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Abstract

We introduce an Agent-in-the-Loop (AITL)
framework that implements a continuous data
flywheel for iteratively improving an LLM-
based customer support system. Unlike stan-
dard offline approaches that rely on batch anno-
tations, AITL integrates four key types of anno-
tations directly into live customer operations:
(1) pairwise response preferences, (2) agent
adoption decisions and rationales, (3) knowl-
edge relevance checks, and (4) identification
of missing knowledge. These feedback signals
seamlessly feed back into model updates, re-
ducing retraining cycles from months to weeks.
Our production pilot involving US-based cus-
tomer support agents demonstrated significant
improvements in retrieval accuracy (+11.7%
recall@75, +14.8% precision@8), generation
quality (+8.4% helpfulness), and agent adop-
tion rates (+4.5%). These results underscore
the effectiveness of embedding human feed-
back loops directly into operational workflows
to continuously refine LLM-based customer
support systems.

1 Introduction

Retrieval-augmented generation (RAG) improves
large language models (LLMs) by grounding re-
sponses to external knowledge, overcoming static
limitations, and improving transparency through
evidence-based outputs (Lewis et al., 2020). How-
ever, traditional LLMs, typically trained in a fixed
dataset with static knowledge cut-off points, in-
herently struggle to adapt to evolving real-world
interactions without interventions such as continu-
ous learning or retrieval enhancement (Shah et al.,
2023).

Recent research emphasizes the importance of a
data flywheel, an iterative feedback loop that con-
tinuously leverages new interaction data to enhance
model performance (Luo et al., 2024). In customer

support scenarios, such a data flywheel is partic-
ularly valuable due to evolving product features,
shifting user preferences, and continuously updated
policies and procedures. Dai et al. (2025)’s daily
oracle benchmark demonstrates that static models,
even when paired with retrieval, lose more than
20 percentage points of accuracy on news ques-
tions within a few years, indicating that continuous
feedback loops are crucial for preventing drift and
maintaining relevance in real-world systems.

Our Contributions. To maintain a continuous
human-driven data flywheel for accurate and rele-
vant customer support, we (1) develop an annota-
tion interface capturing response preferences, adop-
tion rationales, knowledge relevance, and missing
knowledge during live conversations, and (2) imple-
ment a continuous learning pipeline that integrates
these annotations into training datasets, reducing
model update cycles from months to weeks. A US-
based pilot confirms significant improvements in
retrieval accuracy, response helpfulness, citation
correctness, and agent adoption rates. To further
optimize annotation efficiency at scale, we recom-
mend delaying annotations for preference, adop-
tion, and knowledge relevance, while immediately
annotating missing knowledge when SLAs permit.

2 Related Work

To address critical issues such as preference drift
and knowledge decay, recent research has inte-
grated human or AI-simulated feedback within re-
inforcement learning frameworks.

Human-in-the-Loop and Preference Optimiza-
tion. Human-in-the-loop (HITL) approaches en-
hance LLM alignment by directly optimizing out-
puts toward explicit human preferences, moving
beyond traditional supervised learning metrics (Sti-
ennon et al., 2020). Reinforcement Learning
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with Human Feedback (RLHF), pioneered by Ope-
nAI (Ouyang et al., 2022a), aligns models with
human preferences through pairwise comparisons
obtained via offline annotations. Anthropic sub-
sequently introduced iterative online human feed-
back loops, continuously incorporating real-time
human annotations to significantly enhance conver-
sational agent helpfulness and harmlessness (Bai
et al., 2022a). Further advancing alignment at scale,
Anthropic proposed Constitutional AI, a method
employing Reinforcement Learning from AI Feed-
back (RLAIF) guided by explicit human-defined
principles (Bai et al., 2022b).

Data Flywheel and Continuous Learning
Pipelines. Recently, Luo et al. (2024) introduced
Arena Learning, an automated data flywheel using
simulated self-play between LLMs and AI judges
to generate offline preference labels. While highly
scalable, Arena Learning predominantly addresses
open-domain dialogues and lacks mechanisms for
domain-specific knowledge retrieval or incorporat-
ing human feedback. Consequently, it does not
directly tackle real-world preference drift issues
inherent in dynamic environments.

Our approach integrates and extends these
methodologies not only by collecting online hu-
man preference feedback, but also explicitly gather-
ing feedback on knowledge relevance and missing
knowledge. Similarly to Arena Learning, we in-
corporate an LLM-based virtual judge (VJ) to filter
data quality. By carefully aligning annotation meth-
ods with our training pipeline, we achieve update
cycles comparable to Arena Learning’s automated
data flywheel, with key differences summarized in
Table 1.

