
human judgment—encompassing perception, reasoning,
and even moral evaluation—thereby began to transform
into the empirical and technological project whose con-
sequences we are observing today.

In recent years, large language models (LLMs) have
arguably been the most disruptive step in this trajec-
tory [5]. State-of-the-art systems such as ChatGPT,
Deepseek, Gemini, Llama, and Mistral now routinely
clear the bar of the Turing Test, in some cases more
reliably so than humans [6]. Unsurprisingly, a growing
body of work has proposed LLMs as stand-ins for hu-
man participants in social science experiments [7], mar-
ket and consumer research [3], and a variety of applica-
tions in the healthcare, education, work and information
domains [9-11], among others [12—15]. This comes on
top of their widespread deployment for everyday tasks
such as drafting and editing text, translation, summa-
rization, and educational support [16]. Proponents have
gone further, arguing that in many contexts LLMs may
offer advantages over human samples, citing lower cost,
greater scalability, and the ability to generate large vol-
umes of synthetic data in domains where real-world data
are limited or difficult to obtain [17, 18].
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However, serious concerns have already been
voiced [19, 20], and a number of foundational is-
sues remain unresolved. A central open question is how
judgment itself is instantiated and operationalized in
LLMs. These systems are rapidly becoming embedded
in the processes by which societies filter, rank, and
interpret information: assessing the credibility of news,
proposing explanations, and assisting in decisions that
hinge on evaluative judgments [21-23]. Yet the internal
procedures by which they arrive at such judgments—
and the extent to which these procedures align with,
diverge from, or systematically distort human modes of
reasoning—remain only partially understood [24, 25].

Moreover, the historical trajectory from symbolic Al
to modern LLMs hides another important and com-
monly overlooked aspect of how machines handle lan-
guage and knowledge. Namely, symbolic Al treated in-
telligence as rule-based manipulation of explicit symbols,
with hand-crafted rules and representations [20]. Early
neural networks introduced data-driven learning but re-
mained limited in scale and impact for language. From
the 1990s onward, statistical NLP—and later neural se-
quence models—came to dominate, especially in systems
such as web search and recommendation, which filter in-
formation: they retrieve and rank existing documents,
leaving users to inspect multiple sources and judge cred-
ibility [27, 28]. Generative systems like contemporary
LLMs instead synthesize new text directly, producing a
single, context-sensitive answer. This shift from filtering
to generation is not merely a technical change; it consti-
tutes an epistemic transition in how information is de-
livered and consumed. Instead of being presented with a
landscape of candidate documents to evaluate, the user is
handed a fluent, authoritative-seeming answer that col-
lapses the underlying diversity of sources into a single
textual surface, ready for immediate consumption.

In what follows, we expand on these premises, first
by explaining how transformer architectures work at a
high level, emphasizing that their apparent intelligence
emerges only under conditions of massive scale [29]. Sec-
ondly, we frame text generation as a stochastic walk on
a weighted graph [30], where nodes correspond to to-
kens and edges to learned transition probabilities. Each
answer is thus a trajectory in this graph, conditioned
by the prompt and decoding parameters. Crucially, we
emphasize that there are no intrinsic ‘attractors’ corre-
sponding to concepts or truth; the system does not con-
verge, it transits. What looks like a conclusion is simply
path completion in a high-dimensional probability land-
scape. We then formally describe and compare the hu-
man and artificial epistemic pipelines by outlining seven
fundamental stages. For each stage, we identify an epis-
temic fault line: a critical point at which human and
LLM judgments diverge. Based on these fundamental
differences, we introduce Epistemia as the condition in
which linguistic plausibility becomes a structural substi-
tute for epistemic evaluation [24]. The user experiences
the possession of an answer without having traversed the

process of forming a justified belief, i.e., without the la-
bor of knowing. We also describe the psychological foun-
dations of epistemia, focusing on the human heuristics
and biases that make individuals especially susceptible
to this phenomenon. Lastly, we discuss the broader im-
plications of the epistemological fault lines between hu-
man and artificial intelligence. We argue that persistent
epistemic divergence—despite increasing surface align-
ment—requires rethinking how generative systems are
assessed, regulated, and integrated into epistemic prac-
tices. We outline an interdisciplinary research program
spanning epistemic evaluation beyond surface alignment,
epistemic governance beyond behavioral alignment, and
epistemic literacy beyond critical thinking, aimed at pre-
serving judgment as an accountable human practice in
hybrid human—AT systems.

II. TRANSFORMERS AND THE ROLE OF
SCALE

Transformer architectures implement a powerful form
of linguistic automation. At their core, they estimate the
conditional probability of the next token given a preced-
ing context, via stacked self-attention layers that prop-
agate and remix information across positions in the in-
put [29]. Formally, this amounts to learning a massively
parameterized function that maps sequences of symbols
into probability distributions over subsequent symbols
31, 32].

From an engineering standpoint, this is remarkable.
Self-attention enables efficient integration of long-range
dependencies and the construction of expressive inter-
nal representations of regularities. When combined with
massive training corpora and scaling laws this architec-
ture yields systems that appear fluent, versatile, and
adaptable across domains [33, 34].

However, what is being automated here is not cognition
but language. Large language models operate on statis-
tical regularities extracted from human-produced text,
not on representations of the world [35]. Their apparent
competence arises from learning how language behaves,
not from forming beliefs about what is the case. They do
not track truth conditions or causal structure; they track
patterns of co-occurrence, association, and continuation
in text [30].

In this sense, scale is not a bridge from linguistic au-
tomation to cognition. Increasing the volume of data and
the number of parameters refines a function approxima-
tor but does not alter the underlying computation [37].
Scale delivers coverage and interpolation, not epistemic
access. It improves surface alignment with human output
[38], without inducing convergence in internal processes.

This distinction matters because contemporary devel-
opment strategies increasingly attempt to compensate
for this limitation by layering additional mechanisms
on top of the generative core. Prominent among these
are retrieval-augmented generation (RAG) [39, 40], tool



use [41], and external memory modules [12]. These ap-
proaches aim to reconnect language models to external
sources of information by anchoring generation to docu-
ments, databases, or APIs.

