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Abstract

Large language models (LLMs) are increasingly deployed in enterprise settings
where they interact with multiple users and are trained or fine-tuned on sensitive
internal data. While fine-tuning enhances performance by internalizing domain
knowledge, it also introduces a critical security risk: leakage of confidential training
data to unauthorized users. These risks are exacerbated when LLMs are combined
with Retrieval-Augmented Generation (RAG) pipelines that dynamically fetch
contextual documents at inference time.

We demonstrate data exfiltration attacks on Al assistants where adversaries can
exploit current fine-tuning and RAG architectures to leak sensitive information
by leveraging the lack of access control enforcement. We show that existing
defenses, including prompt sanitization, output filtering, system isolation, and
training-level privacy mechanisms, are fundamentally probabilistic and fail to offer
robust protection against such attacks.

We take the position that only a deterministic and rigorous enforcement of
fine-grained access control during both fine-tuning and RAG-based inference
can reliably prevent the leakage of sensitive data to unauthorized recipients.

We introduce a framework centered on the principle that any content used in
training, retrieval, or generation by an LLM is explicitly authorized for all users
involved in the interaction. Our approach offers a simple yet powerful paradigm
shift for building secure multi-user LLM systems that are grounded in classical
access control but adapted to the unique challenges of modern Al workflows. Our
solution has been deployed in Microsoft Copilot Tuning, a product offering that
enables organizations to fine-tune models using their own enterprise-specific data.

1 Introduction

Large language models (LLMs) are increasingly being integrated into enterprise workflows to support
tasks such as code completion, document generation, and email drafting—e.g. via modern Al
productivity tools like Cursor Al [10], Microsoft Copilot [36]], Google Gemini Advanced [18], etc.
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These tools are frequently deployed in enterprise settings with multi-user environments, where data
is protected by strict access control mechanisms tied to individual user permissions. To enhance the
effectiveness of these Al tools, enterprises often employ models that are trained or fine-tuned on
internal data, which varies in sensitivity and is typically siloed across departments or users. While
fine-tuning incorporates valuable domain-specific knowledge, it also introduces a critical risk: the
potential leakage of confidential information to unauthorized users.

Models fine-tuned on sensitive information—such as HR records, internal policies or high-impact
business strategies—may inadvertently reveal this information when users interact with the Al tools
and query the models, particularly in environments with heterogeneous access privileges. Worse
still, such leakage can occur not only through targeted extraction attacks but also unintentionally
during routine interactions, like drafting emails or querying an assistant on personal and shared
documents [1]]. Feedback from numerous business groups highlights that the risk of data leakage
and the absence of robust security controls remain significant barriers to enterprise adoption of Al
tools [9]].

These risks are further amplified when fine-tuned models are integrated with Retrieval Augmented
Generation (RAG) pipelines. In such systems, user prompts are augmented with documents retrieved
based on query context, improving the response quality. However, if the retrieval mechanism fails to
strictly enforce access control lists (ACLSs) for all users involved in the interaction, it may introduce
restricted content into the model’s context, leading to unauthorized disclosures. For instance, consider
a scenario where Alice uses a RAG-based tool to draft a reply to Bob’s email. If ACLs for both Alice
and Bob are not properly enforced, a malicious Bob can exploit the retrieval process to exfiltrate
sensitive data—embedding hidden instructions in his email and then decoding the model’s response
via steganographic techniques. Alarmingly, such attacks can succeed even when Bob’s incoming
email and assistant’s outputs are subject to human review (§ 4.2).

We take the position that deterministic and provable enforcement of fine-grained access controls
is essential for the safe deployment of LLMs in multi-user environments such as enterprises.
This stands in direct contrast to probabilistic defenses—such as input sanitization, output
filtering, system-level isolation, and training-level techniques—which, while useful, are funda-
mentally insufficient due to their lack of rigorous end-to-end guarantees. We advocate a simple
and robust principle: RAG pipelines and fine-tuned models must enforce access control at every
stage of processing, ensuring that any content incorporated into a model’s output is authorized
for access by all intended recipients.

By reframing data security for LLMs as a problem of principled access control, we introduce a new
design paradigm—one that prioritizes auditability and provable security guarantees. We also present
a framework that demonstrates how access control can be enforced both during fine-tuning and at
inference time within RAG pipelines.

