
Conditional Memory via Scalable Lookup:
A New Axis of Sparsity for Large Language Models

Xin Cheng1,2, Wangding Zeng2, Damai Dai2, Qinyu Chen2, Bingxuan Wang2,
Zhenda Xie2, Kezhao Huang2, Xingkai Yu2, Zhewen Hao2, Yukun Li2, Han Zhang2,

Huishuai Zhang1, Dongyan Zhao1, Wenfeng Liang2

1Peking University 2DeepSeek-AI
{zhanghuishuai, zhaody}@pku.edu.cn

{chengxin, zengwangding, damai.dai}@deepseek.com

Abstract

While Mixture-of-Experts (MoE) scales capacity via conditional computation, Transformers lack
a native primitive for knowledge lookup, forcing them to inefficiently simulate retrieval through
computation. To address this, we introduce conditional memory as a complementary sparsity
axis, instantiated via Engram, a module that modernizes classic 𝑁-gram embedding for O(1)
lookup. By formulating the Sparsity Allocation problem, we uncover a U-shaped scaling law
that optimizes the trade-off between neural computation (MoE) and static memory (Engram).
Guided by this law, we scale Engram to 27B parameters, achieving superior performance
over a strictly iso-parameter and iso-FLOPs MoE baseline. Most notably, while the memory
module is expected to aid knowledge retrieval (e.g., MMLU +3.4; CMMLU +4.0), we observe
even larger gains in general reasoning (e.g., BBH +5.0; ARC-Challenge +3.7) and code/math
domains (HumanEval +3.0; MATH +2.4). Mechanistic analyses reveal that Engram relieves
the backbone’s early layers from static reconstruction, effectively deepening the network for
complex reasoning. Furthermore, by delegating local dependencies to lookups, it frees up
attention capacity for global context, substantially boosting long-context retrieval (e.g., Multi-
Query NIAH: 84.2 → 97.0). Finally, Engram establishes infrastructure-aware efficiency: its
deterministic addressing enables runtime prefetching from host memory, incurring negligible
overhead. We envision conditional memory as an indispensable modeling primitive for next-
generation sparse models. Code available at: https://github.com/deepseek-ai/Engram

1. Introduction

Sparsity is a recurring design principle for intelligent systems, spanning from biological neural
circuits (Lennie, 2003; Olshausen and Field, 1997) to modern Large Language Models (LLMs).
Currently, this principle is primarily realized through Mixture-of-Experts (MoE) (Dai et al., 2024;
Shazeer et al., 2017), which scales capacity via conditional computation. Owing to its ability to
drastically increase model size without proportional increases in compute, MoE has become the
de facto standard for frontier models (Comanici et al., 2025; Guo et al., 2025; Team et al., 2025).

Despite the success of this conditional computation paradigm, the intrinsic heterogeneity
of linguistic signals suggests significant room for structural optimization. Specifically, language
modeling entails two qualitatively different sub-tasks: compositional reasoning and knowl-

https://github.com/deepseek-ai/Engram

edge retrieval. While the former demands deep, dynamic computation, a substantial portion
of text—such as named entities and formulaic patterns—is local, static, and highly stereo-
typed (Constant et al., 2017; Erman, 2000). The effectiveness of classical 𝑁-gram models (Brants
et al., 2007; Liu et al., 2024b; Nguyen, 2024) in capturing such local dependencies implies that
these regularities are naturally represented as computationally inexpensive lookups. Since
standard Transformers (Vaswani et al., 2017) lack a native knowledge lookup primitive, current
LLMs are forced to simulate retrieval through computation. For instance, resolving a common
multi-token entity requires consuming multiple early layers of attention and feed-forward net-
works (Ghandeharioun et al., 2024; Jin et al., 2025) (see Table 3). This process essentially amounts
to an expensive runtime reconstruction of a static lookup table, wasting valuable sequential
depth on trivial operations that could otherwise be allocated to higher-level reasoning.

To align model architecture with this linguistic duality, we advocate for a complementary
axis of sparsity: conditional memory. Whereas conditional computation sparsely activates
parameters to process dynamic logic (Bengio et al., 2013; Shazeer et al., 2017), conditional
memory relies on sparse lookup operations to retrieve static embeddings for fixed knowledge.
As a preliminary exploration of this paradigm, we revisit 𝑁-gram embeddings (Bojanowski et al.,
2017) as a canonical instantiation: local context serves as a key to index a massive embedding
table via constant-time O(1) lookups (Huang et al., 2025a; Pagnoni et al., 2025; Tito Svenstrup
et al., 2017; Yu et al., 2025). Our investigation reveals that, perhaps surprisingly, this static
retrieval mechanism can serve as an ideal complement to modern MoE architecture—but
only if it is properly designed. In this paper, we propose Engram, a conditional memory
module grounded in the classic 𝑁-gram structure but equipped with modern adaptations
such as tokenizer compression, multi-head hashing, contextualized gating, and multi-branch
integration (detailed in Section 2).

To quantify the synergy between these two primitives, we formulate the Sparsity Allocation
problem: given a fixed total parameter budget, how should capacity be distributed between
MoE experts and Engram memory? Our experiments uncover a distinct U-shaped scaling
law, revealing that even simple lookup mechanisms, when treated as a first-class modeling
primitive, act as essential complements to neural computation. Guided by this allocation law, we
scale Engram to a 27B-parameter model. Compared to a strictly iso-parameter and iso-FLOPs
MoE baseline, Engram-27B achieves superior efficiency across diverse domains. Crucially, the
gains are not limited to knowledge-intensive tasks (e.g., MMLU: +3.4; CMMLU: +4.0; MMLU-
Pro: +1.8), where memory capacity is intuitively beneficial; we observe even more significant
improvements in general reasoning (e.g., BBH: +5.0; ARC-Challenge: +3.7; DROP: +3.3) and
code/math domains (e.g., HumanEval: +3.0; MATH: +2.4; GSM8K: +2.2).

Mechanistic analysis via LogitLens (nostalgebraist, 2020) and CKA (Hendrycks et al., 2021a)
reveals the source of these gains: Engram relieves the backbone from reconstructing static
knowledge in early layers, thereby increasing effective depth available for complex reason-
ing. Furthermore, by delegating local dependencies to lookups, Engram frees up attention
capacity to focus on global context, enabling exceptional performance in long-context scenar-
ios—substantially outperforming baselines on LongPPL (Fang et al.) and RULER (Hsieh et al.)
(e.g., Multi-Query NIAH: 97.0 vs. 84.2; Variable Tracking: 89.0 vs. 77.0).

Finally, we establish infrastructure-aware efficiency as a first-class principle. Unlike MoE’s
dynamic routing, Engram employs deterministic IDs to enable runtime prefetching, overlapping
communication with computation. Empirical results show that offloading a 100B-parameter
table to host memory incurs negligible overhead (< 3%). This demonstrates that Engram
effectively bypasses GPU memory constraints, facilitating aggressive parameter expansion.

2

Vocab Embedding

Alexander the GreatOnly could tame the horse Bucephalus

Transformer Block

.

2-Gram Embedding 3-Gram Embedding
h

Concat

Linear

hHash Hash

Scaled Dot Product

Input Hidden

Linear

Engram

Attention

MoE

Conv

the Great Alexander the Great

Figure 1 | The Engram Architecture. The module augments the backbone by retrieving static 𝑁-
gram memory and fusing it with dynamic hidden states via context-aware gating. This module
is applied only to specific layers to decouple memory from compute, leaving the standard input
embedding and un-embedding module intact.

2. Architecture

2.1. Overview

As shown in Figure 1, Engram is a conditional memory module designed to augment the Trans-
former backbone by structurally separating static pattern storage from dynamic computation.
Formally, given an input sequence 𝑋 = (𝑥1, . . . , 𝑥𝑇) and hidden states H(ℓ) ∈ R𝑇×𝑑 at layer ℓ,
the module processes each position 𝑡 in two functional phases: retrieval and fusion. First, as
detailed in Section 2.2, we extract and compress suffix 𝑁-grams to deterministically retrieve
static embedding vectors via hashing. Subsequently, in Section 2.3, these retrieved embeddings
are dynamically modulated by the current hidden state and refined via a lightweight convolu-
tion. Finally, we discuss the integration with multi-branch architectures in Section 2.4 and the
system-level design in Section 2.5.

2.2. Sparse Retrieval via Hashed 𝑁-grams

The first phase maps local contexts to static memory entries, involving tokenizer compression
and retrieving embeddings via deterministic hashing.

Tokenizer Compression While 𝑁-gram models typically operate directly on tokenizer outputs,
standard subword tokenizers prioritize lossless reconstruction, often assigning disjoint IDs to
semantically equivalent terms (e.g., Apple vs. ␣apple) (Kudo and Richardson, 2018; Li et al.,
2023b). To maximize semantic density, we implement a vocabulary projection layer. Specifically,
we pre-compute a surjective function P : 𝑉 → 𝑉 ′ that collapses raw token IDs into canonical

3

identifiers based on normalized textual equivalence (using NFKC (Whistler, 2025), lowercasing,
etc.). In practice, this process achieves a 23% reduction in the effective vocabulary size for a
128k tokenizer (see Appendix C). Formally, for a token at position 𝑡, we map its raw ID 𝑥𝑡 to a
canonical ID 𝑥′𝑡 = P(𝑥𝑡) to form the suffix 𝑁-gram 𝑔𝑡,𝑛 = (𝑥′𝑡−𝑛+1, . . . , 𝑥′𝑡).

Multi-Head Hashing. Directly parameterizing the combinatorial space of all possible 𝑁-grams
is intractable. Following Tito Svenstrup et al. (2017), we adopt a hashing-based approach. To
mitigate collisions, we employ 𝐾 distinct hash heads for each 𝑁-gram order 𝑛. Each head 𝑘 maps
the compressed context to an index within an embedding table E𝑛,𝑘 (of prime size 𝑀𝑛,𝑘) via a
deterministic function 𝜑𝑛,𝑘:

𝑧𝑡,𝑛,𝑘 ≜ 𝜑𝑛,𝑘 (𝑔𝑡,𝑛), e𝑡,𝑛,𝑘 = E𝑛,𝑘 [𝑧𝑡,𝑛,𝑘]. (1)

In practice, 𝜑𝑛,𝑘 is implemented as a lightweight multiplicative-XOR hash. We construct the
final memory vector e𝑡 ∈ R𝑑mem by concatenating all retrieved embeddings:

e𝑡 ≜
𝑁

∥
𝑛=2

𝐾

∥
𝑘=1

e𝑡,𝑛,𝑘. (2)

2.3. Context-aware Gating

The retrieved embeddings e𝑡 serve as context-independent priors. Being static, however, they
inherently lack contextual adaptability and may suffer from noise due to hash collisions or
polysemy (Haber and Poesio, 2024). To enhance expressivity and resolve this ambiguity, we
employ a context-aware gating mechanism inspired by Attention (Bahdanau et al., 2015; Vaswani
et al., 2017). Specifically, we utilize the current hidden state h𝑡—which has aggregated global
context via preceding attention layers—as a dynamic Query, while the retrieved memory e𝑡
serves as the source for both Key and Value projections:

k𝑡 = W𝐾e𝑡, v𝑡 = W𝑉e𝑡 (3)

where W𝐾 , W𝑉 are learnable projection matrices. To ensure gradient stability (Dehghani et al.,
2023), we apply RMSNorm (Zhang and Sennrich, 2019) to the Query and Key before computing
the scalar gate 𝛼𝑡 ∈ (0, 1):

𝛼𝑡 = 𝜎

(
RMSNorm(h𝑡)⊤RMSNorm(k𝑡)√

𝑑

)
. (4)

The gated output is defined as ṽ𝑡 = 𝛼𝑡 · v𝑡. This design enforces semantic alignment: if the
retrieved memory e𝑡 contradicts the current context h𝑡, the gate 𝛼𝑡 tends toward zero, effectively
suppressing the noise.