3 Method

Figure 1 illustrates the interactive workflow in the
following key steps: (1) Customer Input: A cus-
tomer sends a query or message. (2) LLM-Based
Interactive System: The system retrieves relevant
knowledge (Sect. 3.1) and uses an LLM to generate
response candidates. (3) Suggested Responses: The
system presents two alternative responses, poten-
tially originating from different models. (4) Agent
Annotation: A support agent evaluates these sug-
gestions while serving customers, indicating their
preferred response, adoption decision, critical feed-
back, assessment of the relevance of the knowledge
used by LLM, and adding any necessary missing in-
formation (Sect. 3.2). (5) Review Annotation: Both

Figure 1: Overview of the agent-in-the-loop architec-
ture.

Select

Selected and value filled in

Context Variable: Reservation Status

Help Article Snippets: How to find your reservation

 The status of a reservatin could be
- Accepted
- Pending: waiting for host confirmatoin
- Denied
- Canceled
- Failed

Pending

Selected

Internal Knowledege: Reservation Status

Fill in value:

If a guest contact about reservation not accepted:
   If the reservation status is still pending:

Educate the guest that the Host has 24 hours to 
accept or decline it. If the reservation request is 
not accepted or declined within this time frame, 
the status of the request will change to No 
Longer Possible.

Similar case: Why my reservation is not accpeted?

   Guest: Why my reservation is not accepted

Agent: I'm sorry that your reservation is failed due to a 
paymen  error, please contact your bank for more details

Select

Select the Knowledge Object(s) that help you make the response  

  Guest: My reservation is not accpted yet but I'm already charged.

Agent: When you enter your payment information for a reservation request,  
we send a pending request to the Host. Hosts have 24 hours to officially 
accept or decline your reservation request, but most Hosts respond within 
four hours. If a Host accepts your request, your payment is collected in full. If 
a Host declines your request or it expires, we release the authorization on your 
card immediately. While this happens instantly on our end, it may take some 
time for your bank to reflect the authorization void. annotate this response  

Text

Figure 2: Example of selecting knowledge references

a human expert and the LLM-based verifier review
the annotation and the agent–customer interaction
to flag any conflicts.(Sect. 3.3). (6) Continuous
Learning: The annotations and feedback collected
are reintegrated into the training pipeline for con-
tinuous model improvements (Sect. 3.4).

3.1 Unified Knowledge Base

We consolidate diverse domain resources, customer
guides, FAQs, internal policies, workflows, dy-
namic context (e.g. reservation status) and histori-
cal cases into a Unified Knowledge Base (Figure 2).
The resources are enriched with detailed metadata
in a centralized content management system, which
facilitates the annotation and retrieval of agents in
real time.

3.2 Agent Annotation

Figure 3 illustrates our online annotation workflow,
which comprises four main steps:

Step 1: Pairwise Response Preference Agents
compare randomly ordered candidate responses
and annotate degrees of preference as significantly
better, better, or slightly better. These signals in-
form preference learning and help to improve gen-
eration models.

Step 2: Rationale for Response Selection
Agents provide the adoption decision and ratio-



Aspect Arena Learning AITL (ours)

Feedback Source AI-generated annotations (simulated self-play) Human-generated annotations (real-world interaction)
Annotation Mode Offline annotation Real-time (or near-real-time) annotation
Update Frequency Weekly Weekly
Target Modules Generation module only Retrieval, Ranking, and Generation modules
Handling of Human Preference Drift Indirect (no real-time human feedback) Direct (real-time human feedback integration)
Verification Process LLM-based virtual judge LLM-based virtual judge combined with sampled human verification

Table 1: Comparison between Arena Learning and AITL on feedback mechanisms and training pipelines.

Figure 3: Online annotation interface.

nales in free text (critiques), which supports the im-
provement of the generation model and a broader
evaluation.

Step 3: Relevance of knowledge resources
Agents assess and score the relevance of the knowl-
edge resource used in the prompt, performing an
additional verification in real time. These annota-
tions directly enhance the retrieval process across
diverse support topics.

Step 4: Missing Knowledge Identification Dur-
ing this stage, agents use a dedicated Knowledge
Resources Selection Interface to flag missing infor-
mation, such as policies or unrecorded best prac-
tices, that they rely on to help customers. By
integrating these newly identified gaps and refer-
ences back into the training pipeline, the system
can improve existing retrieval recall and continu-
ously adapt to the evolving knowledge landscape
of live customer support.