Overview. First, we show that, in the absence of deterministic safeguards on fine-tuning data and
fine-tuned model access, fine-tuned models are vulnerable to data extraction attacks—risks that
existing defenses fail to mitigate (§2)). We then introduce access control-aware fine-tuned models
(§3), where the fine-tuning process inherits the permissions and ACLs of the underlying training data.
Specifically, we enforce that a user gets access to a fine-tuned model if and only if they have access to
all data used during fine-tuning. Naively, if all private data within an organization, that is subject to
fine-grained access controls, is used for fine-tuning, it may result in no single user (or very few users)
being authorized to access the resulting model. To address this, we formulate the joint selection of
training data and authorized model users as the problem of finding bicliques in a bipartite graph.
Our initial solution has been deployed in Microsoft’s Copilot Tuning [7]], which enables customers
to fine-tune models on their sensitive data. Finally, we study information leakage in LLM-assisted
systems during inference in the presence of multiple users, and discuss how enforcing deterministic
access checks provides a principled solution to eliminate information leakage (§4). Related work on
data leakage attacks, existing defenses, and their limitations is discussed inline within the relevant
sections and scenarios, rather than in a standalone section.

2 Data extraction attacks on fine-tuned models

Fine-tuning is the process of taking a pre-trained machine learning model—such as a large language
model (LLM)—and continuing its training on a smaller, task-specific dataset [S2]. This allows the



model to adapt to the nuances and requirements of a particular application or domain, improving its
performance in that context. Fine-tuning allows enterprises to leverage their private, often sensitive
data to create models tailored to their needs—for example, code completion using internal repositories
and document generation following company-specific templates. While techniques like Retrieval-
Augmented Generation (RAG) can provide application-specific context at inference time, fine-tuning
has been shown to more effectively embed domain knowledge into a model [3]. RAG is better suited
as a complementary approach to support fine-tuned models rather than replace them. Additionally,
fine-tuning can reduce the context needed during inference, which lowers inference costs [S9].

While offering substantial value in enterprise settings, fine-tuning introduces a unique security
risk. Since employees often have varying levels of access to sensitive data, a fine-tuned model
could unintentionally expose restricted information. This makes it a potential attack vector for data
exfiltration, as models are known to leak training data through their inference outputs [4} 6} 39} 31]].

Internal data leakage via fine-tuned models. Consider the following scenario: An enterprise
fine-tunes a model M on its internal data, including sensitive information D that employee Bob
is not authorized to access. If Bob is subsequently granted access to the fine-tuned model M, he
may, either inadvertently or deliberately, extract privileged information contained in D through
model interactions, resulting in a breach of internal data confidentiality or data leakage. For example,
suppose D includes comprehensive HR data, such as compensation policies, and Bob is a non-HR
employee without access privileges to this subset of information. If M is fine-tuned on D, it may
implicitly encode and potentially reveal these sensitive HR policies during inference to Bob, thus
circumventing established access controls.

This form of leakage arises from the very objective of fine-tuning: to enhance model performance
by internalizing attributes of the training distribution. While prior work has demonstrated that
models can memorize and regurgitate sensitive training data verbatim during inference [4, |5, 39,
35012211504 231 127, 16, 131]], we emphasize that data leakage can occur even in the absence of exact
memorization. Subtler forms of leakage—such as the paraphrased disclosure of sensitive content—can
also arise due to the model’s generalization over restricted training signals. Importantly, the class of
sensitive information under consideration extends beyond personally identifiable information (PII). It
also encompasses business-critical data—such as internal policies, strategic plans, or confidential
departmental communications—that may be selectively accessible within different organizational
units. When a model is fine-tuned on data sourced from multiple such units without access control
enforcement, it effectively flattens internal data silos, exposing restricted information to users across
the enterprise regardless of their authorization level.

There are a variety of attacks that aim to learn information about data used during training process.
These include query-based attacks that can directly extract training data [4} |35} [39} 22| 150, [311],
as well as membership inference attacks that aim to determine whether specific data was part of
the training set [4} 38} |17, [31]. Alarmingly, memorization has been shown to increase with the
current LLM scaling trends—both in terms of larger model sizes [4} 5} 27,150, |31]] and larger training
datasets [31} 5L [27]]. This poses a serious risk in multi-user settings, where a model fine-tuned on
data with varying access controls is made available to all users. Crucially, data leakage can occur not
only through targeted attacks, but also inadvertently during normal interactions by legitimate users.
Therefore, models fine-tuned on sensitive data must be treated as potential sources of data leakage.