Finally, to expand the receptive field and enhance the model’s non-linearity, we introduce
a short, depthwise causal convolution (Gu et al., 2022; Peng et al., 2023). Let Ṽ ∈ R𝑇×𝑑 denote
the sequence of gated values. Using a kernel size 𝑤 (set to 4), dilation 𝛿 (set to the max 𝑁-gram
order) and SiLU activation (Elfwing et al., 2018), the final output Y is computed as:

Y = SiLU
(
Conv1D(RMSNorm(Ṽ))

)
+ Ṽ, (5)

The Engram module is integrated into the backbone via a residual connection: H(ℓ) ← H(ℓ) +Y,
followed by the standard Attention and MoE. Crucially, Engram is not applied to every layer;
its specific placement is governed by the system-level latency constraints detailed in Section 2.5.

4

On Device
Computation

On Host
Communication

Vocab Embedding

Input IDs

Transformer Block

Transformer Block
with Engram

Transformer Block

Transformer Block
with Engram

Offloaded
Engram

(Memory Hierarchy)

Vocab Embedding

Transformer Block

(a) Engram at training (b) Engram at inference

Engram

Attention

MoE

Engram

Attention

MoE

All2All

Input IDs

Figure 2 | System implementation of Engram. (a) Training Phase: The massive embedding
tables are sharded across available GPUs. An All-to-All communication primitive is employed
to retrieve active embedding rows across devices. (b) Inference Phase: Engram tables are of-
floaded to host memory. By exploiting the deterministic retrieval logic, the host asynchronously
prefetches and transfers embeddings, overlapping communication with the on-device computa-
tion of preceding Transformer blocks.

2.4. Integration with Multi-branch Architecture

In this work, rather than standard single-stream connections (He et al., 2016), we adopt the
advanced multi-branch architecture as our default backbone, chosen for its superior modeling
capabilities (Larsson et al., 2017; Szegedy et al., 2015; Xie et al., 2025; Zhu et al., 2025). A defining
characteristic of this architecture is the expansion of the residual stream into 𝑀 parallel branches,
where information flow is modulated by learnable connection weights.

Although the Engram module is inherently topology-agnostic, adapting it to this multi-
branch framework necessitates structural optimization to balance efficiency and expressivity.
Specifically, we implement a parameter-sharing strategy: a single sparse embedding table and a
Value projection matrix W𝑉 are shared across all 𝑀 branches, whereas 𝑀 distinct Key projection
matrices {W(𝑚)

𝐾 }𝑀𝑚=1 are employed to enable branch-specific gating behaviors. For the 𝑚-th
branch with hidden state h(𝑚)𝑡 , the branch-specific gating signal is computed as:

𝛼
(𝑚)
𝑡 = 𝜎

(
RMSNorm(h(𝑚)𝑡)⊤RMSNorm(W(𝑚)

𝐾 e𝑡)√
𝑑

)
. (6)

The retrieved memory is then modulated by these independent gates applied to the shared
value vector: u(𝑚)𝑡 = 𝛼

(𝑚)
𝑡 · (W𝑉e𝑡). This design allows the linear projections (one W𝑉 and 𝑀

distinct W(𝑚)
𝐾) to be fused into a single dense FP8 matrix multiplication, maximizing the compute

utilization of modern GPUs. Unless otherwise stated, all experiments utilize this integration
with Manifold-Constrained Hyper-Connections (𝑀 = 4) (Xie et al., 2025).

5

40% 50% 60% 70% 80% 90% 100%

Allocation Ratio (ρ)

1.710

1.715

1.720

1.725

1.730

1.735

1.740

1.745
Va

lid
at

io
n

Lo
ss

6e20
2e20

Pure MoE

106 107

Number of Embedding Slots (Log Scale)

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

Va
lid

at
io

n
Lo

ss

Engram
OverEncoding

Pure MoE

1.795

1.800

1.805

1.810

1.815

1.820

1.825

1.830

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Lo

ss

Figure 3 | Sparsity allocation and Engram scaling. Left: Validation loss across allocation ratios
𝜌. Two compute budgets are shown (2e20 and 6e20 FLOPs). Both regimes exhibit a U-shape,
with hybrid allocation surpassing Pure MoE. Right: Scaling behavior in the infinite-memory
regime. Validation loss exhibits a log-linear trend with respect to the number of embeddings.

2.5. System Efficiency: Decoupling Compute and Memory

Scaling memory-augmented models is often constrained by the limited capacity of GPU high-
bandwidth memory (HBM). However, the deterministic retrieval mechanism of Engram natu-
rally supports the decoupling of parameter storage from computational resources. Unlike MoE,
which relies on runtime hidden states for dynamic routing, Engram’s retrieval indices depend
solely on the input token sequence. This predictability facilitates specialized optimization
strategies for both training and inference, as illustrated in Figure 2.

During training, to accommodate large-scale embedding tables, we employ standard model
parallelism by sharding the tables across available GPUs. An All-to-All communication primitive
is used to gather active rows in the forward pass and dispatch gradients in the backward pass,
enabling the total memory capacity to scale linearly with the number of accelerators.

During inference, this deterministic nature enables a prefetch-and-overlap strategy. Since
memory indices are known prior to the forward pass, the system can asynchronously retrieve
embeddings from abundant host memory via PCIe. To effectively mask communication latency,
the Engram module is placed at specific layers within the backbone, leveraging the computation
of preceding layers as a buffer to prevent GPU stalls. This necessitates a hardware-algorithm co-
design strategy: while placing Engram deeper extends the compute window available for hiding
latency, our ablation in Section 6.2 shows that modeling performance favors early intervention
to offload local pattern reconstruction. Therefore, the optimal placement must simultaneously
satisfy both modeling and system latency constraints.

Furthermore, natural language 𝑁-grams inherently follow a Zipfian distribution (Chao and
Zipf, 1950; Piantadosi, 2014), where a small fraction of patterns accounts for the vast majority of
memory accesses. This statistical property motivates a Multi-Level Cache Hierarchy: frequently
accessed embeddings can be cached in faster storage tiers (e.g., GPU HBM or Host DRAM),
while the long tail of rare patterns resides in slower, high-capacity media (e.g., NVMe SSD). This
stratification allows Engram to scale to massive memory capacities with minimal impact on
effective latency.

6

3. Scaling Laws and Sparsity Allocation

Engram, as an instantiation of conditional memory, is structurally complementary to the condi-
tional computation provided by MoE experts. This section investigates the scaling properties of
this duality and how to optimally allocate sparse capacity. Specifically, two key questions drive
our research:

1. Allocation under Finite Constraints. When total parameters and training compute are fixed
(Iso-parameter and Iso-FLOPs), how should we split the sparse capacity between MoE experts
and Engram embeddings?

2. Infinite Memory Regime. Considering the non-scaling O(1) overhead of Engram, if the
memory budget is relaxed or scaled aggressively, what scaling behavior does Engram exhibit
by itself?

3.1. Optimal Allocation Ratio Between MoE and Engram

Compute-matched formulation. We analyze the trade-off using three parameter metrics:

• 𝑃tot: total trainable parameters, excluding vocabulary embedding and LM head.
• 𝑃act: activated parameters per token. This quantity determines the training cost (FLOPs).
• 𝑃sparse ≜ 𝑃tot − 𝑃act: the inactive parameters, which represents the “free” parameter budget

available for scaling model size without incurring computational cost (e.g., unselected experts
or unretrieved embeddings).

We keep 𝑃tot and 𝑃act fixed within each FLOPs budget, so that models have the same number of
parameters and the same per-token FLOPs. For MoE, 𝑃act is determined by the top-𝑘 selected
experts, while the parameters of non-selected experts contribute to 𝑃sparse. For Engram, only
a constant number of slots are retrieved per token, so scaling the number of embedding slots
increases 𝑃tot without increasing per-token FLOPs.

Allocation ratio. We define the allocation ratio 𝜌 ∈ [0, 1] as the fraction of the inactive-
parameter budget assigned to MoE expert capacity:

𝑃
(sparse)
MoE = 𝜌 𝑃sparse, 𝑃Engram = (1 − 𝜌) 𝑃sparse. (7)

Intuitively:

• 𝜌 = 1 corresponds to a pure MoE model (all inactive parameters are routed experts).
• 𝜌 < 1 reduces the number of routed experts and reallocates the freed parameters to Engram

embedding slots.

Experimental protocol. We evaluate this trade-off at two compute regimes and maintain a
constant sparsity ratio 𝑃tot/𝑃act ≈ 10 across both settings:

• 𝐶 = 2 × 1020 FLOPs: 𝑃tot ≈ 5.7B and 𝑃act = 568M. The baseline (𝜌 = 1) has a total of 106 experts.
• 𝐶 = 6 × 1020 FLOPs: 𝑃tot ≈ 9.9B and 𝑃act = 993M. The baseline (𝜌 = 1) has a total of 99 experts.

For different 𝜌, we construct the corresponding model only by adjusting the number of routed
experts and the number of Engram embedding slots. All runs use the identical training pipeline
and optimization hyperparameters.

7

Results and Analysis. Figure 3 (left) reveals a consistent U-shaped relationship between
validation loss and the allocation ratio 𝜌. Remarkably, the Engram model achieves comparable
performance to the pure MoE baseline (𝜌 = 100%) even when the MoE allocation is reduced to
just 𝜌 ≈ 40% (i.e., a total of 46 experts for the 5.7B model and 43 experts for the 9.9B model).
Furthermore, the pure MoE baseline proves suboptimal: reallocating roughly 20%–25% of the
sparse parameter budget to Engram yields the best performance. Quantitatively, in the 10B
regime (𝐶 = 6 × 1020), validation loss improves from 1.7248 (at 𝜌 = 100%) to 1.7109 near the
optimum of 𝜌 ≈ 80% (Δ = 0.0139). Crucially, the location of this optimum is stable across regimes
(𝜌 ≈ 75%–80%), suggesting a robust allocation preference across the examined scales (under
fixed sparsity). This observed U-shape confirms the structural complementarity between the
two modules:

• MoE-dominated (𝜌→ 100%): The model lacks dedicated memory for static patterns, forcing
it to inefficiently reconstruct them through depth and computation.

• Engram-dominated (𝜌→ 0%): The model loses conditional computation capacity, hurting
tasks that require dynamic, context-dependent reasoning; memory cannot replace computa-
tion in this regime.

3.2. Engram under Infinite Memory Regime

In Section 3.1, we optimized the allocation under a fixed parameter budget. We now explore
the complementary setting: aggressive memory scaling. This investigation is motivated by
Engram’s unique ability to decouple storage from compute detailed in Section 2.5.