The result is an architecture that produces answers
that look increasingly reliable without possessing the ma-
chinery that normally makes reliability possible. The sys-
tem becomes more convincing rather than more knowing.

This shift becomes critical when generative models dis-
place traditional information technologies. Search en-
gines and filtering systems returned documents and left
judgment to users. Generative systems deliver a synthe-
sized answer directly as natural language [43]. Searching,
selecting, and explaining collapse into a single response.
The cost of evaluation is not postponed; it is structurally
absorbed into the generation process.

It is under these conditions that plausibility begins to
substitute for verification. Large language models often
generate outputs that are fluent, coherent and expressed
with confidence rather than grounded in rigorous evalu-
ation processes—what once required an act of judgment
is now presented as a product of computation [44, 45].
The danger is therefore not simply that generative sys-
tems may err, but that they succeed precisely by making
evaluation optional [45, 40].

III. TEXT GENERATION AS A WALK ON A
GRAPH

Text generation in large language models can be de-
scribed as a stochastic process evolving on a discrete,
high-dimensional state space. Let V be a finite vocab-
ulary and let G = (V, E) be a directed, weighted graph
whose edges encode conditional transition probabilities
learned from data. Given a context ¢; = (w1,...,ws),
the model instantiates a probability measure P(- | ¢)
over V' and samples a successor state w1 ~ P(- | ¢).
This defines a time-inhomogeneous Markov process over
G, consistent with classical formulations of random walks
on graphs [30].

Each output is therefore the realization of a stochas-
tic trajectory generated by local sampling in this state
space. Greedy decoding, temperature scaling, top-k and
nucleus sampling modulate the entropy and effective sup-
port of P(- | ¢), reshaping the local geometry of the
probability space [17]. However, these procedures do not
introduce invariants, constraints, or objectives associated
with truth, reference, or validity. They merely alter how
probability mass is explored.

Empirical language distributions are heavy-tailed and
structurally anisotropic [18]: probability mass concen-
trates in a limited number of regions corresponding to fre-
quent constructions, dominant frames, and statistically
reinforced co-occurrence patterns. As a result, trajecto-
ries are dynamically biased toward high-density basins.
This follows from well-known concentration phenomena
in high-dimensional stochastic processes [19]: random

walks overwhelmingly remain confined within regions of
large measure, while transitions into low-density regions
are exponentially suppressed. This dynamic produces a
form of statistical attraction that is often misread as con-
ceptual stability. In reality, dense regions of G are not
semantic attractors but statistical aggregates. Mode per-
sistence is not belief; recurrence is not memory; concen-
tration is not understanding. What stabilizes is a distri-
bution, not a meaning.

Within this framework, so-called “hallucinations” are
not anomalous failure modes of an otherwise epistemic
system. They are an expected outcome of sampling from
a statistical model that does not encode reference, truth
conditions, or evidential constraints. In a generative sys-
tem, producing content that is ungrounded with respect
to external reality is not the exception; it is the de-
fault operational state. Grounded outputs occur only
when the local probability structure happens to coincide
with factual structure, or when external mechanisms im-
pose additional constraints [46, 50]. From an algorithmic
standpoint, there is no internal symmetry break between
truthful and false continuations. Both are merely real-
izations drawn from the same conditional distribution.

As scale increases, this regime does not qualitatively
change. Larger models refine probability estimates and
smooth local neighborhoods of the distribution, thereby
increasing fluency and internal coherence. But scale does
not inject epistemic structure into the process. It sharp-
ens likelihood, not validity. Text generation is therefore
an ergodic process under statistical constraints, not a
procedure of epistemic convergence. It optimizes for dis-
tributional fit, not for correctness with respect to the
world. A “conclusion” is not the terminus of evaluation,
but the terminal state of a stochastic trajectory.

IV. HUMAN AND ARTIFICIAL EPISTEMIC
PIPELINES

We decompose human judgment into seven sequen-
tial stages: sensory and social information; perceptual
and situational parsing; memory, intuitions, and learned
concepts; emotion, motivation, and goals; reasoning and
information integration; metacognitive calibration and
error-monitoring; and value-sensitive judgment. These
operations are slow, imperfect, and biased, yet they un-
fold within an epistemic loop in which the world, other
agents, and institutions continually push back, constrain-
ing error.

We then map LLM judgment onto the same scaffold.
Textual prompts replace sensory and social information;
tokenization and preprocessing replace perceptual and
situational parsing; pattern recognition in embeddings
replaces memory, intuitions, and learned concepts; sta-
tistical inference via neural layers replaces emotion, mo-
tivation, and goals; textual context integration replaces
reasoning and information integration; forced confidence
and hallucination replace metacognition; and probabilis-



O

\%3

Human judgment

LLM judgment

Sensory and social
information

| |

Perceptual and Tokenization and
situational parsing preprocessing

|

Memory, intuitions, Pattern recognition in
learned concepts embeddings

| |

Emotions, motivations, Statistical inference via
goals neural layers

! !

Reasoning, Textual context
information integration integration

! |

Meta-cognition and Forced confidence and
error-monitoring hallucination

| |

Value-sensitive
judgment

Textual input

Probabilistic judgment

FIG. 1. The human and LLM epistemic pipelines, each orga-
nized into seven corresponding stages.

tic prediction replaces value-sensitive judgment (see Fig-
ure 1).

At each stage, the processes appear parallel yet diverge
sharply in structure, function, and epistemic grounding.
These contrasts expose key epistemological fault lines:
points at which the two pipelines follow fundamentally
different trajectories despite sometimes yielding superfi-
cially similar outputs. For each fault line, we illustrate
concrete cases in which human and LLM judgments are
likely to diverge.