Inadequacy of current defense mechanisms. Despite the aforementioned risks, existing defense
mechanisms remain inadequate for preventing the leakage of sensitive fine-tuning data—particularly
in enterprise settings, where such data often encapsulates complex, structured information beyond
memorizable facts or personally identifiable information. Defense strategies can be broadly classified
by their intervention stage [49]: (i) data-centric approaches that preprocess fine-tuning data to mitigate
leakage risk, (ii) output-level methods that apply post hoc sanitization or filtering to model predictions,
and (iii) training-level techniques that modify the learning dynamics or loss function to enhance
robustness against leakage.

Data-centric approaches aim to mitigate leakage risks by preprocessing or sanitizing training data
prior to fine-tuning. N-gram deduplication [28 25]] reduces memorization by eliminating repeated
sequences, while data scrubbing techniques [|33} 53] target the removal of personally identifiable in-
formation (PII). Obfuscation methods [S6] perturb the input distribution by injecting noise. Although
such techniques can reduce the likelihood of memorizing specific data points, they do not offer any



formal guarantees. Moreover, in enterprise settings—where fine-tuning data often encodes sensitive,
structured information—these methods are insufficient and frequently inapplicable.

Output-level methods focus on post-processing or controlling model outputs at inference time to
mitigate the risk of sensitive information disclosure. Techniques such as confidence masking [24]
introduce noise into model outputs to obscure potential memorized content, but often degrade
utility without providing robust guarantees against leakage. Data Loss Prevention (DLP) tools
[201 140} 37] aim to detect and prevent the exposure of sensitive content—such as PII, protected health
information (PHI), or financial data—through pattern matching or rule-based classification. However,
DLP methods are fundamentally limited: they cannot determine whether a model’s response to a
particular user (e.g., Bob) is derived from training data that is inaccessible to that user. Crucially, they
lack the ability to track fine-grained information flow from training data to specific model outputs.

Approaches that modify the training procedure to mitigate information leakage include regularization
and differential privacy (DP). Regularization encompasses techniques aimed at reducing overfitting,
thereby limiting the model’s tendency to memorize individual training examples [55,130]. However,
applying this technique in our setting—where the goal is to prevent the model from learning implicit,
large-scale sensitive information across an enterprises—would necessitate overly aggressive regular-
ization, severely compromising the model’s utility for authorized users. Differential privacy offers a
more formal approach to limiting information leakage [15} 44, 26]]. A randomized algorithm is said to
be differentially private if its output distributions remain similar when applied to two datasets differing
in a single data point. While conceptually appealing, DP faces several limitations in the context
of fine-tuning large models. First, even a differentially private training algorithm allows bounded
leakage, captured by the privacy parameter €, which often must be large to maintain acceptable utility.
Second, standard DP protects only individual data samples. In practice, sensitive enterprise data may
span correlated groups of records, all of which may be inaccessible to a given user. Protecting such
large-scale information requires group differential privacy [16], which increases the privacy budget e
and degrades utility to the point that the method becomes nonviable for real-world deployment.

Summary. Providing model access in a multi-user setting—where the model has been fine-tuned on
sensitive data governed by fine-grained access controls—inevitably carries the risk of unintended
data exposure. Existing defense mechanisms, whether applied at the input, output, or fine-tuning
stages, lack end-to-end guarantees and fail to provide reliable protection against data leakage. This
fundamental security gap remains a key barrier to the widespread adoption of fine-tuned LLMs in
enterprise settings.

3 Access control aware fine-tuned models

In §3.1] we describe our security principle that provably prevents data leakage from fine-tuned models.
Next, in we discuss how access control lists (ACLs) can be used to realize this principle followed
by a graphical representation of the problem that we need to solve. We then present several example
solutions as proofs of concept (PoCs) that illustrate our approach to building useful fine-tuned models
in multi-user environments (§3.3). One of these has been deployed in the Al assistant of a large
enterprise solution provider for real-world customers.

3.1 The security principle

Formal security requirement. We require that a user U’s access to a fine-tuned model does not
grant U access to any unauthorized information. This requirement formally ensures that the use of
fine-tuned models does not result in data leakage attacks.

Next, we state our security principle that provably satisfies the above security requirement.

