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Abstract

As organizations scale adoption of generative Al, model
cost optimization and operational efficiency have emerged
as critical factors determining sustainability and accessibil-
ity. While Large Language Models (LLMs) demonstrate im-
pressive capabilities across diverse tasks, their extensive com-
putational requirements make them cost-prohibitive for rou-
tine enterprise use. This limitation motivates the exploration
of Small Language Models (SLMs), which can deliver com-
parable performance in targeted applications while drasti-
cally reducing infrastructure overhead (Irugalbandara et al.,
2023). In this work, we investigate the feasibility of replac-
ing LLM-driven workflows with optimized SLMs. We trained
a domain-adapted SLM to execute representative tasks tra-
ditionally handled by LLMs, such as document summariza-
tion, query answering, and structured data interpretation.
As part of the experiment, we investigated the fine-tuning
of facebook/opt-350m model (single epoch only) using the
Hugging Face TRL (Transformer Reinforcement Learning),
specifically the Supervised Fine-Tuning (SFT) trainer. The
OPT-350M model was released by Meta Al in 2022 as part
of the OPT (Open Pretrained Transformer) family of models.
Similar studies demonstrate that even models at the 350M
parameter scale can meaningfully contribute to instruction-
tuning pipelines (Mekala et al., 2024). Experimental results
demonstrated that our fine-tuned SLM achieves exceptional
performance with a 77.55% pass rate on ToolBench evalua-
tion, significantly outperforming all baseline models includ-
ing ChatGPT-CoT (26.00%), ToolLLaMA-DFS (30.18%),
and ToolLLaMA-CoT (16.27%). These benchmarks, first in-
troduced in ToolLLM (Qin et al., 2023) and later stabilized by
follow-up efforts (Zhang et al., 2024), have become the stan-
dard for evaluating tool-augmented reasoning. Recent work
has also extended ToolBench traces to preference-based op-
timization (Zeng et al., 2024) and designed alternative multi-
API corpora for tool-use robustness (Liu et al., 2024). These
findings emphasize that thoughtful design and targeted train-
ing of SLMs can significantly lower barriers to adoption, en-
abling cost-effective, large-scale integration of generative Al
into production systems.

Introduction

Running a state-of-the-art LLM at production scale en-
tails substantial infrastructure investment, ongoing opera-
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tional costs, and often reliance on closed APIs, which in-
troduces additional risks related to data privacy, latency, and
robustness. For organizations seeking to embed generative
Al deeply into mission-critical operations, such constraints
present formidable barriers. This motivates a pivot toward
approaches that optimize not only model performance but
also economic and operational feasibility.

In this paper, we investigate whether SLMs can achieve
comparable results to LLMs in agentic tool calling through
targeted fine-tuning with practical amounts of human super-
vision. This question arises from the broader context of gen-
erative Al adoption at scale, where the balance between ca-
pability and cost has become increasingly critical. Despite
significant advances in tool-augmented language models, a
critical gap remains in understanding the trade-offs between
model size, training efficiency, and task performance. Most
existing work focuses on either scaling up model parameters
or improving training techniques, but few studies systemati-
cally investigate whether small models can achieve compet-
itive performance through targeted optimization.

Furthermore, while previous work has shown promising
results for SLMs in specific domains, comprehensive eval-
uation across diverse tool manipulation scenarios has been
limited. Our systematic evaluation across six ToolBench cat-
egories provides robust evidence for SLM effectiveness in
agentic tool calling.

Our central hypothesis is that SLMs, when carefully
trained and aligned, can achieve near-equivalent perfor-
mance to LLMs on focused tasks such as tool calling
and structured automation. We fine-tuned the facebook/opt-
350m model using the ToolBench dataset, conducting train-
ing on Amazon SageMaker with Hugging Face TRL library
integration.

The rest of this paper is structured as follows: Section
2 reviews related work in tool-augmented language models
and small model optimization. Section 3 discusses opera-
tional challenges with LLMs. Section 4 presents our SLM
approach. Section 5 describes the ToolBench evaluation
framework. Section 6 presents experimental results demon-
strating our SLM’s 77.55% pass rate. Section 7 concludes
with implications for scalable Al deployment.
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Related work
Tool-Augmented Language Models

The integration of external tools with language models has
emerged as a critical research direction for enhancing Al ca-
pabilities beyond pure text generation. Early work by Schick
et al. (2023) introduced the concept of Toolformer, which
teaches language models to use external APIs through self-
supervised learning. This foundational work demonstrated
that models could learn to invoke calculators, search en-
gines, and other tools to improve their problem-solving ca-
pabilities.