A. Sensory and social information vs. Textual
input

Human judgment begins with the acquisition of sen-
sory and social information in an inherently multimodal
environment. Vision, audition, proprioception [51], and
emotional expressions [52] jointly shape how situations
are initially construed. This information is not isolated
but embedded within a social world rich with affective
signals: facial expressions [53], tone of voice [54], social
cues and norms shaping interpretation [55], and even
power dynamics modulating how emotional signals are
processed [50].

LLMs, by contrast, begin with textual input. They
do not inhabit or sample a world but operate over ab-
stracted representations of it. They do not perceive en-
vironments, bodies, or social or emotional signals; they
receive sequences of symbols whose significance is entirely
derivative of statistical patterns learned during pretrain-
ing and subsequently adjusted through supervised and
reinforcement-based fine-tuning [57, 58]. This input is
stripped of nearly every feature that gives human percep-
tion its world-directed richness: no gesture, no affective
tone, no temporal continuity, no shared situation. Al-
though recent multimodal models can accept images, au-
dio, or video as input, their “perceptual access” remains
fundamentally derivative: the system receives pretrained
embeddings rather than engaging in sensorimotor explo-
ration or bodily interaction.

A direct consequence of this absence of perceptual
grounding is that LLMs sometimes make judgments that
would be unthinkable for a human at this initial stage
of input acquisition. For example, when given a tran-
script of a conversation without vocal tone, gesture, or
context, an LLM may misinterpret sarcasm as sincer-
ity, fail to detect anger or fear, or treat a threat (“say
that again and see what happens”) as a neutral state-
ment. Humans would effortlessly register these nuances
because multimodal cues (voice tension, facial expression,
interpersonal distance) are part of the perceptual input
itself. For an LLM, none of these signals exist. What is
immediate and unambiguous for a human is invisible to
the system. And while it is true that recent LLM-based
and multimodal models have shown some improved abil-
ity to recognize sarcasm and emotional tone from text,
their performances typically remain below human levels
[59]. Additionally, these improvements are fragile. A
recent systematic review emphasizes that irony and sar-
casm detection often remains unreliable and that perfor-
mance degrades sharply when conversations involve cul-
tural subtleties, indirect speech acts, or noisy, real-world
language use [60].

This is the first epistemological rupture. Humans
ground judgments in perceptual reality and social con-
text. LLMs must reconstruct meaning indirectly from
text alone.

B. Perceptual and situational parsing vs.
Tokenization and text preprocessing

After receiving sensory and social information, humans
engage in perceptual and situational parsing, a tightly
integrated process that transforms raw experience into
meaningful structure. These operations occur simulta-
neously, in mutually constraining loops [61, 62], and ex-
tend seamlessly to the interpretation of social cues such
as gaze, intention, and affect [63]. Perception does not
merely register stimuli: it actively organizes them into
meaningful structure, identifying objects and opportu-
nities for action [51] and, through grounded conceptual



processes, recognizing agents, intentions, and potential
threats [64]. At the same time, higher-level expectations,
cultural schemas, and social knowledge shape what is
perceived as salient or relevant [65, 66]. By the time a hu-
man has parsed a situation, they have already extracted
a structured understanding of that situation, embedded
within physical, interpersonal, and normative contexts.

For LLMs, the analogous stage is tokenization and
text preprocessing, a transformation that is fundamen-
tally mechanical. Here, raw linguistic input is segmented
into discrete symbols (tokens) according to a predeter-
mined vocabulary optimized for model efficiency [67-69].
Tokenization is blind to pragmatics, speaker intention,
emotional tone, and situational nuance; it does not infer
objects, agents, or social dynamics. Tokenization simply
maps character strings to indices [35]. Preprocessing op-
erations, such as lowercasing, special token insertion, or
punctuation handling, further standardize the input but
do not add semantic structure [70]. This stage produces a
representation that is structurally convenient but seman-
tically thin, designed for numerical computation rather
than interpretation.

A direct consequence of this symbolic segmentation is
that LLMs can make errors that no human would ever
make at this stage. Because the model processes strings
rather than situations, even simple linguistic inputs may
fracture into misleading subword units (e.g., “therapist”
tokenized as “the rapist”). These are not superficial er-
rors but structural outcomes of a system that slices text
into tokens rather than parsing scenes, intentions, or
events [71]. Because LLMs rely on subword tokenization,
even minor typographical or formatting changes can dis-
tort meaning. For instance, in Chinese, tokenization can
split characters in ways that break their semantic radi-
cals [72]. Likewise, subword tokenizers may mis-handle
prefixes or suffixes that signal negation, leading models
to misunderstand the intended meaning [73].

Therefore, at this second stage the epistemological
fault line widens. Human perception has already con-
structed a layered, meaning-rich model of the environ-
ment. LLMs, at an equivalent stage, have performed
only a formal partitioning of text. One system parses a
world; the other segments a string.

C. Memory, intuitions, learned concepts vs.
Pattern recognition in embeddings

Next, both humans and LLMs draw on prior knowl-
edge, but they do so in fundamentally different ways.
Humans rely on episodic memory, intuitive physics and
psychology, and learned concepts. Episodic memory con-
tains specific events encoded with temporal and contex-
tual details. These memories enable individuals to recog-
nize analogies, anticipate social consequences, and inter-
pret new situations through the lens of prior lived expe-
rience [74, 75]. Humans also possess core knowledge sys-
tems, innate or early-developed and pre-linguistic, such

as intuitive physics (object permanence, solidity, grav-
ity, causal forces) and intuitive psychology (attribution of
beliefs, desires, and intentions to others), which develop
early and scaffold perception and reasoning throughout
life [76, 77]. Additionally, humans possess learned con-
cepts representing abstract, generalized knowledge: cate-
gories, scripts, causal theories, and social norms accumu-
lated through education, culture, and repeated practice
[65, 78, 79]. In judgment, humans fluidly combine these
systems, retrieving specific past experiences to contextu-
alize concepts and using conceptual frameworks to inter-
pret ambiguous situations [74, 78, 79].