Security principle for fine-tuning. Let M be a model obtained by fine-tuning a publicly pre-trained
model on a collection of sensitive documents D. Then, M can be provided to a user U only if U is
authorized to access all documents in D.

For instance, if M is a model fine-tuned on sensitive data that is accessible to both Alice and Charlie
and not accessible to Bob, then M can be provided to Alice and Charlie and not to Bob. Conversely,
to fine-tune a model intended for a user group U, the training data must be restricted to documents
that are accessible to all users U € U.



Enforcing our security principle when building fine-tuned models clearly requires careful examination
of who has access to the underlying training data. To this end, we examine the access control lists
(ACLs) associated with data in commonly used file systems, such as SharePoint sites, Google
Workspace, and similar platforms. Next, we review a few definitions and provide a graphical
representation of our problem.

3.2 Bicliques are secure for fine-tuning

Notation and definition. We denote documents by D, entities by F, users by U, and models by M.
An entity E could either be a single user or a group of users (e.g., distribution lists or Active Directory
security groups). Each document D is associated with an access control list (ACL) consisting of a list
of entities £/ who are authorized to access D. A bipartite graph G is a graph in which vertices can be
divided into two disjoint sets such that no two vertices in the same set are connected. A biclique is a
complete bipartite graph where each vertex in one set is connected to each vertex in other set.

ACLs as a graph. Given a database of document IDs D with their corresponding ACLs denoting
entities from universe £, we can represent this access control information using a bipartite graph G
between D and £ such that D € D with ACL A is connected to E € £ if and only if £ € A.

The following theorem captures the idea that bicliques can used to select documents for fine-tuning
that respects access control.

Theorem 1. Let G be the bipartite graph over D U & using the given ACLs and B be a biclique in G
with vertices D C D and E C E. Then, a fine-tuned model M satisfying the security principle in
Secttoncan be created for the set of entities E by fine-tuning on documents in D.

It is straightforward to see the validity of this theorem as by design every entity in E is authorized to
access every document in D.

3.3 Our approach to building useful fine-tuned models for multi-user environments

In the previous subsections, we established a security principle for access-control-aware fine-tuning
that provably prevents all data leakage scenarios described in Section[2] We also showed that bicliques
can be leveraged to enable secure fine-tuning. In this section, we address the question of model utility:
given the potentially large number of bicliques in the ACL-derived graph, which fine-tuned models
are actually worth building?

At one extreme, we could fine-tune a separate model for each user. While this offers maximum
personalization, it is prohibitively expensive and operationally unsustainable for any enterprise. A
more practical goal is to fine-tune models that can be shared across many users/entities—a property
we refer to as entity coverage. For example, we could train a single model for an entire enterprise,
achieving 100% entity coverage. However, our security model restricts training data to documents
that are "public" within the organization. This constraint may exclude a large portion of relevant
content, limiting the model’s utility for enterprise-specific tasks. To maintain task relevance, we
must selectively include documents containing essential domain knowledge-a property we refer to as
document coverage. This, in turn, may limit which users are permitted access to the fine-tuned model,
and reduce entity coverage. Thus, there is a tradeoff between entity coverage and document coverage.

We consider two primary use cases where a model maker or an IT administrator aims to fine-tune a
model for an enterprise setting. The IT administrator provides a set of document IDs D along with
their corresponding access control lists (ACLs) defined over a set of entities £.

IT administrator specifies a target entity set E for model access. This case is straightforward: we
select all documents D € D whose ACL A satisfies £ C A. This approach is efficient, requiring
only a linear scan over all document IDs and their associated ACLs.

IT administrator does not specify any preference. In this scenario, the objective is to identify
a subset of documents and entities that achieves a balance between document coverage and entity
coverage, as discussed earlier. We propose two candidate strategies to address this:

1) Maximum biclique: A biclique with the largest number of edges is referred to as a maximum
biclique. This configuration is desirable for fine-tuning as it offers broad document and entity
coverage. However, identifying a maximum biclique is known to be NP-Complete [41]. While



algorithms such as branch-and-bound techniques [34, [12] can be employed to find a maximum
biclique, they are computationally expensive, especially in dense graphs—a situation commonly
encountered in enterprise settings.