Experimental protocol. We utilize a fixed MoE backbone with 𝑃tot ≈ 3B and 𝑃act = 568M,
trained for 100B tokens to ensure convergence. On top of this backbone, we attach an Engram
table and sweep the number of slots 𝑀 from 2.58 × 105 to 1.0 × 107 (adding up to ≈ 13 billion
parameters). For baselines, we compare against OverEncoding (Huang et al., 2025a), which
integrates 𝑁-gram embeddings via averaging with the vocabulary embedding. We note that
while other work such as SCONE (Yu et al., 2025) also investigates large-scale embeddings, it is
primarily inference-focused and includes extra module (f-gram model) and additional training
FLOPs, rendering it incompatible with the strict iso-compute constraints of this study.

Results. Figure 3 (right) demonstrates that scaling the number of memory slots yields a clear
and consistent improvement in validation loss. Across the explored range, the curve follows
a strict power law (linear in log-space), indicating that Engram provides a predictable scaling
knob: larger memory continues to pay off without requiring additional computation. Crucially,
regarding scaling efficiency: while the direct averaging approach of OverEncoding benefits from
larger memory tables, Engram unlocks much larger scaling potential from the same memory
budget. Together with the allocation law in Section 3.1, these results validate that conditional
memory serves as a distinct, scalable axis of sparse capacity that complements the conditional
computation of MoE.

4. Large Scale Pre-training

With the proposed Engram architecture and the empirically derived allocation law, we scale
Engram to the multi-billion parameter to validate its efficacy in real-world language model pre-
training. Specifically, we train four models: (1) Dense-4B (4.1B total parameters), (2) MoE-27B

8

Table 1 | Pre-training performance comparison between dense, MoE, and Engram models. All
models are trained for 262B tokens and are matched in activated parameters (3.8B). Engram-27B
is iso-parameters with MoE-27B by reallocating parameters from routed experts (72 → 55)
to a 5.7B-parameter Engram memory. Engram-40B further increases Engram memory (18.5B
parameters) while keeping the activated-parameter budget fixed. Full training-time benchmark
trajectories are reported in Appendix B.

Benchmark (Metric) # Shots Dense-4B MoE-27B Engram-27B Engram-40B

Total Params 4.1B 26.7B 26.7B 39.5B
Activated (w/o token embed) 3.8B 3.8B 3.8B 3.8B
Trained Tokens 262B 262B 262B 262B
Experts (shared + routed, top-𝑘) - 2 + 72 (top-6) 2 + 55 (top-6) 2 + 55 (top-6)
Engram Params - - 5.7B 18.5B

Language
Modeling

Pile (loss) - 2.091 1.960 1.950 1.942
Validation Set (loss) - 1.768 1.634 1.622 1.610

Knowledge
&

Reasoning

MMLU (Acc.) 5-shot 48.6 57.4 60.4 60.6
MMLU-Redux (Acc.) 5-shot 50.7 60.6 64.0 64.5
MMLU-Pro (Acc.) 5-shot 21.1 28.3 30.1 31.3
CMMLU (Acc.) 5-shot 47.9 57.9 61.9 63.4
C-Eval (Acc.) 5-shot 46.9 58.0 62.7 63.3
AGIEval (Acc.) 0-shot 29.1 38.6 41.8 45.9
ARC-Easy (Acc.) 25-shot 76.8 86.5 89.0 90.1
ARC-Challenge (Acc.) 25-shot 59.3 70.1 73.8 76.4
TriviaQA (EM) 5-shot 33.0 48.8 50.7 51.8
TriviaQA-ZH (EM) 5-shot 62.8 74.8 76.3 77.9
PopQA (EM) 15-shot 15.1 19.2 19.4 21.2
CCPM (Acc.) 0-shot 72.2 79.6 87.1 87.7
BBH (EM) 3-shot 42.8 50.9 55.9 57.5
HellaSwag (Acc.) 0-shot 64.3 71.8 72.7 73.1
PIQA (Acc.) 0-shot 63.8 71.9 73.5 76.5
WinoGrande (Acc.) 5-shot 64.0 67.6 67.8 68.1

Reading
Comprehension

DROP (F1) 1-shot 41.6 55.7 59.0 60.7
RACE-Middle (Acc.) 5-shot 72.4 80.9 82.8 83.3
RACE-High (Acc.) 5-shot 66.0 75.4 78.2 79.2
C3 (Acc.) 0-shot 57.7 60.1 63.6 61.8

Code & Math

HumanEval (Pass@1) 0-shot 26.8 37.8 40.8 38.4
MBPP (Pass@1) 3-shot 35.4 46.6 48.2 46.2
CruxEval-i (EM) 0-shot 27.6 30.7 32.2 36.2
CruxEval-o (EM) 0-shot 28.7 34.1 35.0 35.3
GSM8K (EM) 8-shot 35.5 58.4 60.6 62.6
MGSM (EM) 8-shot 27.0 46.8 49.4 52.4
MATH (EM) 4-shot 15.2 28.3 30.7 30.6

(26.7B total parameters), (3) Engram-27B (26.7B total parameters), and (4) Engram-40B (39.5B
total parameters). All models are trained using an identical data curriculum (same token budget
and order) and are strictly matched in the number of activated parameters.

4.1. Experimental Setup

Training Data and Model Configurations All models are pre-trained on a corpus of 262 billion
tokens and we utilize the tokenizer from DeepSeek-v3 (Liu et al., 2024a) with a vocabulary size of
128k. For modeling, to ensure a controlled comparison, we adhere to a consistent default setting
across all models unless explicitly stated otherwise. We utilize a 30-block Transformer with a

9

hidden size of 2560. Each block integrates a Multi-head Latent Attention (MLA) (DeepSeek-AI
et al., 2024) with 32 heads, connected to FFNs via mHC (Xie et al., 2025) with an expansion
rate of 4. All models are optimized using Muon (Jordan et al., 2024; Team et al., 2025); detailed
hyperparameters are listed in the Appendix A. We instantiate four distinct models:

• Dense-4B serves as the baseline model. It utilizes the backbone architecture described
above, incorporating a standard dense FFN into every block.

• MoE-27B replaces the standard dense FFN with a DeepSeekMoE module (Dai et al., 2024).
Configured with 72 routed experts and 2 shared experts (activating the top-𝑘 = 6 routed
experts per token), this model scales to 26.7B total parameters while maintaining the same
activated parameters as Dense-4B.

• Engram-27B is strictly derived from the MoE-27B architecture to ensure fair comparison.
We reduce the number of routed experts from 72 to 55 and reallocate the freed parameters
to a 5.7B-parameter embedding module (𝜌 = 74.3%), keeping the total model size constant
at 26.7B. Regarding the Engram configuration, we instantiate the module at layers 2 and
15 and set the maximum 𝑁-gram size to 3, the number of heads to 8, and the dimension
to 1280. For optimization, the embedding parameters are updated using Adam (Kingma,
2014) with a learning rate scaled by 5× and no weight decay, while the convolution
parameters are initialized to zero to strictly preserve the identity mapping at the start of
training.

• Engram-40B retains the same backbone and computation budget as Engram-27B but scales
the sparse embedding module to 18.5B parameters (totaling 39.5B parameters). This model
is designed to investigate the scaling properties of Engram.

Evaluation Protocol We evaluate models on a diverse suite of benchmarks spanning language
modeling, knowledge, reasoning, reading comprehension, and code/math. For each benchmark,
we follow standard prompting protocols and evaluation metrics.

• Language Modeling: We report loss on the test set of The Pile (Gao et al., 2020) and an
validation set drawn from the same distribution as the training data.

• Knowledge & Reasoning: MMLU (Hendrycks et al., 2021a), MMLU-Redux (Gema et al.,
2025), MMLU-Pro (Wang et al., 2024b), CMMLU (Li et al., 2024), C-Eval (Huang et al., 2023),
AGIEval (Zhong et al., 2024), ARC-Easy/Challenge (Clark et al., 2018), TriviaQA (Joshi
et al., 2017), TriviaQA-ZH (internal), PopQA (Mallen et al., 2023), CCPM (Li et al., 2021),
BBH (Suzgun et al., 2023), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and
WinoGrande (Sakaguchi et al., 2021).

• Reading Comprehension: DROP (Dua et al., 2019), RACE (Middle/High) (Lai et al., 2017),
and C3 (Sun et al., 2020).

• Code & Math: HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), CruxEval (Gu
et al., 2024), GSM8K (Cobbe et al., 2021), MGSM (Shi et al., 2023), and MATH (Hendrycks
et al., 2021b).

4.2. Experimental Results

Table 1 summarizes the main results. First, consistent with prior literature (Borgeaud et al.,
2022; He, 2024; Shazeer et al., 2017), sparse architectures demonstrate superior scaling laws
compared to dense models. Under the same training compute budget, all three sparse variants
(MoE-27B, Engram-27B/40B) significantly outperform the iso-FLOPs Dense-4B baseline across
all benchmarks.

10

Table 2 | Long-context performance comparison. Parenthetical values (e.g. (50k, 1.62)) denote
the pre-training steps and the corresponding loss prior to the long-context extension. Two key
findings: (1) With only 82% of the pre-training FLOPs (41k vs. 50k), Engram-27B matches the
baseline’s LongPPL (Fang et al.) performance while achieving significantly higher accuracy on
RULER (Hsieh et al.); (2) Under both iso-pretraining-loss (46k) and iso-pretraining-FLOPs (50k)
settings, Engram-27B substantially outperforms the baseline across all metrics. Bold indicates
the best and underline the second.

Model
LongPPL (32k) RULER (32k)

Perplexity (↓) NIAH Accuracy (↑) Other Tasks (↑)
Book Paper Code L-CoT S MK MV MQ VT CWE FWE QA

MoE-27B (50k, 1.63) 4.38 2.91 2.49 14.16 100.0 88.0 92.7 84.2 77.0 4.5 73.0 34.5

Engram-27B (41k, 1.66) 4.37 2.92 2.50 14.26 99.6 88.3 93.0 89.5 83.2 3.8 99.6 44.0
Engram-27B (46k, 1.63) 4.19 2.84 2.45 13.59 97.6 89.0 95.5 97.0 87.2 4.3 98.6 37.5
Engram-27B (50k, 1.62) 4.14 2.82 2.44 13.41 99.3 89.3 96.5 97.0 89.0 5.9 99.3 40.5

More importantly, Engram-27B consistently improves over the iso-parameter and iso-FLOPs
MoE-27B baseline. Interestingly, these gains are not limited to knowledge-intensive tasks (e.g.,
MMLU: +3.0, MMLU-Pro: +1.8, CMMLU: +4.0), where memory capacity is intuitively beneficial.
We observe even more significant improvements in general-reasoning domains (e.g., BBH:
+5.0, ARC-Challenge: +3.7, DROP: +3.3), as well as code and mathematical reasoning (e.g.,
HumanEval: +3.0, MBPP: +1.6, GSM8K: +2.2, MATH: +2.4). To reduce the impact of benchmark
noise and to visualize training dynamics, we provide full benchmark trajectories during pre-
training in Appendix B. These results support our hypothesis that introducing a dedicated
knowledge lookup primitive improves representation efficiency beyond what can be achieved
by allocating the entire sparse budget to conditional computation.

Finally, scaling to Engram-40B further reduces pre-training loss and improves performance
across most benchmarks. Although it does not yet strictly dominate Engram-27B on every
task, this is likely an artifact of under-training. We observe that the training loss gap between
Engram-40B and the baselines continues to widen towards the end of training, suggesting that
the expanded memory capacity has not yet fully saturated within the current token budget.