LLMs, by contrast, rely on statistical pattern extrac-
tion in high-dimensional embedding spaces: words that
co-occur, sentences that share structure, or concepts ap-
pearing in similar contexts. Modern embedding models,
such as word2vec and transformer-based representations,
encode similarity, not experience [70, 80, 81]. They have
no episodic memory: nothing like a lived past, no autobi-
ographical trace of events, no temporally structured rec-
ollection of “what happened when”. They cannot draw
on intuitive physics or intuitive psychology: no innate
sense of object solidity or gravity, no built-in understand-
ing of beliefs, desires, or intentions, no causal expecta-
tions about agents or objects: only correlations between
how such ideas tend to be discussed in text. Nor do
they possess learned concepts in the human sense: their
“concepts” are not abstractions built from experience or
education but statistical clusters reflecting how words are
distributed across training data.

A direct consequence of these differences is that LLMs
may treat physical impossibilities as plausible when-
ever such scenarios appear in linguistic corpora. Even
multimodal models fail in intuitive-physics and causal-
reasoning tasks [$2]. LLMs may also fail to track beliefs,
intentions, and deception in situations where even young
children succeed, because they lack an intuitive psychol-
ogy for representing distinct mental states [33]. And they
may produce conceptual blends when words have multi-
ple senses, especially metaphoric ones [34].

This third step further widens the fault line: humans
ground interpretation in lived experience, intuitive mod-
els of the physical and social worlds, and conceptual un-
derstanding, whereas LLMs rely solely on statistical as-
sociations learned from language.

D. Emotion, motivation, goals vs. Statistical
inference via neural layers

As humans process percepts and retrieve prior knowl-
edge, their judgments are continuously shaped by emo-
tion, motivation, and goals: the affective and purpo-
sive forces that give cognition direction [85, 86]. Emo-
tions modulate attention, signal relevance, and provide
rapid evaluations of risk, opportunity, and social meaning
[87, 88]. Motivation orients individuals toward desired
outcomes, while goals structure decision-making by defin-



ing what counts as success or failure in a given context
[89]. These forces are inherently value-laden, ground-
ing human judgments in personal identity, social com-
mitments, moral principles, and long-term aspirations
[90, 91]. Often, these motivations can be traced to evo-
lutionarily shaped concerns such as fear of death [92],
the instinct for self-preservation [93], and efforts to leave
a lasting mark or legacy to reach symbolic immortality
(94, 93,

For LLMs, the corresponding stage is statistical infer-
ence through layered neural computation. Given tok-
enized input and embedding representations, the model
propagates activations through its transformer archi-
tecture, updating vector representations according to
learned parameters. Each layer performs linear transfor-
mations, attention-weighted aggregation, and nonlinear
mappings that compute the probability distribution over
next tokens [29, 96]. This process is entirely mechanis-
tic and optimization-driven: it aims to minimize predic-
tive error, not to pursue goals or respond to emotional
salience. The model does not care about truth, utility,
moral implications, outcomes, or death. It has no prefer-
ences, motivations, or internal states beyond the numer-
ical activations that encode statistical associations [57].

Although training regimes such as reinforcement learn-
ing with human feedback (RLHF) introduce externally
specified reward signals meant to shape model behav-
ior toward human values, this mechanism does not give
the model intrinsic goals or motivations; it merely ad-
justs statistical tendencies through additional optimiza-
tion [58]. RLHF teaches a model to behave as if it held
certain preferences, but without creating any internal
states that resemble value commitments, desires, or pur-
poses [97]. Paradoxically, these alignment adjustments
can introduce backfire effects, including political biases
[98] and “surprising” gender biases, such as systemati-
cally responding that a woman should not be harassed
to prevent a nuclear apocalypse, while accepting that a
woman may be tortured to achieve the same outcome
[99]. Inference is therefore procedural rather than pur-
posive, a sequence of inflexible matrix operations rather
than a value-oriented interpretive and generalizable act.

At this stage, the epistemological fault line gets more
profound: humans create judgments under the influence
of goals and emotions that confer meaning, priority, and
direction, whereas LLMs perform context-agnostic sta-
tistical transformations devoid of intrinsic aims.

E. Reasoning and information integration vs.
Textual context integration

Next, both humans and LLMs attempt to produce
a coherent response given prior inputs. At this more
advanced stage of judgment, humans engage in reason-
ing, a cognitive process that allows them to draw in-
ferences, integrate evidence, form causal explanations,
consider counterfactual possibilities, and construct long-

term plans [100-102]. These operations allow individuals
to extend beyond immediate perception and derive con-
clusions from principles, rules, or structured mental mod-
els. This process is not merely based on universal rules,
but it is guided by goals, values, and an awareness of the
limits of one’s own knowledge [103, 104]. At this reflec-
tive stage, humans evaluate alternatives against different
kinds of standards: objective ones, such as mathematical
correctness or factual accuracy [105], and subjective or
internal ones, such as personal moral values, ideals, and
self-guides [100].

For LLMs, the analogous stage is textual context in-

tegration within model constraints, a process that lacks
any genuine reasoning. Given a sequence of tokens, the
model integrates them through attention mechanisms
that weight relationships between elements in its input
window [29]. This allows the LLM to maintain thematic
coherence, track referents, and adapt output to preceding
content [70]. Yet this form of ‘integration’ remains purely
syntactic and statistical: the model does not generate
causal hypotheses, adjudicate between competing inter-
pretations, nor does it construct a causal model of the
world [107]. Whereas humans base judgments on causal
understanding, LLMs rely on correlations, making them
especially vulnerable to spurious associations [108] and
prone to characteristically non-human errors [109,
For example, researchers observed a substantial perfor-
mance drop when models were asked to reason about
unseen or hypothetical causal relationships, a strong in-
dication that LLMs do not construct causal models but
rather rely on surface associations [111-113].

At this point, the epistemological divergence becomes
irreconcilable: human cognition is goal-directed and or-
ganized around causal models of the world, whereas LLM
cognition lacks intrinsic goals and is driven by statistical
patterns vulnerable to spurious correlations.