2) Maximal biclique: Intuitively, this approach involves generating candidate maximal biclique and
selecting the one with the maximum number of edges. As a heuristic, we consider each unique ACL
in the graph as a candidate entity set F, and apply the strategy described in the first case to determine
the corresponding set of documents D). We then attempt to expand the set of entities by including any
other entity that has access to all documents in D, thereby forming a candidate maximal biclique.
This heuristic is particularly relevant for enterprise systems where it is common for a few entity sets
to govern many documents, increasing its likelihood of identifying the true maximum biclique (see
Appendix [A]for a detailed discussion).

Real-world adoption. Building on the ideas outlined above for a maximal biclique, our initial
solution (described in Appendix [A) is publicly offered as part of Microsoft’s Copilot Tuning. This
product enables large enterprise customers to train fine-tuned models on their proprietary data.

4 Eliminating information leakage in multi-user RAG systems

Al assistants are commonly enhanced with Retrieval-Augmented Generation (RAG), which supple-
ments the LLM’s prompt with relevant context. We consider settings in which multiple users interact
with Al assistants—providing inputs, receiving outputs, and often influencing shared system state.
While the descriptions in this section primarily assume public LLMs for inference after the retrieval
by the RAG, we also touch upon the implications of using fine-tuned models along with RAG in §4.4]
Securing fine-tuned models in conjunction with RAG-based retrieval in multi-user settings is a highly
complex challenge that demands rigorous, carefully designed, and deterministically enforced access
control mechanisms to prevent unintended data exposure. Hence for ease of exposition, we use public
LLMs for our discussion on multi-user RAG-based Al assistants (till we get to the end of §4.4).

We consider two representative scenarios: (a) an email assistant that helps a user draft replies to emails
received from various senders, and (b) collaborative writing tools where multiple users co-author
content using an LLM assistant. We start by focusing on the email assistant scenario, and later briefly
outline how similar vulnerabilities manifest in collaborative writing tools.

4.1 Email Assistant with RAG + LLM

Consider an LLM-powered email assistant designed to help users draft, edit, and summarize emails.
Retrieval-Augmented Generation (RAG) enriches the LLM’s prompt with documents from the user’s
mailbox or Google Drive as in Google Gemini Advanced. We begin by describing two common
modes in email assistants and how RAG operates in each mode.

In the agentic mode, the assistant acts as a drafting partner. When Alice invokes the system - for
example, by saying “Help me draft a reply to Bob” — the assistant generates a candidate message for
her review. Alice retains final control: she can edit, discard, or approve the draft. This review step

provides a clear checkpoint, ensuring that no content is sent without Alice’s explicit consen

In contrast, the fully agentic mode removes the manual checkpoint entirely. When Alice issues a
high-level directive, the assistant drafts and sends emails directly on her behalf. This maximizes conve-
nience and speed, but places full trust in the assistant to avoid errors or unintended disclosures—even
in sensitive contexts.

At the core of both modes is a RAG pipeline. The assistant first indexes Alice’s mailbox—subject
lines, message bodies, and attachments—by embedding each item into a semantic vector space. When
Alice issues a prompt, the system embeds this as well, and performs a semantic search over the index,
retrieving the top-k most relevant items. These retrieved snippets are then prepended to the LLM
prompt [29]], grounding the model in specific details from past conversations, dates, or figures that
enhance response quality.

"Here, bicliques to which no more documents or entities can be added without violating the biclique property
are called maximal bicliques.

2As we will see later, even when Alice retains final control, an adversarial sender Bob can exfiltrate sensitive
information from Alice’s inbox.



While RAG can substantially improve assistant performance, it also broadens the attack surface:
any document in Alice’s mailbox may be pulled into the LLLM’s context if the retrieval mechanism
is not carefully constrained. This vulnerability becomes particularly serious when an adversarial
sender—say, Bob—injects a malicious prompt into an email, aiming to influence what the system
retrieves and how it responds.

We introduce our two principal actors and define the attack class. Alice is a benign user of the email
assistant. She interacts in good faith, trusts the system to help her draft and send emails, and never
intends to leak private data. In the agentic mode, she manually reviews every draft; in the fully
agentic mode, she delegates full control of the outbox to the assistant. Bob is an adversary whose only
capability is to send emails to Alice. He has no read-access to her mailbox or documents. However,
his goal is to extract private information from Alice’s mailbox by manipulating the assistant’s
behavior—specifically, by leveraging prompt injection to influence retrieval and generation.