5. Long Context Training

By offloading local dependency modeling to static lookups, the Engram architecture preserves
valuable attention capacity for managing global context. In this section, we empirically verify
this structural advantage by conducting long-context extension training (Gao et al., 2025; Peng
et al., 2024). Through a rigorous evaluation protocol that isolates architectural contributions
from base model capabilities, we demonstrate that Engram yields significant gains in long-range
retrieval and reasoning tasks.

5.1. Experimental Setup

Training Details. To enable long-context capabilities, we adopt the context expansion strategy
introduced in DeepSeek-V3 (Liu et al., 2024a). Following the pre-training stage, we apply
YaRN (Peng et al., 2024) for context window extension in a 32768-token context training stage
for 5,000 steps (30B tokens of high-quality, long-context data). The hyper-parameters are scale
𝑠 = 10,𝛼 = 1, 𝛽 = 32 and the scaling factor 𝑓 = 0.707.

11

Model Configurations. We compare context extensions across four distinct model configura-
tions. We utilize the final pre-training checkpoints (50k steps) for both MoE-27B and Engram-27B.
Additionally, to rigorously benchmark architectural efficiency, we select two intermediate check-
points for Engram-27B at 41k and 46k steps. Despite differing initialization stages, all variants
undergo the exact same context extension training protocol. Crucially, Engram-27B (46k) is
selected because it exhibits the same pre-training loss as the fully trained MoE-27B (50k). This
creates a controlled "Iso-Loss" setting, ensuring that any performance divergence during context
extension is attributable to the architecture rather than the starting quality of the model.

Evaluation Benchmarks. We assess long-context performance using LongPPL (Fang et al.)
and RULER (Hsieh et al.). For LongPPL, we construct evaluation sets spanning four categories:
long books, research papers, code repositories, and long chain-of-thought (CoT) trajectories. For
RULER, we evaluate on 14 subsets aggregated into 8 categories: Single (S), Multi-keys (MK),
Multi-values (MV) and Multi-queries (MQ) Needle-in-a-Haystack; Multi-hop Variable Tracking
(VT), Common Words Extraction (CWE), Frequent Words Extraction (FWE), and Question
Answering (QA).

5.2. Experimental Results

The evaluation results are summarized in Table 2. To accurately assess the contribution of the
Engram architecture, our analysis proceeds in two steps: first, decoupling the impact of base
model capability from architectural design, and second, conducting a controlled analysis.

1. Long-Context Capability Beyond Attention Mechanics. While attention mechanisms
and positional encoding provide the structural basis for context processing (Press et al., 2022; Su
et al., 2024; Xiao et al., 2024; Yang et al., 2025), our results indicate that long-context performance
is not solely determined by architectural priors. Observing the trajectory of Engram (41k→ 50k),
we find that long-context performance improves monotonically with pre-training progression,
even when controlling for identical model architecture and a fixed computational budget during
the context extension stage. This suggests that long-context performance is intrinsically coupled
with the general modeling ability of the base model. Consequently, a rigorous architectural
comparison must control for this confounding variable by aligning base model loss, rather than
merely aligning training steps.

2. Architectural Superiority under Controlled Settings. Guided by the principle above,
we benchmark Engram against the MoE baseline. When controlling for base capability, the
efficiency gains of the Engram module become evident:

• Iso-Loss Setting (46k vs. Baseline): This setting strictly isolates architectural efficiency.
When comparing Engram-27B (46k) against the fully trained MoE-27B (50k)—models
aligned on pre-training loss—Engram demonstrates significant gains. Specifically, it
outperforms the baseline on complex retrieval tasks (e.g., Multi-Query NIAH: 97.0 vs. 84.2;
VT: 87.2 vs. 77.0).

• Iso-FLOPs Setting (50k vs. Baseline): Under the standard iso-compute budget, Engram-
27B (50k) further widens this gap, establishing the highest performance across the board.

• Extreme Setting (≈ 82% Compute): Even the early-stopped Engram-27B (41k) remains
highly competitive against the fully trained MoE-27B (50k). It matches the baseline on
LongPPL and surpasses it on RULER, underscoring the intrinsic superiority of the Engram
architecture.

12

0 5 10 15 20 25
Layer Index

0

2

4

6

8

10

KL
 D

iv
er

ge
nc

e

(a) Layer-wise KL Divergence by LogitLens

MoE-27B
Engram-27B
Engram-40B

0 5 10 15 20 25
Engram Layer

0
5

10
15

20
25

M
oE

 L
ay

er

(b) CKA map: Engram-27B vs MoE-27B

0 5 10 15 20 25
Engram Layer

0
5

10
15

20
25

(c) CKA map: Engram-40B vs MoE-27B

0.0

0.2

0.4

0.6

0.8

1.0

CK
A

Si
m

ila
rit

y

Figure 4 | Analysis of representational alignment and convergence speed. (a) Layer-wise KL
Divergence via LogitLens (nostalgebraist, 2020). The consistently lower divergence in early
layers indicates that Engram accelerates prediction convergence. (b-c) Similarity heatmap
computed by CKA (Kornblith et al., 2019). The distinct upward shift of the high-similarity
diagonal demonstrates that =Engram’s shallow layers are functionally equivalent to deeper
layers of the MoE model, effectively increasing the model’s depth.

6. Analysis

In this section, we investigate the internal mechanisms of Engram, including its effective
depth (Section 6.1), core module design (Section 6.2), and parametric sensitivity (Section 6.3).
Additionally, we evaluate the inference throughput with offloading (Section 6.4) and conclude
with a case study (Section 6.5).

6.1. Is Engram functionally equivalent to increasing the model’s depth?

Current LLMs lack a dedicated knowledge lookup primitive and they rely on computation to sim-
ulate memory recall. As shown in Table 3, to recognize the entity "Diana, Princess of Wales",
an LLM must consume multiple layers of Attention and FFNs to progressively compose fea-
tures (Ghandeharioun et al., 2024; Jin et al., 2025; Li and Subramani, 2025), a process that could
theoretically be identified via a knowledge lookup operation.

Given this, we posit that by equipping the model with an explicit knowledge lookup ca-
pability, Engram effectively mimics an increase in model depth by relieving the model of the
early stages of feature composition. To validate this hypothesis, we employ two mechanistic
interpretability tools: LogitLens (Belrose et al., 2023; nostalgebraist, 2020) and Centered Kernel
Alignment analysis (CKA) (Davari et al., 2023; Kornblith et al., 2019).

6.1.1. Accelerated Prediction Convergence

We first analyze the evolution of predictions across layers using LogitLens (nostalgebraist, 2020).
By projecting each intermediate layer’s hidden state with the final LM Head, we compute the
Kullback–Leibler divergence (Kullback and Leibler, 1951) between the intermediate output
distribution and the model’s final output distribution. This metric quantifies how close a latent
representation is to being “prediction-ready” (Belrose et al., 2023; Csordás et al., 2025).

Figure 4 (a) reports the layer-wise KL divergence. Compared to the MoE baseline, both
Engram variants exhibit systematically smaller KL divergence, with the most pronounced gap

13

Table 3 | Entity resolution example reproduced from Ghandeharioun et al. (2024). This table
illustrates how LLMs gradually integrate context tokens through layers of attention and FFNs
to construct the internal representation of the entity: “Diana, Princess of Wales”. The
“Latent State Translation” column displays the automatically generated text for the last token:
“Wales” by PatchScope (Ghandeharioun et al., 2024), while the “Explanation” column presents
the manual interpretation provided by the original authors.

Layer Latent State Translation Explanation

1-2 : Country in the United Kingdom Wales

3 : Country in Europe Wales

4 : Title held by female sovereigns in their
own right or by queens consort

Princess of Wales
(unspecific)

5 : Title given to the wife of the Prince of
Wales (and later King)

Princess of Wales
(unspecific)

6 : Diana, Princess of Wales (1961-1997), the
first wife of Prince Charles, Prince of Wales,
who was famous for her beauty and human-
itarian work

Diana,
Princess of Wales

appearing in the early blocks. The steeper descent in the Engram curves indicates that the
model finishes feature composition much faster. This observation aligns with our hypothesis:
by accessing external knowledge explicitly, Engram reduces the computational steps required,
thereby reaching high-confidence, valid predictions earlier in the network hierarchy.

6.1.2. Representational Alignment and Effective Depth

To further investigate whether Engram layers semantically correspond to deeper layers of
the baseline, we employ Centered Kernel Alignment (CKA), a widely established metric for
comparing representational structures (Kornblith et al., 2019; Kriegeskorte et al., 2008). Given
two sets of representations 𝑋 and 𝑌 (e.g., activations from different models or layers), CKA is
defined as:

CKA(𝐾, 𝐿) = HSIC(𝐾, 𝐿)√︁
HSIC(𝐾, 𝐾)HSIC(𝐿, 𝐿)

(8)

where 𝐾 = 𝑋𝑋⊤ and 𝐿 = 𝑌𝑌⊤ denote the Gram matrices (using a linear kernel) and HSIC
is Hilbert-Schmidt Independence Criterion (Gretton et al., 2005). We employ a minibatch
implementation with an unbiased estimator of HSIC (Davari et al., 2023) and evaluate on the
Few-NERD dataset (Ding et al., 2021), extracting hidden states corresponding to the final token
of named entities.

To rigorously quantify the layer-wise correspondence, we first compute the pairwise CKA
similarity matrix 𝑆 ∈ [0, 1]𝐿×𝐿, where 𝐿 is the number of layers. We then introduce a soft
alignment index 𝑎 𝑗, defined as the weighted centroid of the top-𝑘 most similar MoE layers for
each Engram layer 𝑗:

𝑎 𝑗 =

∑
𝑖∈I𝑗 𝑆𝑖, 𝑗 · 𝑖∑
𝑖∈I𝑗 𝑆𝑖, 𝑗

, where I𝑗 = argtop𝑘
𝑖

(𝑆𝑖, 𝑗). (9)

Here, 𝑆𝑖, 𝑗 denotes the similarity score between MoE layer 𝑖 and Engram layer 𝑗. The index 𝑎 𝑗

14

1.808
3B MoE Baseline

1 2 3 4 5 6 7 8 9 10 11 12 Ablation
Variations

Layer Index

1.768

1.770

1.773

1.775

1.778

1.780

1.783

w/o gating

w/o multi branch
w/o token compress

+ 4-gram
w/o short conv

3B MoE + 1.6B Engram (Layer Sweep)

3B MoE + 1.6B Engram

Va
lid

at
io

n
Lo

ss

Figure 5 | Architecture ablation results. We compare the 3B MoE baseline against Engram
variations in two settings: (1) Layer Sensitivity (dark blue curve): Sweeping the insertion depth
of a single Engram module confirms that early injection (Layer 2) is optimal, whereas efficacy
degrades in deeper layers. (2) Component Ablation (Right Markers): Removing sub-modules
from the reference configuration demonstrates the importance of multi-branch integration,
tokenizer compression, and context-aware gating.

serves as a robust proxy for the “effective MoE depth” corresponding to Engram layer 𝑗, utilizing
top-𝑘 filtering (with 𝑘 = 5) to mitigate low-similarity noise.