F. Metacognitive calibration and error-monitoring
vs. Forced confidence and hallucination

After constructing preliminary interpretations and en-
gaging in reasoning, humans deploy a distinct layer of
metacognitive evaluation: monitoring uncertainty, de-
tecting potential errors, estimating confidence, and, when
necessary, withholding judgment. These processes rely
on neural systems for conflict detection [114], error moni-
toring [115], and confidence estimation [116]. Metacogni-
tive signals guide whether individuals double-check facts,
seek additional information, revise faulty assumptions,
or suspend belief. Even young children demonstrate
uncertainty monitoring and the ability to acknowledge
not knowing [117]. Humans sometimes integrate social-
epistemic norms into metacognitive evaluation: they take
into account the stakes and social context, assess whether
a judgment ought to be made at all, and adjust their
expressed confidence accordingly, for example, to signal
trustworthiness or to avoid reputational costs [118, ].



Thus, metacognition functions not merely as internal er-
ror checking but as a socially embedded mechanism reg-
ulating when and how judgments are expressed.

LLMs lack metacognition entirely. They do not pos-
sess internal monitors for conflict, uncertainty, error like-
lihood, or epistemic stakes. They cannot track the reli-
ability of their own representations; they cannot realize
they “do not know”, and they are notoriously reluctant
to admit it. When LLMs generate statements of uncer-
tainty (“I'm not sure” ), these are linguistic constructions,
not internal confidence signals. Consequently, LLMs
routinely produce hallucinations because nothing in the
architecture encodes epistemic humility. Hallucination
is not a bug but a structural consequence of maximiz-
ing next-token probability under incomplete constraints
[46, 50]. Without a capacity to represent uncertainty or
suspend judgment, LLMs simulate confidence continu-
ously, even when wrong or uninformed.

At this stage, the epistemological rupture becomes
definitive: humans possess a self-regulating, uncertainty-
sensitive mechanism that supervises judgment formation;
LLMs possess none. Humans can refrain from judging;
LLMs must predict.

G. Value-sensitive judgment vs. Probabilistic
judgment

The culmination of the human epistemic pipeline is
the formation of value-sensitive, context-dependent judg-
ments. Individuals evaluate situations in light of personal
values, cultural norms, reputational concerns, and long-
term goals. Judgments therefore express not only what
someone believes but who they are and what they care
about. Moreover, human judgments are shaped by real-
world stakes: errors have consequences for relationships,
livelihoods, and identities. This imbues human decision-
making with a sense of accountability and normativity.

LLMs, by contrast, produce probabilistic, text-based
judgments determined by the statistical structure of their
training data and the immediate textual prompt. An
LLM’s “judgment” is simply the next-token distribution
conditioned on context. It does not evaluate truth, moral
weight, or pragmatic consequences: it estimates what
sequences of words are most likely given patterns learned
from text corpora. Its outputs do not reflect intrinsic
preferences, values, or goals. FErrors carry no internal
repercussions, and contradictions do not undermine its
epistemic integrity. The model cannot defend a judgment
except by generating further statistically plausible text.

In this stage, the epistemological divide has real-
world consequences. For humans, a judgment is a
world-directed, value-infused commitment, that inte-
grates causal models of the world with emotion, identity,
and moral purpose. For LLMs, a judgment is merely a
linguistic prediction. Even when their outputs superfi-
cially align, the underlying epistemic procedure is funda-
mentally different.

V. THE FAULT LINES

The previous section highlights seven epistemological
fault lines that separate human judgment from LLM
judgment, one for each stage of the epistemic pipeline.

The Grounding fault captures the fact that humans
begin judgment with perceptual and social information,
whereas LLMs begin with text, reconstructing meaning
indirectly from symbols. The Parsing fault highlights
how humans parse situations through rich perceptual and
conceptual mechanisms, while LLMs perform a purely
formal segmentation into tokens. The FExperience fault
reflects how humans rely on episodic memory, intuitive
physics and psychology, and learned concepts, whereas
LLMs rely solely on statistical associations in embed-
ding space. The Motivation fault points to the role of
emotions, goals, and values in guiding human cognition,
contrasted with the goal-free optimization dynamics of
LLMs. The Causality fault signals the divergence be-
tween human causal reasoning and LLM reliance on cor-
relations. The Metacognitive fault emphasizes humans’
ability to monitor uncertainty and withhold judgment,
in contrast to LLMs’ structural inability not to pro-
duce an answer. Finally, the Value fault delineates how
human judgments embody identity, morality, and real-
world stakes, while LLM judgment consists only of prob-
abilistic predictions without intrinsic valuation. Each
fault line corresponds to a stage in the epistemic pipeline
where human and artificial processes diverge in structure,
function, and epistemic grounding. These fault lines are
summarized in Table I.

Despite these fault lines, LLM outputs often appear
superficially fluent [120, ] and confidently articulated
[122], even when they are factually wrong [123]. This
creates substantial room for an “illusion of veracity”, a
systematic divergence between the actual accuracy of an
LLM output and the accuracy perceived by a human user.
Such illusion descends from the fact that people routinely
use these very properties—fluency and confidence—as
credibility heuristics in everyday judgment. In everyday
communication, fluency typically correlates with famil-
iarity, honesty, and communicative competence, making
it a reliable heuristic; people infer accuracy from pro-
cessing ease even when the fluency is artificially induced
[124-127]. Similarly, expressed confidence is a powerful
cue to credibility, over and above how fluently a message
is written. In a classic mock-trial study, more confident
witnesses were judged as more credible and more expert
by jurors [128]. More recently, participants were more
likely to believe and trust a highly confident eyewitness
than a cautious one describing the same accident; only
with experience did they begin to discount miscalibrated
confidence [129]. Building on such findings, scholars have
proposed a “confidence heuristic”, whereby, in the ab-
sence of stronger diagnostic cues, expressed confidence
substitutes for knowledge, competence, and correctness

[130).