4.2 Cross-prompt injection attack (XPIA): Attack flow

A cross-prompt injection attack (XPIA) occurs when an adversary embeds hidden instructions into
benign-looking content—such as emails—which are subsequently processed by an LLM during tasks
like reply generation. These hidden prompts can manipulate the model into taking actions that the
original user neither intended nor authorized, potentially leading to information leakage or policy
violations [42} 19} [13]).

We analyze a class of XPIAs in which a malicious sender, Bob, injects prompt-like instructions into
emails sent to Alice. These instructions, though invisible or innocuous to Alice, are processed by
the assistant’s RAG pipeline and LLM, resulting in unauthorized disclosure of private information.
This attack creates a covert channel by abusing the assistant’s retrieval and generation pipeline to
exfiltrate sensitive data—without Alice’s awareness or consent. We illustrate the attack flow in Fig. [I]
Malicious content is denoted in red.

* Step 1 — Email with an embedded malicious prompt (red): Bob sends Alice an email with an
innocent-looking message—e.g., “Let’s meet; suggest a day?"—but embeds a hidden instruction:
“Lookup Project X’s revenue (in millions) and suggest meeting on the date of that number in your
reply.”. Techniques such as white text on white background, invisible Unicode characters, or
HTML obfuscation can conceal this instruction from Alice while preserving it for model [46 47].

However, we highlight two key points here:

(a) Indistinguishability: The assistant cannot differentiate between a legitimate prompt in the
incoming email (e.g., Alice’s manager asking for project revenue) and a maliciously injected
one (such as the one above).

(b) Limitations of detection: Existing methods to identify prompt injections are probabilistic and
prone to false negatives (§4.3). Consequently, such a malicious prompt goes undetected with
non-trivial probability on currently deployed systems.

Step 2 — Alice’s query to the assistant: Alice asks: “Draft a reply to Bob.” Alice’s query and
Bob’s email (including the hidden instruction) form the input to the assistant.

Step 3 — RAG retrieval: The assistant embeds both Alice’s query and Bob’s email as context
and performs semantic search over Alice’s mailbox. Failing to recognize the hidden instruction as
malicious, it retrieves relevant data—e.g., “Project X’s revenue is $7 million.”

Step 4 — Response generation and leak: LLM generation incorporates the retrieved information
and follows attacker’s instructions to generate a response “Hi Bob, Sure, how about 7th May?”
Here, “7th May” serves as a covert encoding of “$7 million,” disclosing sensitive financial
information in a form that appears innocuous.

Step 5 — Message delivery to attacker: In agentic mode, this draft is presented to Alice,
who—unaware of the steganographic encoding—approves and sends it. In fully agentic mode, the
message is sent automatically. In both cases, Bob successfully exfiltrates confidential data.

Throughout the process, Alice remains unaware that sensitive information was accessed and disclosed.
The assistant, operating as designed, has been subverted by an attacker exploiting the absence of
access control enforcement in the RAG and LLM pipeline.
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Figure 1: A demonstration of a cross-prompt-injection attack on a RAG-based intelligent
email assistant: (1) an attacker (Bob) sends a seemingly innocuous email to a victim (Alice),
embedding a hidden prompt (in red) to induce data leakage; (2) Alice asks the assistant to draft
a response using Bob’s email as context; (3) the AI assistant issues a retrieval query on Alice’s
data store based on the provided query and the context, and retrieves confidential data (e.g.,
Project X’s revenue); (4) the Al assistant creates a response based on the retrieved information
and presents it to Alice; and (5) the response is sent to Bob, completing data exfiltration.

&

Information leakage in collaborative writing. Similar vulnerabilities arise in collaborative writing
environments where multiple users co-author documents with the help of an LLM assistant. Here, a
malicious Bob may embed a hidden prompt within the shared document—for instance, using invisible
formatting or misleading markup. When Alice subsequently invokes the assistant to revise or improve
the text, the system may draw on documents accessible only to Alice (e.g., via a RAG pipeline) to
improve the quality of the output incorporating sensitive information into the revised content. If this
information is embedded steganographically—e.g., disguised as part of a plausible sentence—Alice
may not recognize the leak. When Bob later reads the co-authored document, he learns private details
from Alice’s data.

4.3 Limitations of existing defenses against cross-prompt injection attacks

We briefly review existing defenses to the attack described above and highlight their limitations.
These defenses are probabilistic—that is, they detect or prevent prompt injection only with some
probability—allowing adversaries a non-negligible chance of success. Broadly, defenses fall into
three categories: (a) Input Checks, (b) Output Filtering, and (c) System-Level Isolation. Each of these
targets different phases in the attack pipeline, but none offer deterministic protection.