Building on this foundation, ReAct (Yao et al., 2023) in-
troduced a paradigm combining reasoning and acting, where
models alternate between generating thoughts and taking ac-
tions. This approach showed significant improvements in
multi-step reasoning tasks and became a standard frame-
work for tool-augmented Al systems. The ReAct frame-
work’s success led to widespread adoption in various appli-
cations, from web browsing agents to code generation sys-
tems.

More recently, ToolLLM (Qin et al., 2023) scaled tool
integration to over 16,000 real-world APIs, creating com-
prehensive benchmarks for evaluating tool manipulation
capabilities. Their work established ToolBench as a stan-
dard evaluation framework and demonstrated that fine-tuned
models could achieve competitive performance with propri-
etary systems like GPT-4 in tool calling scenarios.

Concurrent work by Patil et al. (2023) explored Gorilla,
focusing on API call generation and demonstrating that
smaller, specialized models could outperform larger general-
purpose models in specific domains. This work provided
early evidence supporting our hypothesis that targeted train-
ing can overcome parameter limitations.

Small Language Models and Efficiency

The pursuit of efficient language models has gained momen-
tum as deployment costs and environmental concerns have
grown. Touvron et al. (2023) introduced LLaMA, demon-
strating that smaller models trained on high-quality data
could match or exceed the performance of much larger coun-
terparts. This work challenged the prevailing assumption
that model size directly correlates with capability.
Subsequent research by Taori et al. (2023) with Al-
paca showed that instruction-following capabilities could
be effectively transferred to smaller models through careful
fine-tuning on high-quality instruction datasets. Their work
demonstrated that a 7B parameter model could achieve per-
formance comparable to much larger systems on many tasks.
The concept of knowledge distillation, pioneered by Hin-
ton et al. (2015) and later adapted for language models by
Sanh et al. (2019) with DistilBERT, provided theoretical
foundations for our approach. These works established that
smaller models could capture the essential capabilities of
larger teachers through appropriate training strategies.
Recent work by Zhou et al. (2023) on parameter-efficient
fine-tuning methods like LoRA (Low-Rank Adaptation) has
shown that targeted modifications to small subsets of model

parameters can achieve significant performance improve-
ments. This research direction aligns with our focus on effi-
cient training approaches for specialized tasks.

Supervised Fine-tuning and Domain Adaptation

Supervised Fine-tuning (SFT) has emerged as a crucial tech-
nique for adapting pre-trained language models to specific
domains and tasks. Ouyang et al. (2022) demonstrated the
effectiveness of SFT in their work on InstructGPT, showing
how human feedback and supervised training could signifi-
cantly improve model alignment and task performance.

The Hugging Face TRL (Transformer Reinforcement
Learning) library, developed by von Werra et al. (2022),
has democratized access to advanced fine-tuning techniques.
Their SFTTrainer implementation provides robust infras-
tructure for supervised fine-tuning, handling dataset man-
agement, training loops, and evaluation metrics seamlessly.

Domain-specific adaptation has been extensively studied
across various fields. Rogers et al. (2020) provided compre-
hensive analysis of BERT adaptations, showing that domain-
specific fine-tuning often outperforms general-purpose mod-
els. Similar findings have been reported in specialized do-
mains like biomedical text processing (Lee et al., 2020) and
legal document analysis (Chalkidis et al., 2020).

Recent work by Muennighoff et al. (2023) on instruction
tuning has shown that models can be effectively adapted to
follow complex instructions through careful dataset curation
and training procedures. This research provides theoretical
backing for our approach to training SLMs for tool manipu-
lation tasks.

Evaluation Frameworks and Benchmarks

Robust evaluation frameworks are essential for assessing
tool-augmented language models. The ToolBench bench-
mark (Qin et al., 2023) represents the most comprehensive
evaluation suite for tool manipulation, covering diverse APIs
and task complexities. It provides standardized metrics for
comparing model performance across different scenarios.

Earlier benchmarks like HotpotQA (Yang et al., 2018) and
Natural Questions (Kwiatkowski et al., 2019) established
foundations for multi-step reasoning evaluation, though they
focused primarily on information retrieval rather than tool
manipulation. The evolution toward more complex, multi-
modal benchmarks reflects the growing sophistication of Al
systems.

Recent work on Al agent evaluation by Liu et al. (2023)
has emphasized the importance of measuring not just task
completion but also efficiency, robustness, and safety in
agent behaviors. This holistic approach to evaluation aligns
with our comprehensive assessment methodology.