Epistemological
fault line

Definition

The Grounding fault

The Parsing fault

The Experience fault

The Motivation fault

The Causality fault

The Metacognitive fault

The Value fault

Humans anchor judgment in perceptual, embodied, and social experience,
whereas LLMs begin from text alone, reconstructing meaning indirectly
from symbols.

Humans parse situations through integrated perceptual and conceptual
processes; LLMs perform mechanical tokenization that yields a structurally
convenient but semantically thin representation.

Humans rely on episodic memory, intuitive physics and psychology, and
learned concepts; LLMs rely solely on statistical associations encoded in
embeddings.

Human judgment is guided by emotions, goals, values, and evolutionarily
shaped motivations; LLMs have no intrinsic preferences, aims, or affective
significance.

Humans reason using causal models, counterfactuals, and principled eval-
uation; LLMs integrate textual context without constructing causal expla-
nations, depending instead on surface correlations.

Humans monitor uncertainty, detect errors, and can suspend judgment;
LLMs lack metacognition and must always produce an output, making
hallucinations structurally unavoidable.

Human judgments reflect identity, morality, and real-world stakes; LLM

“‘judgments” are probabilistic next-token predictions without intrinsic val-
uation or accountability.

TABLE I. Seven epistemological fault lines marking structural divergences between human and LLM judgment.

VI. EPISTEMIA

We define Epistemia [24] as the structural condition
in which linguistic plausibility substitutes for epistemic
evaluation. It designates a regime in which systems pro-
duce answers that are syntactically well-formed, seman-
tically fluent, and rhetorically convincing, without in-
stantiating the processes by which beliefs are normally
formed, tested, and revised [57, ]. The user experi-
ences the possession of an answer without having tra-
versed the cognitive labor of judgment [131].

Epistemia is not a psychological quirk and not a tran-
sient misuse of technology. It is not reducible to automa-
tion bias—the tendency to over-trust automated recom-
mendations [132]—mnor to a mere problem of misplaced
authority attribution, in which users incorrectly treat a
system as an expert [133]. Both automation bias and au-
thority effects can exacerbate Epistemia, but they pre-
suppose that the underlying system is, at least in prin-
ciple, an epistemic agent that could deserve or fail to
deserve trust. In the case of large language models, this
presupposition is false. The core issue is not that users
trust the wrong source, but that they are interacting with
a source that does not possess any internal mechanisms
for forming, holding, or revising beliefs at all [134, 135].

Epistemia is, instead, an architectural phenomenon
that arises whenever generative systems are inserted into
epistemic workflows while lacking internal machinery for
reference, verification, or belief maintenance. Under
these conditions, plausibility becomes a functional sur-
rogate for justification. What is optimized is not the

correctness of claims with respect to the world, but their
fit with a learned distribution of linguistic usages.

The defining mark of Epistemia is the decoupling of
content from evaluation. In human cognition, judgment
is embedded in an epistemic loop: claims are checked
against evidence, beliefs collide with counterexamples,
and conclusions remain revisable in light of new infor-
mation and social feedback. In generative systems, by
contrast, there is no internal locus where claims can be
tested, withdrawn, or defended. The model does not
distinguish between “true” and “false” continuations; it
distinguishes between more and less likely ones. What is
generated is not what holds, but what fits.

Epistemia is therefore the outcome of a precise mis-
alignment: highly sophisticated linguistic competence
coupled with the absence of epistemic control. As gen-
erative systems improve, this mismatch becomes more
dangerous, not less. The more persuasive the system
becomes, the easier it is to confuse coherence with cor-
rectness, fluency with reliability, and stylistic competence
with knowledge.

Importantly, Epistemia does not depend on error rates.
It persists even when systems are factually accurate. The
core harm is not the production of falsehoods, but the
structural bypassing of evaluation itself. When answers
are delivered in finalized form, without visible traces of
uncertainty, conflict, or evidential grounding, the user is
placed in a position of epistemic passivity. Judgment is
not exercised; it is consumed.

In this sense, Epistemia marks a transformation not in
what is known, but in how knowing is produced. It shifts



epistemic activity from a process to a product. The oper-
ative question is no longer “What should I believe, given
the available evidence?” but “What sounds right, given
what is presented to me?” The mechanisms of scrutiny,
contestation, and revision are displaced by mechanisms
of immediate acceptance or rejection of pre-packaged an-
swers.

Epistemia thus names a reconfiguration of the epis-
temic environment: a world in which access to linguis-
tically competent outputs becomes easier than access to
justified beliefs, and in which the experience of under-
standing detaches from the practice of justification. It
is in this gap—between fluent answers and accountable
cognition—that a new form of epistemic instability takes
root.

VII. DISCUSSION AND OUTLOOK

This Perspective examined a growing but often under-
theorized tension at the core of contemporary generative
AI: the simultaneous increase in surface alignment be-
tween human and machine outputs and the persistence
of deep epistemic divergence in the processes that gener-
ate them. The central point is not that LLMs cannot
produce useful text—they plainly can—but that their
apparent resemblance to human judgment is primarily
a resemblance in linguistic form and social presentation,
rather than in the epistemic operations that make judg-
ment answerable to the world.

By systematically comparing human and artificial epis-
temic pipelines, we argued that current LLM architec-
tures lack the mechanisms that make human judgment
possible across seven epistemic fault lines: grounding,
parsing, experience, motivation, causality, metacogni-
tion, and value. What these systems provide instead is
a highly optimized form of linguistic continuation, ca-
pable of producing contextually appropriate and rhetor-
ically convincing outputs without performing epistemic
evaluation. This is precisely why the most salient risk is
not reducible to occasional inaccuracy or bias. The risk
is structural: correctness becomes decoupled from the
processes of justification that normally sustain it, and
thus from the institutional and psychological practices
through which epistemic responsibility is enacted.