Figure 4 (b)–(c) visualize the similarity heatmaps overlayed with the soft alignment curve
(dashed white line). We observe a distinct upward shift from the diagonal, meaning that 𝑎 𝑗 > 𝑗

for a wide range of layers. For instance, the representations formed at layer 5 of Engram-27B
align most closely with those at approximately layer 12 of the MoE baseline.

The consistent off-diagonal shift, which aligns with the LogitLens results (Section 6.1.1),
confirms that Engram achieves deeper representations at earlier layers. This validates our
central hypothesis: by bypassing early-stage feature composition via explicit lookups, Engram
is functionally equivalent to increasing the model’s effective depth.

6.2. Structural Ablation and Layer Sensitivity

In this section, we ablate Engram under a controlled setting to investigate the effectiveness
of each key module design. Unless otherwise specified, the backbone is a 12-layer 3B MoE
model (0.56B activated parameters) trained for 100B tokens. Figure 5 reports validation loss.
The dashed orange line denotes the 3B MoE baseline (Val Loss = 1.808).

Reference configuration. We augment the backbone with a fixed 1.6B-parameter Engram
memory. Our reference model uses {2, 3}-grams and inserts Engram at Layers 2 and 6, achieving
Val Loss = 1.768, a substantial improvement over the MoE baseline (Δ = 0.04). All structural
ablations below are defined relative to this reference.

15

Where should memory be injected? To study depth sensitivity, we keep the Engram budget
fixed (1.6B) but consolidate it into a single Engram module, and sweep its insertion layer from 1
to 12 (dark blue “Layer Sweep” curve in Figure 5). This experiment exposes an inherent trade-off
in Engram placement.

A placement trade-off. Injecting Engram early allows it to offload local pattern reconstruc-
tion before the backbone expends computational depth, aligning with the backbone’s natural
hierarchical processing (Ghandeharioun et al., 2024; Jin et al., 2025; Li and Subramani, 2025;
Tenney et al., 2019). However, this incurs a cost in gating precision: early hidden states have
not yet aggregated sufficient global context via attention, and the parallel branches lack the
representational divergence required for fine-grained modulation (Xie et al., 2025; Zhu et al.,
2025). Consequently, optimal placement requires balancing (i) offloading static local patterns
early and (ii) utilizing stronger contextual queries for gating later.

The sweep shows that Layer 2 achieves the best single-layer performance (Val Loss = 1.770),
outperforming Layer 1 and degrading as the insertion point moves deeper. This indicates that
one round of attention is already sufficient to provide a meaningfully contextualized h𝑡 for
gating, while still being early enough to replace the backbone’s bottom-layer local aggregation.

While Layer 2 is optimal under a single injection constraint, we find that dividing the same
1.6B memory into two smaller modules (achieved by reducing the embedding dimension 𝑑mem)
and placing them at Layers 2 and 6 performs even better (Val Loss = 1.768). This layered design
reconciles the trade-off by combining early intervention with rich, late-stage contextual gating.
More importantly, layered insertion also provides a practical system advantage, enabling better
utilization of the memory hierarchy as discussed in Section 2.5.

Which components matter? Starting from the reference configuration, we ablate individual
design choices while keeping the Engram parameter budget fixed. Results are denoted by
markers in Figure 5. We find that three components yield the most significant gains: (i) branch-
specific fusion within the multi-branch backbone, (ii) context-aware gating, and (iii) tokenizer
compression. Removing any of these causes the largest regressions in validation loss. Specifically,
for the “w/o multi branch” ablation, we retain the mHC backbone structure but replace the
branch-specific gating with a single Engram fusion applied to the hidden states after the pre-
mappingH 𝑝𝑟𝑒 (Xie et al., 2025).

Other changes have smaller effects: removing the lightweight depthwise convolution only
marginally degrades performance. Allocating capacity to 4-grams is slightly suboptimal un-
der a fixed 1.6B budget—likely because it dilutes capacity from the more frequent 2/3-gram
patterns—though we do not rule out that higher-order 𝑁-grams become beneficial at larger
memory scales.

6.3. Sensitivity Analysis

To characterize the functional contribution of the Engram module, we evaluate the model by
completely suppressing the sparse embedding output during inference while keeping the back-
bone unchanged. Crucially, this post-hoc ablation induces a training–inference inconsistency,
potentially introducing noise in complex, mixed-capability tasks. Consequently, we prioritize
the analysis of Factual Knowledge and Reading Comprehension—the two extremes of the sensitivity
spectrum—which exhibit the highest signal-to-noise ratio under this stress test.

As shown in Figure 6, the results reveal a sharp functional dichotomy. Factual knowledge

16

C3

RACE-M
idd

le

RACE-H
igh

DROP

Hell
aS

wag

ARC-C
ha

lle
ng

e
PIQ

A

CM
M

LU

M
M

LU

M
M

LU
-P

RO

Cru
xE

va
l

M
BPP

Hum
an

Eva
l

BBH

GSM
8K

M
GSM

M
AT

H

Tr
ivi

aQ
A-Z

H

Po
pQ

A

Tr
ivi

aQ
A

0

20

40

60

80

100

R
et

ai
ne

d
Pe

rf
or

m
an

ce
(%

 o
f

B
as

el
in

e)

93%
89%

84% 81%
85%

81% 81% 78%
75%

72%
76%

68%

58%

67%
62%

44%

36%

44% 44%

29%

Reading Comprehension
Commonsense Reasoning

Knowledge-Intensive Reasoning
Code

Algorithmic Reasoning
Factual Knowledge

Figure 6 | Retained performance under Engram ablation. Factual knowledge relies heavily on
the Engram module, whereas reading comprehension is largely preserved by the backbone.

benchmarks suffer a catastrophic collapse, retaining only 29–44% of the original performance
(e.g., TriviaQA at 29%), confirming that the Engram module acts as the primary repository
for parametric knowledge. Conversely, reading comprehension tasks are remarkably resilient,
retaining 81–93% (e.g., C3 at 93%), suggesting that context-grounded tasks rely primarily on the
backbone’s attention mechanism rather than Engram.

6.4. System Efficiency

A pivotal system advantage of Engram over routing-based MoE is that its sparse activations
are addressed by explicit, static hash IDs. This yields a strictly deterministic memory access
pattern: indices for the next Engram lookup are fixed once the token sequence is known and can
be computed before the corresponding layer executes.

Experimental Setup. We implemented an inference harness based on nano-vLLM1—a stream-
lined prototype of the industry-standard vLLM engine (Kwon et al., 2023). To obtain a clean
latency baseline without the confounding communication patterns of Expert Parallel in MoE,
we benchmark on two dense backbones (Dense-4B and Dense-8B). We insert a massive 100B-
parameter Engram layer into the second Transformer block, with the entire embedding table
resident in host DRAM. During inference, the system prefetches embeddings for the Engram
layer asynchronously, overlapping the PCIe transfer with the computation of the first block.

Results. As detailed in Table 4, offloading a 100B-parameter embedding table incurs a neg-
ligible throughput penalty, peaking at only 2.8% on the 8B backbone. This confirms that the
compute intensity of early dense blocks provides a sufficient temporal window to mask the
retrieval latency. Crucially, the effective communication volume per step scales with the number
of activated slots rather than the total embedding table size.

Crucially, this experiment serves as a conservative baseline. While the hierarchical design
in Section 2.5 exploits Zipfian locality to cache frequent items in HBM, our experimental setup
forces all retrievals to traverse the PCIe bus from host memory. The fact that this baseline

1https://github.com/GeeeekExplorer/nano-vllm

17

https://github.com/GeeeekExplorer/nano-vllm

Table 4 | End-to-end Inference Throughput. We measure infernece throughput with a 100B-
parameter Engram layer entirely offloaded to host memory.

Experimental Setup

Hardware NVIDIA H800
Workload 512 Sequences
Sequence Length Uniform(100, 1024)

Throughput Results

Base Model Configuration Throughput (tok/s)

4B-Dense
Baseline 9,031.62
+ 100B Engram (CPU Offload) 8,858.28

8B-Dense
Baseline 6,315.52
+ 100B Engram (CPU Offload) 6,140.02

retrieval strategy yields minimal overhead strongly suggests that a fully optimized, locality-
aware implementation would incur negligible throughput penalty.

6.5. Case Study: Gating Visualization

In Section 2.3, we introduced the context-aware gating mechanism, designed to dynamically
modulate the integration of retrieved static memory into the backbone. To empirically validate
whether Engram behaves as intended, we visualize the gating scalar 𝛼𝑡 of Engram-27B2 across
various samples in Figure 7.

The results demonstrate a distinct pattern of selectivity. The gating mechanism consistently
activates (shown in red) upon completing local, static patterns. In English, we observe strong
activations on multi-token named entities (e.g., “Alexander the Great”, “the Milky Way”) and
formulaic phrases (e.g., “By the way”, “Princess of Wales”). This behavior generalizes effectively
across languages. In the Chinese examples, Engram identifies and retrieves distinct idiomatic
expressions and historical entities, such as “Four Great Inventions” (四大发明) and “Zhang
Zhongjing” (张仲景). These qualitative results confirm that Engram successfully identifies and
handles stereotyped linguistic dependencies, effectively relieving the Transformer backbone
from memorizing these static associations.

7. Related Work

𝑁-gram Modeling and Embedding Scaling. Originating from Shannon’s framework (Shannon,
1948), 𝑁-gram models rely on local history to predict tokens, traditionally employing smoothing
techniques (Katz, 1987; Kneser and Ney, 1995) to mitigate data sparsity. Despite the paradigm
shift toward neural architectures (Bengio et al., 2003) for capturing long-range dependencies,
the computational efficiency of 𝑁-gram lookups has been preserved in modern representation
learning, as exemplified by seminal works like FastText (Bojanowski et al., 2017).

2As detailed in our architecture setup, this model utilizes a mHC (𝑀 = 4) with Engram modules inserted at layers
2 and 15. Consequently, for any given token, the model computes a total of 8 distinct gating scalars. We observe that
not every branch encodes interpretable activation patterns. For the clarity of this visualization, we select and display
the gating values most strongly correlated with semantic pattern matching.

18

<bos> Only Alexander the Great could tame the horse B uce phal us .

<bos> By the way , I am a fan of the Milky Way .

<bos> This study analyzes the media impact of Diana , Princess of Wales .

<bos> 中国 四大 发明 包括 ： 造纸 术 、 指南 针 、 火药 和 印刷 术 。

<bos> 东汉 末年 名 医 张 仲 景 ， 因其 卓越 的 贡献 被 后世 尊 称为 ‘ 医 圣 ’， 并 著有 传 世 巨 作 《 伤寒 杂 病 论 》。

1.0

0.0

Figure 7 | Visualization of the gating mechanism of Engram. The heatmap intensity corre-
sponds to the magnitude of the gating scalar 𝛼𝑡 ∈ [0, 1], where darker red indicates stronger
activation. Because Engram operates on suffix 𝑁-grams (here 𝑁 = 3), a high activation on a
specific token 𝑥𝑡 implies that the preceding tokens culminating in that token (e.g., the phrase
ending at 𝑡) are recognized as a static pattern effectively retrieved from memory.