The development of automated evaluation metrics, as ex-
plored by Zhang et al. (2023), has enabled large-scale com-
parative studies like ours. These advances in evaluation
methodology make it possible to conduct rigorous empiri-
cal comparisons across multiple models and approaches.

Method

Our approach centers on fine-tuning the facebook/opt-350m
model using Supervised Fine-tuning (SFT) with the Hug-



ging Face TRL library. The OPT-350M model, with its
350 million parameters, represents a strategic balance be-
tween capability and efficiency. We trained the model on the
ToolBench dataset, which contains over 16,000 real-world
APIs from RapidAPI Hub with corresponding instruction-
solution pairs.

The training process was conducted on Amazon Sage-
Maker (instance type ml.g5.8xlarge), leveraging its managed
environment for scalable compute resources and seamless
integration with the Hugging Face ecosystem. Our SFT ap-
proach focused on teaching the model to generate responses
in the proper ToolBench format, consisting of Thought-
Action-Action Input patterns that enable systematic tool ma-
nipulation and reasoning.

Experiment Setup

The ToolBench dataset is a large, multi-turn instruction
dataset that required transformation into structured training
sequences. System prompts, user queries, and assistant re-
sponses were concatenated with appropriate delimiters to
create coherent instruction-following examples suitable for
supervised fine-tuning using the TRL framework. The trans-
formation scripts were generated using Amazon Q, the gen-
erative Al assistant from AWS. After the transformation, the
training data comprised 187,542 examples for the model to
learn from.

The facebook/opt-350m model was fine-tuned for a single
epoch with carefully optimized hyperparameters. The crit-
ical configuration included a conservative learning rate of
5 x 1075 with 100 warmup steps for stable adaptation, an ef-
fective batch size of 32 achieved via gradient accumulation
over 4 steps to provide robust gradient estimates, and aggres-
sive gradient clipping (max_norm=0.3) to prevent training
instability. Basically, this resulted in 5,860 (187,542 records
/ 32 effective batch size). Memory-efficient techniques in-
cluding FP16 mixed precision and gradient checkpointing
enabled processing of complex tool-chain sequences. The
AdamW optimizer with 0.01 weight decay effectively han-
dled sparse gradients from tool-specific tokens while pre-
venting overfitting.

This “high-learning, high-stability” configuration created
an optimal balance where the model could extract max-
imum information from ToolBench’s high-quality exam-
ples in just one epoch. The approach promoted learning
of generalizable tool-use patterns rather than memorization,
ultimately demonstrating that careful hyperparameter tun-
ing can enable small language models to outperform much
larger counterparts on specialized tasks.

Evaluation framework

ToolBench serves as our primary evaluation framework, pro-
viding comprehensive assessment across diverse tool manip-
ulation scenarios.

The test environment included Python 3.9, PyTorch. All
models were evaluated under identical computational con-
ditions to ensure fair comparison. We employed ToolEval,
an automated evaluation framework that uses ChatGPT as
an evaluator to assess tool-use capabilities. The framework
incorporates two primary metrics:

1. Pass Rate Evaluation: Measures the proportion of suc-
cessfully completed instructions within limited API call
budgets. The evaluator determines whether a model’s so-
Iution path adequately addresses the given instruction
based on predefined criteria for task completion.

2. Win Rate Assessment: Compares solution quality be-
tween different models by evaluating factors including
information richness, factual accuracy, reasoning quality,
milestone achievement, API exploration efficiency, and
cost-effectiveness.

The benchmark consists of six test categories: Gl-
instruction, Gl-category, Gl-tool, G2-category, G2-
instruction, and G3-instruction, totaling 1,100 test queries.

* Gl-instruction (200 queries): Single-tool scenarios with
unseen instructions

* Gl-category (200 queries): Single-tool scenarios with
unseen categories

* Gl-tool (200 queries): Single-tool scenarios with com-
pletely unseen tools

* G2-instruction (200 queries): Multi-tool intra-category
scenarios

* G2-category (200 queries): Multi-tool scenarios across
categories

* G3-instruction (100 queries): Multi-tool intra-collection
scenarios

Model Configuration: Our fine-tuned OPT-350M
model was evaluated alongside baseline models including
ChatGPT-CoT, ToolLLaMA-DFES, ToolLLaMA-CoT, and
Claude-CoT using identical inference parameters:

* Maximum sequence length: 8192 tokens

* Batch size: 8 per device for evaluation

* Temperature: 0.1 for reproducible results

* Maximum reasoning iterations: 10 per query

ToolEval Assessment Process: Each model’s responses
were automatically evaluated using ChatGPT-based scoring
with multiple evaluation rounds (> 4 assessments per query)
and majority voting to ensure reliability. The evaluator as-
sessed solution paths against standardized criteria without
requiring live API execution. Evaluation steps were per-
formed every 1000 iterations with comprehensive logging
enabled.