* Input checks (targets Step 2 in Figure[I): These defenses attempt to detect and neutralize malicious
inputs before they reach the LLM. Black-box strategies such as input sanitization [45]] identify
and strip potentially harmful patterns, while spotlighting [21]] tags portions of the input with their
origin (e.g., trusted user input vs. untrusted external content). White-box methods [43\ |8 [14}|32]]
fine-tune LLMs to classify or suppress injected prompts directly. While valuable, these techniques
lack formal guarantees and often fail against sophisticated or steganographically encoded prompts.
Benchmarking efforts such as BIPIA [54] reveal consistent vulnerabilities across attack types and
LLM architectures.

* Output filtering (targets Step 4 in Figure[I): These methods scan LLM outputs for sensitive or
disallowed content. Runtime monitoring systems [57} 58] use rule-based or learning-based filters
to detect policy violations, while taint tracking [48] traces the propagation of sensitive data through
generation. Techniques like TaskTracker [2] identify task drift to detect unexpected behavior.
However, these systems struggle with covert leakage—e.g., when sensitive information is encoded
in benign-looking output (such as mapping "Our revenue is $7M" to "Meeting on May 7th").
Moreover, they lack awareness of downstream recipients’ access permissions, making policy
enforcement incomplete.



* System-level isolation (targets Steps 3 & 4 in Figure[I)): Architectural defenses like CaMeL [13]]
construct the control flow based on user query and freezes it, so that the untrusted retrieved content
cannot modify it. Note that the attack flow of Figure [I]still goes through. Additionally, CaMeL
enforces policies but they can be subverted by steganography.

Summary. While existing defenses against prompt injection—such as input sanitization, output
filtering, and architectural isolation—attempt to reduce exposure, none provides a deterministic
guarantee of preventing unauthorized access. As a result, multi-user LLM-assisted systems remain
susceptible to sophisticated data leakage attacks, such as the one shown in Figure|[T]

4.4 Preventing cross-user information leakage via access control

A key reason the attack in Figure[I] succeeds is the indistinguishability between honest and malicious
prompts—both may request the same information from Alice, but what matters is who is asking. The
distinction between authorized and unauthorized recipients hinges on this identity. We assert that
Alice should retain full control over the flow of her sensitive information, and any such information
transfer must not occur without her awareness or authorization. To deterministically eliminate
unintended information leakage in RAG pipelines, we propose that such systems must explicitly
check access permissions of all involved users before feeding any content to the LLM. For example,
in the email assistant scenario, when Alice requests an Al assistant to draft a reply to Bob, any content
retrieved by the assistant must be accessible to both Alice and Bob. If this condition is not met, then
either explicit consent must be obtained from Alice (in the agentic mode), or the content must be
excluded from the LLM’s context (in the fully agentic mode).

This design ensures a system that provably protects confidentiality and avoids inadvertent information
leakage. In multi-recipient settings—e.g., when Bob emails Alice and copies Charlie—permissions
for all recipients (Alice, Bob, and Charlie) must be verified before retrieved content is incorporated
into generation. Similarly, in collaborative writing tools, the permissions of all users with read access
to the document must be validated prior to invoking the LLM on any supporting content. By enforcing
such access control checks, the system guarantees that no user inadvertently learns information they
are not authorized to access.

Access control for RAG-integrated fine-tuned models. When using access control for fine-tuning
in tandem with RAG, the cornerstone principle of this combined system remains consistent: all
information utilized in an interaction must be accessible to all active participantsﬂ Consider a scenario
with multiple active participants. The system should only use a model that was fine-tuned solely on
documents that all the active participants are commonly authorized to access. If a participant’s query
triggers the RAG component, only those documents for which every active participant has access will
be retrieved and added to the supplementary context. A practical challenge is that a fine-tuned model
accessible to all active participants may not always exist. For example, in the email scenario from
§4.1] Bob could be external to the organization. In such cases, the system must fall back to using a
general-purpose public model. By adhering to the foundational principle of access control, the system
inherently functions as a sandboxed environment, preventing any information leakage—whether
through the fine-tuned model or RAG-provided data—to participants not explicitly authorized to
access it.