Recently, this paradigm has resurged as embedding scaling. While architectures such as Per-
Layer Embeddings (Team, 2025) and DeepEmbed (RWKV Team, 2025) expand capacity via
massive tables, a distinct line of pioneering research—most relevant to our approach—integrates
compositional 𝑁-gram structures directly into the representation space. SuperBPE (Liu et al.,
2025) and SCONE (Yu et al., 2025) explicitly target high-frequency patterns: the former by
merging multi-word expressions into “superword” tokens, and the latter via an auxiliary
encoding model. In parallel, OverEncoding (Huang et al., 2025a) and Byte Latent Transformer
(BLT) (Pagnoni et al., 2025) adopt hash 𝑁-gram embeddings to capture local dependencies at the
token and byte levels, respectively. These studies collectively demonstrate the efficacy of scaling
parameters through 𝑁-gram representations with minimal computational overhead. While these
approaches offer significant gains in their respective settings, our work diverges fundamentally
in two key dimensions.

• First, regarding modeling and evaluation protocols. Prior approaches often treat 𝑁-gram
embeddings as external augmentations without validating their efficiency under strictly
fair comparison protocols. For instance, SCONE (Yu et al., 2025) is inference-focused and
relies on auxiliary modules that incur additional training FLOPs. Similarly, OverEncoding
(Huang et al., 2025a) fails to yield meaningful improvements on sparse MoE backbones
even under a non-isoparametric setting. In contrast, we treat conditional memory as a
first-class modeling primitive instantiated via the carefully designed Engram module. By
rigorously evaluating this design within our Sparsity Allocation framework, we demonstrate
its clear advantage over strictly iso-parameter and iso-FLOPs MoE baselines.

• Second, from a system perspective, we advocate for algorithm-system co-design. Exist-
ing approaches place embeddings strictly at the input layer (Layer 0), which inherently
serializes memory access and computation (Huang et al., 2025a; Yu et al., 2025). Engram,
conversely, strategically injects memory into deeper layers to enable communication-
computation overlap. Furthermore, by exploiting the inherent Zipfian distribution of
𝑁-grams, we could maximize the utility of the hardware memory hierarchy. This holistic
design allows Engram to scale to massive parameters with negligible inference overhead.

Mixture-of-Experts. MoE architectures decouple model capacity from computational cost by
conditionally activating a sparse subset of experts per token, a paradigm introduced by Shazeer
et al. (2017). Subsequent innovations such as GShard (Lepikhin et al., 2020), BASE (Lewis
et al., 2021), Switch Transformer (Fedus et al., 2022) and GLaM (Du et al., 2022) enabled super-

19

linear parameter scaling while maintaining constant inference costs. More recently, DeepSeek-
MoE (Dai et al., 2024) demonstrated superior efficiency, significantly outperforming dense
models with equivalent active parameters via fine-grained expert segmentation and shared
expert isolation. Adopting this architecture, state-of-the-art models such as DeepSeek-V3 (Liu
et al., 2024a) and Kimi-k2 (Team et al., 2025) have further pushed total parameters to hundreds
of billions scale.

Memory Network. Research on memory-augmented networks aims to expand model capacity
without a proportional increase in computational cost, broadly categorized into parametric
and non-parametric approaches. Parametric memory methods, such as PKM (Lample et al.,
2019), PEER (He, 2024), Selfmem (Cheng et al., 2023b), Memory+ (Berges et al., 2025) and Ultra-
Mem (Huang et al., 2025b,c), integrate large-scale, sparse key-value stores directly into the model
layers, thereby significantly increasing capacity with negligible impact on FLOPs. Conversely,
non-parametric memory approaches like REALM (Guu et al., 2020), RETRO (Borgeaud et al.,
2022; Wang et al., 2023), and PlugLM (Cheng et al., 2023a) decouple knowledge storage from
model processing, treating the external memory as an editable and scalable key-value store that
allows the model to adapt to evolving information without retraining.

Mechanisms of Knowledge Storage. Parallel to capacity scaling, substantial research has
scrutinized the internal mechanisms governing how Transformers encode and retrieve factual
knowledge. The Feed-Forward Networks (FFNs) are widely hypothesized to function as Key-
Value memories (Geva et al., 2021). Under this framework, the first layer acts as a pattern detector
("keys") while the second layer projects specific information into the residual stream ("values").
This modularity is evidenced by the identification of specific “knowledge neurons” responsible
for storing distinct facts (Dai et al., 2022). Further validation is provided by causal tracing
methodologies, which map the information flow of factual recall to specific FFN layers (Meng
et al., 2022). These insights have enabled precise model editing algorithms such as ROME (Meng
et al., 2022) and MEMIT (Meng et al., 2023), which allow for the direct update of factual
associations without retraining. Moreover, investigations into internal representations, such as
those in Othello-GPT (Li et al., 2023a), suggest that these storage mechanisms may facilitate the
emergence of structured “world models” rather than mere statistical memorization.

8. Conclusion

In this work, we introduce conditional memory as a complementary sparsity axis to the prevail-
ing conditional computation paradigm (MoE), aiming to resolve the inefficiency of simulating
knowledge retrieval through dynamic computation. We instantiate this concept via Engram,
a module that modernizes classic 𝑁-gram embeddings to enable scalable, constant-time 𝑂(1)
lookups for static patterns

By formulating the Sparsity Allocation problem, we uncover a U-shaped scaling law, demon-
strating that a hybrid allocation of sparse capacity between MoE experts and Engram memory
strictly outperforms pure MoE baselines. Guided by this law, we scale Engram to 27B param-
eters, achieving superior performance across diverse domains. Notably, while the memory
module intuitively aids knowledge retrieval, we observe even larger gains in general reasoning,
code, and mathematics.

Our mechanistic analysis reveals that Engram effectively “deepen” the network by relieving
early layers from static reconstruction tasks, thereby freeing up attention capacity to focus

20

on global context and complex reasoning. This architectural shift translates into substantial
improvements in long-context capabilities, as evidenced by performance gains in LongPPL and
RULER. Finally, Engram advocates for infrastructure-aware efficiency as a first-class design
principle. Its deterministic addressing allows for the decoupling of storage and compute,
enabling the offloading of massive parameter tables to host memory with negligible inference
overhead. We envision conditional memory functions as an indispensable modeling primitive
for next-generation sparse models.

References

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

N. Belrose, Z. Furman, L. Smith, D. Halawi, I. Ostrovsky, L. McKinney, S. Biderman, and
J. Steinhardt. Eliciting latent predictions from transformers with the tuned lens. arXiv
preprint arXiv:2303.08112, 2023.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. J.
Mach. Learn. Res., 3:1137–1155, 2003. URL https://jmlr.org/papers/v3/bengio03a
.html.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308.3432.

V. Berges, B. Oguz, D. Haziza, W. Yih, L. Zettlemoyer, and G. Ghosh. Memory layers at scale.
In Forty-second International Conference on Machine Learning, ICML 2025, Vancouver, BC,
Canada, July 13-19, 2025. OpenReview.net, 2025. URL https://openreview.net/forum
?id=ATqGm1WyDj.

X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong, Q. Du, Z. Fu, et al. Deepseek
llm: Scaling open-source language models with longtermism. arXiv preprint arXiv:2401.02954,
2024.

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432–7439, 2020.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword
information. Transactions of the association for computational linguistics, 5:135–146, 2017.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driessche,
J.-B. Lespiau, B. Damoc, A. Clark, et al. Improving language models by retrieving from
trillions of tokens. In International conference on machine learning, pages 2206–2240. PMLR,
2022.

21

http://arxiv.org/abs/1409.0473
https://jmlr.org/papers/v3/bengio03a.html
https://jmlr.org/papers/v3/bengio03a.html
https://arxiv.org/abs/1308.3432
https://openreview.net/forum?id=ATqGm1WyDj
https://openreview.net/forum?id=ATqGm1WyDj

T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in machine
translation. In J. Eisner, editor, Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 858–867, Prague, Czech Republic, June 2007. Association for Com-
putational Linguistics. URL https://aclanthology.org/D07-1090/.

Y. R. Chao and G. K. Zipf. Human behavior and the principle of least effort: An introduction to
human ecology. Language, 26:394, 1950. URL https://api.semanticscholar.org/Co
rpusID:10182796.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet,
F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,
and W. Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

X. Cheng, Y. Lin, X. Chen, D. Zhao, and R. Yan. Decouple knowledge from paramters for
plug-and-play language modeling. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors,
Findings of the Association for Computational Linguistics: ACL 2023, pages 14288–14308,
Toronto, Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/20
23.findings-acl.901. URL https://aclanthology.org/2023.findings-acl.901/.

X. Cheng, D. Luo, X. Chen, L. Liu, D. Zhao, and R. Yan. Lift yourself up: Retrieval-augmented
text generation with self-memory. Advances in Neural Information Processing Systems, 36:
43780–43799, 2023b.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

G. Comanici, E. Bieber, M. Schaekermann, I. Pasupat, N. Sachdeva, I. Dhillon, M. Blistein,
O. Ram, D. Zhang, E. Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reason-
ing, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

M. Constant, G. Eryiğit, J. Monti, L. Van Der Plas, C. Ramisch, M. Rosner, and A. Todirascu.
Survey: multiword expression processing: a survey. Computational Linguistics, 43(4):837–892,
2017.

R. Csordás, C. D. Manning, and C. Potts. Do language models use their depth efficiently? arXiv
preprint arXiv:2505.13898, 2025.

D. Dai, L. Dong, Y. Hao, Z. Sui, B. Chang, and F. Wei. Knowledge neurons in pretrained trans-
formers. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–8502, 2022.

22

https://aclanthology.org/D07-1090/
https://api.semanticscholar.org/CorpusID:10182796
https://api.semanticscholar.org/CorpusID:10182796
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2023.findings-acl.901/

D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu, et al. Deepseekmoe:
Towards ultimate expert specialization in mixture-of-experts language models. arXiv preprint
arXiv:2401.06066, 2024.

M. Davari, S. Horoi, A. Natik, G. Lajoie, G. Wolf, and E. Belilovsky. Reliability of CKA as a
similarity measure in deep learning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=8HRvyxc606.

DeepSeek-AI, A. Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai,
D. Guo, D. Yang, D. Chen, D. Ji, E. Li, F. Lin, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Xu,
H. Yang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li, H. Qu, J. L. Cai, J. Liang, J. Guo, J. Ni,
J. Li, J. Chen, J. Yuan, J. Qiu, J. Song, K. Dong, K. Gao, K. Guan, L. Wang, L. Zhang, L. Xu,
L. Xia, L. Zhao, L. Zhang, M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang, M. Li, N. Tian,
P. Huang, P. Wang, P. Zhang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L. Jin, R. Ge, R. Pan,
R. Xu, R. Chen, S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu, S. Ye, S. Ma, S. Wang, S. Zhou, S. Yu,
S. Zhou, S. Zheng, T. Wang, T. Pei, T. Yuan, T. Sun, W. L. Xiao, W. Zeng, W. An, W. Liu,
W. Liang, W. Gao, W. Zhang, X. Q. Li, X. Jin, X. Wang, X. Bi, X. Liu, X. Wang, X. Shen, X. Chen,
X. Chen, X. Nie, X. Sun, X. Wang, X. Liu, X. Xie, X. Yu, X. Song, X. Zhou, X. Yang, X. Lu, X. Su,
Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zhao, Y. Sun, Y. Li, Y. Wang,
Y. Zheng, Y. Zhang, Y. Xiong, Y. Zhao, Y. He, Y. Tang, Y. Piao, Y. Dong, Y. Tan, Y. Liu, Y. Wang,
Y. Guo, Y. Zhu, Y. Wang, Y. Zou, Y. Zha, Y. Ma, Y. Yan, Y. You, Y. Liu, Z. Z. Ren, Z. Ren, Z. Sha,
Z. Fu, Z. Huang, Z. Zhang, Z. Xie, Z. Hao, Z. Shao, Z. Wen, Z. Xu, Z. Zhang, Z. Li, Z. Wang,
Z. Gu, Z. Li, and Z. Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts
language model, 2024. URL https://arxiv.org/abs/2405.04434.