Quality Assurance: All models were tested on identical
query sets with synchronized evaluation conditions. Statis-
tical significance was verified through confidence interval
analysis, and evaluation consistency was maintained through
automated logging of all assessment decisions and reason-
ing traces. The evaluation infrastructure utilized 4 dataloader
workers with memory pinning for efficient processing of the
1,100 test queries across all six categories.

Results

Our experimental evaluation demonstrates exceptional per-
formance of the fine-tuned OPT-350M model across all test



Table 1: Overall Performance Comparison

Model Params | Pass Rate Gap
Our SLM 350M 77.55% -
ToolLLaMA-DFS 7B 30.18% -47.37%
ChatGPT-CoT 175B 26.00% -51.55%
ToolLLaMA-CoT 7B 16.27% -61.28%
Claude-CoT 52B 2.73% -74.82%

Table 2: Performance by Test Category

Category | Ours | TLLM-D | GPT-C | TLLM-C | Claude
Gl_instr 78.5 325 33.0 16.0 35
Gl _cat 74.0 32.5 29.5 21.5 3.0
G1_tool 79.0 28.0 29.5 14.5 2.5
G2 _cat 80.5 32.5 24.5 16.5 1.5
G2_instr 74.5 29.5 24.0 18.0 2.5
G3_instr 80.0 22.0 5.0 6.0 4.0
Avg 77.6 30.2 26.0 16.3 2.7
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Figure 1: Performance radar chart of our SLM vs other mod-
els across 6 tasks

categories. The following tables present comprehensive per-
formance analysis and comparisons with established base-
line models.

Our experimental results demonstrate several key find-
ings:

1. Our 350M parameter model achieved a remarkable
77.55% overall pass rate, significantly outperforming
all baseline models by margins ranging from 47% to
75%. This result fundamentally challenges the conven-
tional wisdom that larger models are necessary for com-
plex reasoning tasks. The performance gap is particularly
striking when considering that ChatGPT-CoT (175B pa-
rameters) achieved only 26.00%, representing a 2.98x
improvement with our dramatically smaller model.

2. Despite having 20-500x fewer parameters than base-
line models, our SLM achieved superior performance
across all evaluation categories. This breakthrough in
parameter efficiency demonstrates that targeted fine-
tuning can overcome traditional scaling limitations. The
performance-per-parameter ratio represents a paradigm
shift from brute-force scaling to intelligent optimization,
proving that thoughtful training strategies can deliver ex-
ceptional results with minimal computational resources.

3. The model maintained consistent performance across all
test categories, with success rates ranging from 74% to
80.5%, demonstrating remarkable reliability across di-
verse tool manipulation scenarios. This consistency in-
dicates that our approach successfully captures gener-
alizable reasoning patterns rather than task-specific op-
timizations. The narrow performance variance (6.5%
range) between different complexity levels suggests ro-
bust learning of the fundamental principles of tool-use.

The combination of 77.55% pass rate performance with
350M parameters translates into substantial cost savings
in both training and inference while maintaining state-of-
the-art results. This cost-performance advantage enables or-
ganizations to deploy sophisticated Al capabilities with-
out prohibitive infrastructure investments, democratizing ac-
cess to advanced tool-calling agents. The economic implica-
tions extend beyond cost reduction to enable entirely new
deployment scenarios previously constrained by computa-
tional budgets.

These results establish a new paradigm where high-
performance Al capabilities become accessible to resource-
constrained environments. Our findings show that excep-
tional tool-use performance is achievable through strate-
gic model design and targeted training, rather than requir-
ing massive computational resources. This breakthrough re-
moves traditional barriers to the adoption of Al and enables
the widespread deployment of sophisticated reasoning sys-
tems in diverse organizational contexts. This convergence
of efficiency, performance, and accessibility represents a
unique contribution that redefines the feasibility boundaries
for the deployment of advanced Al systems on a scale.



Discussion

Why Specialized Small Language Models
Outperform Large General-Purpose Models

Our findings reveal that task-specific optimization fun-
damentally outperforms scale-based approaches for tool-
calling applications. The baseline models (ChatGPT-CoT,
ToolLLaMA-DFS, ToolLLaMA-CoT, Claude-CoT) were
trained on broad, general-purpose datasets that lack the spe-
cific tool-calling patterns and reasoning structures required
for effective API manipulation. While these models excel at
general language tasks, they struggle with the precise for-
mat requirements and multi-step reasoning chains essential
for tool use.