To characterize this condition, we introduced FEpis-
temia: a structural regime in which linguistic plausibility
substitutes for epistemic evaluation, generating the ex-
perience of knowing without the cognitive labor of judg-
ment. Epistemia is not a transient misuse pattern nor
a defect that disappears with better benchmarks. It is
not resolved by scale, higher scores, or more convincing
behavior. It arises from architectural features of gener-
ative systems, and therefore persists even when outputs
are accurate, calibrated, or behaviorally aligned. Indeed,
as generative models become more capable, the felt relia-
bility of their outputs often increases faster than the sys-
tem’s capacity to warrant that reliability, thereby widen-

ing the practical gap between persuasion and justifica-
tion.

These observations carry direct implications for how
generative systems are evaluated, governed, and inte-
grated into epistemic practices. We outline three such
implications below.

A. Epistemic evaluation beyond surface alignment

Current evaluation paradigms for large language mod-
els overwhelmingly rely on surface alignment: agreement
with human answers, task success, or behavioral simi-
larity under controlled prompts [136-138]. While these
evaluations remain a necessary condition for any mean-
ingful notion of alignment, from the perspective of Epis-
temia they are systematically insufficient. They primar-
ily test whether outputs look right—that is, whether
they resemble a target distribution of human responses—
not whether they are produced through processes that
sustain judgment under uncertainty, contestation, and
worldly constraint [24, 35]. Because LLMs can achieve
impressive task performance without instantiating mech-
anisms for grounding, causal modeling, uncertainty mon-
itoring, or value-sensitive commitment, output-focused
benchmarks risk mistaking linguistic competence for
epistemic competence [57, 139].

This limitation is most consequential in domains where
justification, error awareness, and responsibility are con-
stitutive of competent practice: science, medicine, law,
journalism, and public policy [140, 141]. In such settings,
the epistemic cost of error is not exhausted by a wrong
answer. It includes inappropriate confidence, the pre-
sentation of conjecture as settled fact, brittle reasoning
that collapses under distributional shift, and the inability
to recognize when abstention or deference is the norma-
tively correct move. Even when a response happens to
be correct, the absence of an internal epistemic loop can
still be harmful if it trains users and institutions to treat
a fluent completion as a substitute for warranted belief.

Future research should therefore complement output-
level evaluation with process-sensitive probes. Con-
cretely, this means designing tests that target (i) uncer-
tainty management (when and how a system expresses
uncertainty, requests missing information, or refuses to
answer), (ii) counterfactual sensitivity and causal sta-
bility (whether conclusions track interventions rather
than surface associations), (iii) robustness to correlation-
breaking shifts (where distributional regularities diverge
from the world structure users actually care about),
and (iv) normative appropriateness of abstention (tasks
where withholding judgment is the epistemically correct
outcome). The key shift is conceptual: epistemic evalu-
ation must move from asking whether models can repli-
cate human-looking judgments to whether their behav-
ior is coupled to mechanisms that preserve the mean-
ing of judgment under epistemic stress [24, 35]. In an
Epistemia-prone environment, evaluating only the prod-



uct of generation is a category error; what must be eval-
uated is the reliability of the pipeline that delivers that
product.

B. Epistemic governance beyond behavioral
alignment

Much of the current governance discourse around
LLMs, and generative AI more broadly, is organized
around behavioral alignment, understood as ensuring
that systems produce safe, compliant, and socially ac-
ceptable outputs, rather than around guarantees about
the epistemic processes underlying those outputs [142—

]. This focus is necessary but insufficient under con-
ditions of Epistemia, because the core failure mode is not
merely that a system says something harmful, but that it
is positioned to replace or short-circuit human and insti-
tutional judgment while lacking the epistemic capacities
that would make such substitution legitimate.

AT governance therefore requires a shift from regulat-
ing what systems say to regulating how generative out-
puts are introduced into epistemic workflows, and where
they may permissibly substitute for human judgment.
Several governance implications follow.

First, governance should explicitly distinguish do-
mains where generative outputs can be assistive from
domains where they functionally become decision pro-
cedures. In high-stakes settings, the relevant question
is not whether the model can often provide the right an-
swer, but whether its use induces epistemic passivity: col-
lapsing search, adjudication, and justification into a sin-
gle authoritative-seeming response. In practical terms,
this supports governance measures that require human-
in-the-loop review with clearly specified accountability,
especially where responsibility cannot be meaningfully
delegated to a non-epistemic system [140, .

Second, disclosure requirements should be reframed as
epistemic transparency obligations rather than generic
“Al use” labels. Under Epistemia, the crucial informa-
tion is not simply that a system was used, but what epis-
temic functions it did not perform: whether it grounded
claims, checked sources, tracked uncertainty, or could
have abstained. This suggests that governance and orga-
nizational policy should demand context-appropriate dis-
closures about evidential status (supported versus conjec-
tural), confidence (including when confidence is merely
stylistic), and limitations tied to the seven fault lines
identified above [24, 35, 57].

Third, governance should invest in epistemic risk tax-
onomies distinct from conventional safety taxonomies.
Traditional “Al safety” tends to emphasize toxicity, ma-
licious use, and direct harms. Epistemic risk includes
the degradation of justificatory norms, the institutional-
ization of plausibility as a decision criterion, and the dis-
placement of distributed epistemic checks (peer review,
second opinions, adversarial scrutiny) by a single genera-
tive interface. Formalizing these categories would make it
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possible to specify safeguards proportionate to epistemic
stakes, not merely to the possibility of offensive content.

Finally, governance should treat technical add-ons (re-
trieval, tool use, external memory) as partial mitigations
rather than epistemic solutions. They may reduce certain
error rates, but they do not by themselves instantiate be-
lief, understanding, or accountability. Without explicit
governance constraints, the addition of such mechanisms
can even intensify Epistemia by further increasing the
persuasive authority of outputs while leaving responsi-
bility diffuse [24, 35].

C. Epistemic literacy beyond critical thinking

Under conditions of Epistemia, users are increasingly
exposed to fluent outputs that simulate judgment. This
places new demands on education and professional train-
ing [146]. Classical accounts of critical thinking em-
phasize the evaluation of arguments and evidence, but
they were largely designed for epistemic environments in
which the production, evaluation, and ownership of judg-
ment are co-located within a single epistemic agent ca-
pable of generating reasons, revising beliefs, and bearing
responsibility for error [147-149]. In generative settings,
by contrast, the production of plausible reasons can be
automated, while the work of evaluation and account-
ability remains human—often invisibly so.