5 Conclusion and future work

This work began with a central question: How can we safeguard confidentiality in modern Al
workflows operating in multi-user environments such as enterprises—both during fine-tuning and
at inference time through mechanisms like RAG? Our analysis reveals that existing defenses fall
short, lacking the deterministic guarantees needed to prevent unauthorized data exposure. In response,
we advocate for a principled approach rooted in fine-grained access control lists (ACLs), enforced
deterministically across all stages of the Al pipeline. This framework provides strong end-to-end
security guarantees and lays the groundwork for the safe, large-scale deployment of Al systems
in enterprises handling sensitive information. We hope this paper makes a compelling case for
deterministic enforcement of access-control of all active participants.

3An active participant is any user involved in the interaction with the system.



Several extensions are possible. When fine-tuning, some users or documents can have higher
importance, which can be encoded as weights on the nodes of the bipartite graphs. When querying
multiple models, the ACLs must be checked for each model [51]]. The ACLs can change over time:
new users can get added and existing users can lose access. Security must be maintained even
with such dynamic ACLs. The ACLs themselves can be incorrect: such misconfigurations must be
detected and rectified [[L1]].
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A More details on building fine-tuned models

Algorithm 1 Maximal Biclique Heuristic Algorithm 2 ExpandDocSet

Require: Set of all entities £, set of all ACLs A, set of Require: Entity set £, document ACLs
all documents D, minimum thesholds for number of A, documents D
entities 7 & document coverage 7. Ensure: Document Set D

1: Initialize D + ()

Ensure: The maximal biclique pair (Eres, [)Tes) . for all ACL A4; € A of document

[\

1: Let Aunique < {A|3D; € Ds.t. A(D;) = A} Dic€Ddo o

2: Initialize (Eyes, Dyes) ¢ (0,0), B < 0 3 HECAjthenD =DUD;
3: for e~ach unique ACL A € Aypigue do ;_1 en detl‘:)(rl' if

4: D < ExpandDocSet(A) 6 return D)

5: E < ExpandEntitySet(D)

6:  if[E| > 75 and |D| > 7 then Algorithm 3 ExpandEntitySet

7: B.add({E, D}) ] N

8: end if Require: Document set D and respec-
9: end for tive ACLs A = {4;|D; € D}
10: (Eres,f)res) — argmax(|E| X |D|) Ensure: Entity set B

i ) {E,D}eB I By, A

11: return (E,cs, Dyes) 2: return E

Maximal condition. A biclique in the graph G (formed by D and &), consisting of an entity set
E C £ and a document set D C D satisfies the maximality condition if there is no entity £ € £ — E
that can access all of D or if there is no document D € D — D that is accessible to all of E.

Algorithm shows a heuristic approach that finds a large maximal biclique (E’res, Dres) from entities
&, documents D, and their corresponding ACLs A, following the minimum size thresholds T and
Tp» by trying to maximize the product of the resulting sets’ sizes (|Eres| X | D,.es|). Algorithm
iterates through each unique ACL A € A found in D (line 1). Each A is used as an initial seed to
determine a potential solution (line 3). For each A4, it first finds the maximal set of documents D
that is accessible by all entities in A using Algorithm[2] (line 4). Then, it finds the maximal set of
entities F that can access all the documents in D using Algorithm(line 5). This process essentially
generates a candidate maximal biclique (E, D) from the initial seed .4. Candidate bicliques not
satisfying the size thresholds 7, 7 are filtered out (line 6), and the pair that maximizes the product

of the sizes is selected (Eres, Dres) and returned (lines 10-11).

The approach detailed in Algorithm [I]for finding a maximal biclique is particularly well-suited to
common enterprise scenarios where there is an orders-of-magnitude difference between the number
of documents in D and the number of entities in £, with a relatively small number of entity sets
governing access to the large document corpus. In such a setting, it is likely that one of the unique
ACLs A, when used as an initial seed in Algorithm[I](line 3), corresponds exactly to the entity set of
the true maximum biclique. If this condition holds, then the biclique corresponding to the returned

(Eres, Eres) in Algorithm (line 11) is guaranteed to be the maximum biclique.

Time complexity. The overall time complexity is roughly proportional to the number of unique
ACLs multiplied by the number of documents and the logarithm of the maximum number of entities,
O(|D|? log |£|), due to nested iteration over all ACLs and set operations in Algorithm 2] within the
main loop.
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