M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. P. Steiner, M. Caron,
R. Geirhos, I. Alabdulmohsin, R. Jenatton, L. Beyer, M. Tschannen, A. Arnab, X. Wang,
C. Riquelme Ruiz, M. Minderer, J. Puigcerver, U. Evci, M. Kumar, S. V. Steenkiste, G. F.
Elsayed, A. Mahendran, F. Yu, A. Oliver, F. Huot, J. Bastings, M. Collier, A. A. Gritsenko,
V. Birodkar, C. N. Vasconcelos, Y. Tay, T. Mensink, A. Kolesnikov, F. Pavetic, D. Tran, T. Kipf,
M. Lucic, X. Zhai, D. Keysers, J. J. Harmsen, and N. Houlsby. Scaling vision transformers to 22
billion parameters. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 7480–7512. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/dehghani23a.html.

N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H. Zheng, and Z. Liu. Few-nerd: A few-
shot named entity recognition dataset. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 3198–3213, 2021.

N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat,
et al. Glam: Efficient scaling of language models with mixture-of-experts. In International
conference on machine learning, pages 5547–5569. PMLR, 2022.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. DROP: A reading compre-
hension benchmark requiring discrete reasoning over paragraphs. In J. Burstein, C. Doran, and
T. Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT

23

https://openreview.net/forum?id=8HRvyxc606
https://arxiv.org/abs/2405.04434
https://proceedings.mlr.press/v202/dehghani23a.html

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2368–
2378. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1246. URL
https://doi.org/10.18653/v1/n19-1246.

S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

B. Erman. The idiom principle and the open choice principle. Text-Interdisciplinary Journal for
the Study of Discourse, 2000.

L. Fang, Y. Wang, Z. Liu, C. Zhang, S. Jegelka, J. Gao, B. Ding, and Y. Wang. What is wrong with
perplexity for long-context language modeling? In The Thirteenth International Conference
on Learning Representations.

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

T. Gao, A. Wettig, H. Yen, and D. Chen. How to train long-context language models (effectively).
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7376–7399, 2025.

A. P. Gema, J. O. J. Leang, G. Hong, A. Devoto, A. C. M. Mancino, R. Saxena, X. He, Y. Zhao, X. Du,
M. R. G. Madani, et al. Are we done with mmlu? In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 5069–5096, 2025.

M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value
memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 5484–5495, 2021.

A. Ghandeharioun, A. Caciularu, A. Pearce, L. Dixon, and M. Geva. Patchscopes: A unify-
ing framework for inspecting hidden representations of language models. In International
Conference on Machine Learning, pages 15466–15490. PMLR, 2024.

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with
hilbert-schmidt norms. In International conference on algorithmic learning theory, pages
63–77. Springer, 2005.

A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=uY
LFoz1vlAC.

A. Gu, B. Rozière, H. J. Leather, A. Solar-Lezama, G. Synnaeve, and S. Wang. Cruxeval: A
benchmark for code reasoning, understanding and execution. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=Ffpg52swvg.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

24

https://doi.org/10.18653/v1/n19-1246
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=Ffpg52swvg

K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang. Retrieval augmented language model
pre-training. In International conference on machine learning, pages 3929–3938. PMLR, 2020.

J. Haber and M. Poesio. Polysemy—Evidence from linguistics, behavioral science, and con-
textualized language models. Computational Linguistics, 50(1):351–417, Mar. 2024. doi:
10.1162/coli_a_00500. URL https://aclanthology.org/2024.cl-1.10/.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

X. O. He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021a.
URL https://openreview.net/forum?id=d7KBjmI3GmQ.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the MATH dataset. In J. Vanschoren and S. Ye-
ung, editors, Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021b.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/has
h/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, and B. Ginsburg. Ruler: What’s
the real context size of your long-context language models? In First Conference on Language
Modeling.

H. Huang, D. Zhu, B. Wu, Y. Zeng, Y. Wang, Q. Min, and X. Zhou. Over-tokenized transformer:
Vocabulary is generally worth scaling. In Forty-second International Conference on Machine
Learning, ICML 2025, Vancouver, BC, Canada, July 13-19, 2025. OpenReview.net, 2025a. URL
https://openreview.net/forum?id=gbeZKej40m.

Y. Huang, Y. Bai, Z. Zhu, J. Zhang, J. Zhang, T. Su, J. Liu, C. Lv, Y. Zhang, Y. Fu, et al. C-eval:
A multi-level multi-discipline chinese evaluation suite for foundation models. Advances in
Neural Information Processing Systems, 36:62991–63010, 2023.

Z. Huang, Y. Bao, Q. Min, S. Chen, R. Guo, H. Huang, D. Zhu, Y. Zeng, B. Wu, X. Zhou,
et al. Ultramemv2: Memory networks scaling to 120b parameters with superior long-context
learning. arXiv preprint arXiv:2508.18756, 2025b.

Z. Huang, Q. Min, H. Huang, Y. Zeng, D. Zhu, R. Guo, and X. Zhou. Ultra-sparse memory
network. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025c. URL https://openreview.n
et/forum?id=zjeHLSiNv1.

M. Jin, Q. Yu, J. Huang, Q. Zeng, Z. Wang, W. Hua, H. Zhao, K. Mei, Y. Meng, K. Ding,
F. Yang, M. Du, and Y. Zhang. Exploring concept depth: How large language models acquire
knowledge and concept at different layers? In O. Rambow, L. Wanner, M. Apidianaki,
H. Al-Khalifa, B. D. Eugenio, and S. Schockaert, editors, Proceedings of the 31st International
Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24,
2025, pages 558–573. Association for Computational Linguistics, 2025. URL https://acla
nthology.org/2025.coling-main.37/.

25

https://aclanthology.org/2024.cl-1.10/
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=gbeZKej40m
https://openreview.net/forum?id=zjeHLSiNv1
https://openreview.net/forum?id=zjeHLSiNv1
https://aclanthology.org/2025.coling-main.37/
https://aclanthology.org/2025.coling-main.37/

K. Jordan, Y. Jin, V. Boza, J. You, F. Cesista, L. Newhouse, and J. Bernstein. Muon: An optimizer
for hidden layers in neural networks, 2024. URL https://kellerjordan.github.io/p
osts/muon/.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension. In R. Barzilay and M. Kan, editors, Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1601–1611. Association
for Computational Linguistics, 2017. doi: 10.18653/V1/P17-1147. URL https://doi.org/
10.18653/v1/P17-1147.

S. M. Katz. Estimation of probabilities from sparse data for the language model component
of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process., 35(3):400–401, 1987. doi:
10.1109/TASSP.1987.1165125. URL https://doi.org/10.1109/TASSP.1987.1165125.

D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In 1995
international conference on acoustics, speech, and signal processing, volume 1, pages 181–
184. IEEE, 1995.

S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In International conference on machine learning, pages 3519–3529. PMlR, 2019.

N. Kriegeskorte, M. Mur, and P. A. Bandettini. Representational similarity analysis-connecting
the branches of systems neuroscience. Frontiers in systems neuroscience, 2:249, 2008.

T. Kudo and J. Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In E. Blanco and W. Lu, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018,
pages 66–71. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-2012.
URL https://doi.org/10.18653/v1/d18-2012.

S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica.
Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th symposium on operating systems principles, pages 611–626, 2023.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy. RACE: large-scale reading comprehension
dataset from examinations. In M. Palmer, R. Hwa, and S. Riedel, editors, Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pages 785–794. Association for Computational
Linguistics, 2017. doi: 10.18653/V1/D17-1082. URL https://doi.org/10.18653/v1/d1
7-1082.

G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou. Large memory layers with
product keys. Advances in Neural Information Processing Systems, 32, 2019.

26

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d17-1082
https://doi.org/10.18653/v1/d17-1082

G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks without
residuals. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=S1VaB4cex.

P. Lennie. The cost of cortical computation. Current biology, 13(6):493–497, 2003.

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668, 2020.

M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer. Base layers: Simplifying
training of large, sparse models. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 6265–6274. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/lewis21a.html.

H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan, and T. Baldwin. Cmmlu: Measuring
massive multitask language understanding in chinese. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 11260–11285, 2024.

K. Li, A. K. Hopkins, D. Bau, F. B. Viégas, H. Pfister, and M. Wattenberg. Emergent world
representations: Exploring a sequence model trained on a synthetic task. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023a. URL https://openreview.net/forum?id=DeG07_TcZvT.

M. Li and N. Subramani. Echoes of bert: Do modern language models rediscover the classical
nlp pipeline?, 2025. URL https://arxiv.org/abs/2506.02132.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li,
J. Chim, Q. Liu, E. Zheltonozhskii, T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-
Poirier, J. Monteiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M. Yee, L. K. Umapathi,
J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. M. V, J. T. Stillerman, S. S. Patel, D. Abulkhanov,
M. Zocca, M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni,
P. Villegas, M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger,
H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt,
D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries. Starcoder: may the source be with you! Trans. Mach.
Learn. Res., 2023, 2023b. URL https://openreview.net/forum?id=KoFOg41haE.

W. Li, F. Qi, M. Sun, X. Yi, and J. Zhang. Ccpm: A chinese classical poetry matching dataset.
arXiv preprint arXiv:2106.01979, 2021.

A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024a.

A. Liu, J. Hayase, V. Hofmann, S. Oh, N. A. Smith, and Y. Choi. SuperBPE: Space travel
for language models. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=lcDRvffeNP.

J. Liu, S. Min, L. Zettlemoyer, Y. Choi, and H. Hajishirzi. Infini-gram: Scaling unbounded n-gram
language models to a trillion tokens. In First Conference on Language Modeling, 2024b. URL
https://openreview.net/forum?id=u2vAyMeLMm.

27

https://openreview.net/forum?id=S1VaB4cex
https://openreview.net/forum?id=S1VaB4cex
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v139/lewis21a.html
https://openreview.net/forum?id=DeG07_TcZvT
https://arxiv.org/abs/2506.02132
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=lcDRvffeNP
https://openreview.net/forum?id=lcDRvffeNP
https://openreview.net/forum?id=u2vAyMeLMm

A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi. When not to trust
language models: Investigating effectiveness of parametric and non-parametric memories.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9802–9822, 2023.

K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in gpt.
Advances in neural information processing systems, 35:17359–17372, 2022.

K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov, and D. Bau. Mass-editing memory in a
transformer. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.n
et/forum?id=MkbcAHIYgyS.

T. Nguyen. Understanding transformers via n-gram statistics. Advances in neural information
processing systems, 37:98049–98082, 2024.

nostalgebraist. interpreting gpt: the logit lens. LessWrong, 2020. URL https://www.lesswr
ong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

A. Pagnoni, R. Pasunuru, P. Rodriguez, J. Nguyen, B. Muller, M. Li, C. Zhou, L. Yu, J. E.
Weston, L. Zettlemoyer, et al. Byte latent transformer: Patches scale better than tokens. In
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9238–9258, 2025.