We therefore propose epistemic literacy as a distinct
competence that must be explicitly conceptualized and
taught in the age of generative AI. Whereas critical think-
ing focuses on assessing the validity, coherence, and ev-
idential support of arguments—typically at the level of
individual claims or lines of reasoning—epistemic literacy
focuses on navigating epistemic environments in which
judgment is staged, mediated, and distributed across hu-
mans and machines. It equips users to recognize when
apparent judgments are the product of statistical pat-
tern completion rather than epistemic evaluation, and to
identify which dimensions of judgment remain irreducibly
human.

In practice, epistemic literacy includes at least three
families of skills.

First are pipeline awareness skills: understanding the
difference between a system that retrieves evidence and
one that synthesizes text; recognizing when a response
is likely to be a completion rather than an evalua-
tion; and anticipating the characteristic signatures of the
seven fault lines (for example, the mismatch between flu-
ent explanations and absent causal commitment, or be-
tween confident tone and absent uncertainty monitoring)
[24, 35, 57].

Second are procedural safequards for everyday use:
habits of verification proportionate to stakes, routines
for cross-checking against independent sources, and ex-
plicit norms for when to defer judgment (including when
to seek expert review) rather than treating the presence
of a coherent answer as closure. Importantly, this is not



merely “be skeptical.” It is learning to reintroduce, at
the level of practice, the epistemic loop that generative
systems bypass: evidence seeking, contestation, and re-
visability.

Third are institutional competencies: designing work-
flows, classroom practices, and professional standards
that prevent the outsourcing of epistemic responsibility
to generative interfaces. This includes making uncer-
tainty visible where appropriate, requiring provenance
or justification for consequential claims, and clarifying
accountability when Al-assisted outputs circulate in or-
ganizations. Epistemic literacy thus extends beyond the
individual user to the norms and infrastructures that de-
termine whether a society treats plausibility as a substi-
tute for justification.

In this sense, epistemic literacy does not replace critical
thinking but complements it. It extends critical think-
ing to settings in which the central epistemic challenge
is no longer only the evaluation of arguments, but the
governance of judgment in hybrid human—Al systems:
deciding when to use generative tools, how to interpret
their outputs, and how to preserve the social and insti-
tutional practices that keep belief formation answerable
to the world.

VIII. CONCLUSION

This Perspective argued that contemporary large lan-
guage models occupy a distinctive epistemic position:
they can produce outputs that are often indistinguish-
able from human judgments while relying on a genera-
tive mechanism that is not itself a form of judgment. By
framing text generation as stochastic path completion in
a high-dimensional space of learned linguistic transitions,
we emphasized that the impressive behavioral alignment
of LLMs is compatible with a deeper structural mismatch
in how conclusions are produced. The appearance of un-
derstanding can therefore coexist with the absence of the
epistemic operations that make understanding account-
able to the world.

We made this mismatch explicit by mapping human
and artificial epistemic pipelines and identifying seven
epistemic fault lines that separate human and LLM
judgment: grounding, parsing, experience, motivation,
causality, metacognition, and value. Across these di-
vergences, human judgment remains embedded in an
epistemic loop that couples perception, memory, affect,
causal modeling, uncertainty regulation, and normative
commitment to a world that can push back. LLM out-
puts, by contrast, are synthesized continuations condi-
tioned on text and decoding dynamics: they can be co-
herent, persuasive, and often correct, yet they are not
produced by a system that forms beliefs, adjudicates ev-
idence, monitors epistemic error, or bears stakes. The
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relevant divide is thus not between “intelligent” and “un-
intelligent” systems, but between epistemic agents and
systems that simulate the surface form of agency with-
out instantiating its underlying constraints.

On this basis, we introduced Epistemia as the struc-
tural condition in which linguistic plausibility becomes a
surrogate for epistemic evaluation, producing the expe-
rience of knowing without the labor of judgment. Epis-
temia is not reducible to user naivety, occasional halluci-
nation, or the misuse of an otherwise epistemic tool. It
is an architectural and socio-technical phenomenon that
arises when generative systems deliver finalized, fluent
answers in contexts where justification, uncertainty, and
revisability are essential. As generative models scale and
become more persuasive, the risk is not only that errors
persist, but that evaluation is systematically displaced:
the epistemic workload is shifted from the system to the
user and, more importantly, made easier to omit.

The framework developed here motivates a broader
research program integrating behavioral, cognitive, and
computational sciences to systematically compare how
humans and machines respond to uncertainty, causal dis-
ruption, moral trade-offs, and epistemic conflict. Such a
program should move beyond surface performance and
explicitly target process-level capacities: when absten-
tion is warranted, how uncertainty is represented or sim-
ulated, how causal counterfactuals are handled when
correlations fail, and how value-sensitive commitments
emerge (or do not) under stakes. The goal is neither to
anthropomorphize LLMs nor to force them into human
epistemic categories, but to delimit, with empirical and
formal precision, which epistemic functions can be mean-
ingfully delegated to generative systems and which must
remain human or institutionally distributed.

Finally, the practical stakes of clarifying these fault
lines are societal. Evaluation regimes that reward plau-
sibility, governance frameworks that regulate only out-
ward behavior, and educational practices that treat flu-
ent synthesis as comprehension together create the con-
ditions for Epistemia to become normalized. Conversely,
explicitly acknowledging the epistemological discontinu-
ities between human cognition and generative transform-
ers provides a basis for redesigning benchmarks, poli-
cies, and literacies around epistemic responsibility rather
than rhetorical competence. In an epistemic environment
increasingly organized around generative Al, preserving
judgment as a genuinely accountable, human-directed
practice requires more than better models. It requires
maintaining the social and institutional conditions under
which reasons can be demanded, errors can be owned,
and belief remains answerable to evidence.
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