The superior performance of our 350M parameter model
stems from three critical factors: parameter efficiency, be-
havioral focus, and evaluation alignment. Large language
models suffer from parameter dilution, where the vast ma-
jority of parameters are optimized for general language un-
derstanding rather than tool manipulation. Our SLM con-
centrates all its capacity on tool-calling behaviors, resulting
in more efficient parameter utilization where billions of pa-
rameters in baseline models become a liability rather than an
asset.

Furthermore, models trained on diverse datasets often ex-
hibit overgeneralization, attempting to apply broad reason-
ing patterns that are suboptimal for structured tool calling.
They generate verbose explanations or attempt creative so-
lutions when precise, formatted API calls are required. Our
SLM learned to suppress irrelevant behaviors and focus ex-
clusively on the structured thought-action-observation pat-
terns that lead to successful tool execution.

Optimal Parameter-Task Alignment

Our results demonstrate that 350M parameters represents a
strategic sweet spot for tool-calling applications. This pa-
rameter count provides sufficient capacity to learn API in-
teraction patterns, parameter mapping, and error handling
without the complexity overhead that leads to inconsistent
outputs in larger models. The capacity aligns precisely with
the complexity requirements of tool-calling tasks, avoiding
both underfitting (insufficient capacity) and overfitting (ex-
cessive complexity).

Tool calling requires structured reasoning patterns rather
than creative language generation. Our targeted fine-tuning
approach created a domain expert in tool calling, while
baseline models remain generalists. This specialization en-
ables more accurate decisions about API selection, param-
eter specification, and error handling—critical factors that
directly impact pass rate performance.

Limitations and Potential Concerns

Despite the promising results, several limitations must be
acknowledged:

Generalization Beyond ToolBench: Our model was
specifically optimized for ToolBench evaluation criteria and
may not generalize to other tool-calling frameworks or real-
world API ecosystems with different interaction patterns.

The tight coupling between training data and evaluation met-
rics raises questions about performance on novel tool do-
mains.

Limited Contextual Understanding: The 350M param-
eter constraint, while optimal for tool calling, may limit the
model’s ability to understand complex contextual nuances
or handle ambiguous user requests that require sophisticated
reasoning before tool selection. Larger models may excel
when tool calling is embedded within complex conversa-
tional contexts.

Scalability to Complex Tool Ecosystems: Our evalua-
tion focused on a controlled set of APIs. Real-world appli-
cations often involve hundreds of interconnected tools with
complex dependencies, authentication requirements, and er-
ror handling scenarios that may exceed our model’s learned
patterns.

Training Data Dependency: The model’s performance
is inherently limited by the quality and coverage of Tool-
Bench training data. Biases, gaps, or outdated patterns in the
training set directly impact the model’s tool-calling capabil-
ities, potentially creating brittle behavior when encountering
novel API designs.

Computational Resource Requirements: While smaller
than baseline models, the fine-tuning process still requires
significant computational resources and high-quality train-
ing data, potentially limiting accessibility for organizations
with limited ML infrastructure.

Long-term Maintenance: As APIs evolve and new tools
emerge, the specialized nature of our model may require
frequent retraining to maintain performance, whereas larger
general-purpose models might adapt more readily to novel
tool patterns through few-shot learning.

Implications for Future Work

These findings suggest that domain-specific optimization at
moderate scale represents a viable alternative to the preva-
lent ”’scaling law” paradigm for specialized applications. Fu-
ture research should investigate the generalization bound-
aries of specialized SLMs and develop hybrid approaches
that combine the efficiency of targeted models with the
adaptability of larger systems. The optimal parameter count
likely varies across different specialized domains, warrant-
ing systematic investigation of task-complexity to model-
capacity relationships.

Conclusion

This work demonstrates that Small Language Models, when
trained with targeted strategies, can achieve agentic tool call-
ing performance that significantly exceeds larger counter-
parts. Our fine-tuned OPT-350M model’s 77.55% pass rate
represents a breakthrough in efficient Al deployment, prov-
ing that thoughtful design and domain-specific training can
overcome traditional parameter-performance trade-offs.

The implications are significant for enterprise Al adop-
tion, showing that organizations can deploy sophisticated Al
capabilities without prohibitive infrastructure costs. Our re-
sults establish a pathway toward encouraging development
of advanced Al capabilities by making them accessible, af-
fordable, and deployable at scale.



Future work should explore the generalizability of our ap-
proach across different domains and investigate the theoreti-
cal foundations underlying the effectiveness of targeted fine-
tuning for small models.
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