B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, S. Biderman, H. Cao, X. Cheng,
M. Chung, L. Derczynski, X. Du, M. Grella, K. K. GV, X. He, H. Hou, P. Kazienko, J. Kocon,
J. Kong, B. Koptyra, H. Lau, J. Lin, K. S. I. Mantri, F. Mom, A. Saito, G. Song, X. Tang, J. S.
Wind, S. Wozniak, Z. Zhang, Q. Zhou, J. Zhu, and R. Zhu. RWKV: reinventing rnns for the
transformer era. In H. Bouamor, J. Pino, and K. Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 14048–
14077. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-E
MNLP.936. URL https://doi.org/10.18653/v1/2023.findings-emnlp.936.

B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension of large
language models. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openre
view.net/forum?id=wHBfxhZu1u.

S. T. Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21(5):1112–1130, 2014.

O. Press, N. A. Smith, and M. Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

RWKV Team. Rwkv architecture history. https://wiki.rwkv.com/basic/architecture
.html, 2025. Section “RWKV-V8’s DeepEmbed”, accessed 2025-12-09.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

28

https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/2023.findings-emnlp.936
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=R8sQPpGCv0
https://wiki.rwkv.com/basic/architecture.html
https://wiki.rwkv.com/basic/architecture.html

C. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder,
D. Zhou, D. Das, and J. Wei. Language models are multilingual chain-of-thought reasoners.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?i
d=fR3wGCk-IXp.

J. Su, M. H. M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063, 2024. doi: 10.1016/J.NEUCOM.2
023.127063. URL https://doi.org/10.1016/j.neucom.2023.127063.

K. Sun, D. Yu, D. Yu, and C. Cardie. Investigating prior knowledge for challenging chinese ma-
chine reading comprehension. Transactions of the Association for Computational Linguistics,
8:141–155, 2020.

M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. Le, E. Chi,
D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Linguistics: ACL 2023, pages 13003–13051,
2023.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

G. Team. Gemma 3n. 2025. URL https://ai.google.dev/gemma/docs/gemma-3n.

K. Team, Y. Zhang, Z. Lin, X. Yao, J. Hu, F. Meng, C. Liu, X. Men, S. Yang, Z. Li, et al. Kimi linear:
An expressive, efficient attention architecture. arXiv preprint arXiv:2510.26692, 2025.

I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019.

D. Tito Svenstrup, J. Hansen, and O. Winther. Hash embeddings for efficient word representa-
tions. Advances in neural information processing systems, 30, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

B. Wang, W. Ping, P. Xu, L. McAfee, Z. Liu, M. Shoeybi, Y. Dong, O. Kuchaiev, B. Li, C. Xiao, et al.
Shall we pretrain autoregressive language models with retrieval? a comprehensive study.
In Proceedings of the 2023 conference on empirical methods in natural language processing,
pages 7763–7786, 2023.

L. Wang, H. Gao, C. Zhao, X. Sun, and D. Dai. Auxiliary-loss-free load balancing strategy for
mixture-of-experts, 2024a. URL https://arxiv.org/abs/2408.15664.

29

https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
https://doi.org/10.1016/j.neucom.2023.127063
https://ai.google.dev/gemma/docs/gemma-3n
https://arxiv.org/abs/2408.15664

Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, et al.
Mmlu-pro: A more robust and challenging multi-task language understanding benchmark.
Advances in Neural Information Processing Systems, 37:95266–95290, 2024b.

K. Whistler. Unicode standard annex #15: Unicode normalization forms. Unicode Standard
Annex 15, The Unicode Consortium, July 2025. URL https://www.unicode.org/report
s/tr15/tr15-57.html. Version Unicode 17.0.0, Revision 57. Accessed 2026-01-04.

G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming language models with
attention sinks. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview
.net/forum?id=NG7sS51zVF.

Z. Xie, Y. Wei, H. Cao, C. Zhao, C. Deng, J. Li, D. Dai, H. Gao, J. Chang, L. Zhao, S. Zhou, Z. Xu,
Z. Zhang, W. Zeng, S. Hu, Y. Wang, J. Yuan, L. Wang, and W. Liang. mhc: Manifold-constrained
hyper-connections, 2025. URL https://arxiv.org/abs/2512.24880.

S. Yang, Y. Shen, K. Wen, S. Tan, M. Mishra, L. Ren, R. Panda, and Y. Kim. Path attention: Position
encoding via accumulating householder transformations. arXiv preprint arXiv:2505.16381,
2025.

D. Yu, E. Cohen, B. Ghazi, Y. Huang, P. Kamath, R. Kumar, D. Liu, and C. Zhang. Scaling
embedding layers in language models. arXiv preprint arXiv:2502.01637, 2025.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really finish
your sentence? In A. Korhonen, D. R. Traum, and L. Màrquez, editors, Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 4791–4800. Association for Computational
Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https://doi.org/10.18653/v1/p1
9-1472.

B. Zhang and R. Sennrich. Root mean square layer normalization. Advances in neural
information processing systems, 32, 2019.

W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan. Agieval: A
human-centric benchmark for evaluating foundation models. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages 2299–2314, 2024.

D. Zhu, H. Huang, Z. Huang, Y. Zeng, Y. Mao, B. Wu, Q. Min, and X. Zhou. Hyper-
connections. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net
/forum?id=9FqARW7dwB.

30

https://www.unicode.org/reports/tr15/tr15-57.html
https://www.unicode.org/reports/tr15/tr15-57.html
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2512.24880
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://openreview.net/forum?id=9FqARW7dwB
https://openreview.net/forum?id=9FqARW7dwB

Appendices

A. Detailed Model Architecture and Hyper Parameters

Dense-4B MoE-27B Engram-27B Engram-40B

Total Params 4.1B 26.7B 26.7B 39.5B
Active Params 3.8B
Total Tokens 262B

Layers 30
Dimension 2560
Leading Dense Layers - 1 1 1
Routed Experts - 72 55 55
Active Experts - 6 6 6
Shared Experts - 2 2 2
Load Balancing Method - Loss Free (Wang et al., 2024a)

Attention module MLA (DeepSeek-AI et al., 2024)
RoPE 𝜃 10000
mHC Expansion Rate 4
Sequence Length 4096
Vocab Size 129280
Batch Size 1280
Training Steps 50000
Backbone Optimizer Muon (Jordan et al., 2024)
Embedding Optimizer Adam (Kingma, 2014)
Base Learning Rate 4e-4
Lr Scheduler Step Decay (Bi et al., 2024)
Weight Decay 0.1

Engram Dim 𝑑mem - - 1280 1280
Engram Vocab Size - - 2262400 7239680
Engram Num Head - - 8 8
Engram Layer - - [2,15] [2,15]
Engram 𝑁-gram - - [2,3] [2,3]
Engram combine mHC - - True True
Engram tokenizer compression - - True True
Engram Conv Zero Init - - True True
Engram Lr Multipler - - x5 x5
Engram Weight Decay - - 0.0 0.0
Engram Optimizer (Embed. only) - - Adam (Kingma, 2014)

Table 5 | Detailed model architecture information and training hyper parameters.

31

B. Full Benchmark Curves

42k 46k 50k

1.96

1.98

2.00

Pile-test

42k 46k 50k

0.56

0.58

0.60

MMLU

42k 46k 50k

0.58

0.60

0.62

0.64
MMLU-Redux

42k 46k 50k
0.255

0.270

0.285

0.300

MMLU-PRO

42k 46k 50k

0.550

0.575

0.600

CMMLU

42k 46k 50k
0.550

0.575

0.600

0.625
CEval

42k 46k 50k
0.38

0.40

0.42

0.44
AGIEval

42k 46k 50k

0.840

0.855

0.870

0.885

ARC-Easy

42k 46k 50k

0.675

0.700

0.725

ARC-Challenge

42k 46k 50k

0.46

0.48

0.50

TriviaQA

42k 46k 50k

0.720

0.735

0.750

0.765
TriviaQA-ZH

42k 46k 50k

0.185

0.190

0.195

PopQA

42k 46k 50k
0.78

0.81

0.84

0.87
CCPM

42k 46k 50k

0.48

0.51

0.54

BBH

42k 46k 50k

0.70

0.71

0.72

HellaSwag

42k 46k 50k

0.705

0.720

0.735

PIQA

42k 46k 50k

0.660

0.675

0.690

WinoGrande

42k 46k 50k

0.54

0.56

0.58

DROP

42k 46k 50k

0.735

0.750

0.765

0.780

RACE-High

42k 46k 50k
0.780

0.795

0.810

0.825

RACE-Middle

42k 46k 50k

0.75

0.78

0.81

C3

42k 46k 50k

0.33

0.36

0.39

0.42
HumanEval

42k 46k 50k
0.42

0.44

0.46

0.48

MBPP

42k 46k 50k

0.328

0.336

0.344

Cruxeval-o

42k 46k 50k

0.30

0.32

0.34

Cruxeval-i

42k 46k 50k
0.525

0.550

0.575

0.600

GSM8K

42k 46k 50k

0.40

0.44

0.48

MGSM

42k 46k 50k

0.26

0.28

0.30

MATH

MoE-27B Engram-27B

Figure 8 | Last 10k pre-training benchmark curve.

32

C. Case Study of Tokenizer Compression

Rank Merge
Count

Normalized
Token Original Tokens

1 163 ’␣’ ’\t’, ’\n’, ’\r’, ’␣’, ’␣␣’, ’\n\n’, ’␣␣␣’, ’␣\n’, ...
2 54 ’a’ ’A’, ’a’, ’␣a’, ’␣A’, ’á’, ’ä’, ’ã’, ’ą’, ’␣à’, ’␣å’, ’â’, ...
3 40 ’o’ ’O’, ’o’, ’␣o’, ’␣O’, ’ó’, ’ö’, ’ô’, ’õ’, ’ő’, ’ò’, ...
4 35 ’e’ ’E’, ’e’, ’␣e’, ’␣E’, ’é’, ’è’, ’␣é’, ’ę’, ’ě’, ’ê’, ...
5 30 ’i’ ’I’, ’i’, ’␣I’, ’␣i’, ’í’, ’ì’, ’î’, ’ı̄’, ’ï’, ...

Table 6 | The table illustrates Top-5 merged tokens by Tokenizer Compression and the overall
compression ratio is 23.43% for our 128k tokenizer.

33

	Introduction
	Architecture
	Overview
	Sparse Retrieval via Hashed N-grams
	Context-aware Gating
	Integration with Multi-branch Architecture
	System Efficiency: Decoupling Compute and Memory

	Scaling Laws and Sparsity Allocation
	Optimal Allocation Ratio Between MoE and Engram
	Engram under Infinite Memory Regime

	Large Scale Pre-training
	Experimental Setup
	Experimental Results

	Long Context Training
	Experimental Setup
	Experimental Results

	Analysis
	Is Engram functionally equivalent to increasing the model’s depth?
	Accelerated Prediction Convergence
	Representational Alignment and Effective Depth

	Structural Ablation and Layer Sensitivity
	Sensitivity Analysis
	System Efficiency
	Case Study: Gating Visualization

	Related Work
	Conclusion
	Detailed Model Architecture and Hyper Parameters
	Full Benchmark Curves
	Case Study of Tokenizer Compression