3.3 Review Annotation

Human and LLM-based verifiers assess the consis-
tency between agent annotations and actual interac-
tions, identifying common errors: preference mis-
matches, incorrect knowledge relevance, adoption
discrepancies, and omitted knowledge (examples
in Appendix A). The human and LLM verifier eval-
uations show a strong correlation (Appendix G).

Figure 4: Data flow in continuous learning pipeline

3.4 Continuous Learning Pipeline

Figure 4 outlines our automated pipeline for peri-
odic model retraining and evaluation using agent
feedback. It utilizes generalized LLM offline work-
flow (GLOW) modules, optimizing resource usage
with parameter-efficient fine-tuning (PEFT) and
model partitioning (Appendix F).

(1) Data Aggregation and Filtering Annota-
tions collected from the four-step evaluation pro-
cess are filtered using both rules-based and model-
driven approaches. The rule-based method ap-
plies thresholds based on review scores and se-
lects annotations that meet significant preference
criteria. The model-driven approach employs an
LLM-based virtual judge to filter annotations that
exhibit low prompt adherence scores (Zheng et al.,
2023). These filtering strategies mitigate data in-
consistencies and hallucinations, which are critical
to improving model performance (Section 4.3).

(2) Automated Model Retraining Retrieval,
ranking, and generation models are periodically
retrained using GLOW-managed Ray clusters,
with automated resource handling and synchro-
nization. Parameter-efficient fine-tuning (e.g.,
LoRA/QLoRA) optimizes GPU usage, and built-in
monitoring ensures stable progress.

(3) Evaluation Retrained models go with batch
inference runs on curated evaluation datasets, eval-
uated using both ground-truth-based evaluation and
virtual judges (Appendix B) that simulate human
evaluations. Performance improvements act as a



Figure 5: RAG example on knowledge document

Figure 6: Offline Annotation Workflow

proxy for annotation quality, strengthening the cy-
cle of enhancement.

(4) Feedback Loop Retrained models are de-
ployed back into the RAG system, completing the
feedback loop (Figure 5).

4 Experiments

Our baseline offline workflow (Figure 6) pre-
processes production logs and simulation data into
preference and adoption annotations using spread-
sheets, and knowledge relevance annotations via
Labelbox, both validated through human review.
These annotations produce rejection-accept pairs
for generation tasks and positive-negative pairs for
retrieval and ranking models, establishing the base-
line performance prior to AITL deployment. Up-
dating models with this offline annotation pipeline
took three months.

Subsequently, we deployed the AITL annota-
tion system into a production environment with 40
agents supporting US-based customers via an asyn-
chronous messaging channel, where SLA requires
responses within hours. Over the course of the
experiment, we collected annotations from more
than 5,000 customer support cases. Each agent
annotated approximately 11 cases daily alongside
their regular customer assistance tasks, maintain-
ing productivity levels comparable to agents not
participating in annotation tasks. The primary goal
of our experiment was to compare the new AITL

framework with the existing setup, evaluating its
impact on annotation quality, model development
cycle efficiency, and overall performance of our
LLM-based customer support system.

4.1 Evaluation Metrics
We evaluated the effectiveness of our AITL
pipeline based on annotation quality and model
performance.

Annotation Quality. The quality of the annota-
tions was evaluated by averaging human experts
and LLM verifiers on detecting inconsistencies be-
tween the annotations of the agents and their re-
sponses to the customers (Section 3.3). Reliability
was measured by agreement scores, where a higher
agreement indicates fewer annotation-response con-
flicts. The reviewers were blinded to the agent
labels to reduce bias.

Model Performance. We measure retrieval with
recall @ 75 (proportion of relevant documents
among the top 75 given a total of ten thousand
documents) and precision @ 8 (relevance of the
top eight ranked documents) as empirically optimal.
(Appendix C). For generation, we evaluate:

• Helpfulness:

1. Point-wise Helpfulness (Model-based):
Combines scores from a trained prefer-
ence model and an LLM-based evalua-
tion aligned with business criteria (Ap-
pendix B).

2. Pair-wise Helpfulness (Human-based):
Human annotators perform pairwise
comparisons between responses, validat-
ing model-based assessments.(outlined
in online annotation step 1)

• Citation Correctness: Measured as Jaccard
overlap between model (M ) and human (H)
cited references: |M∩H|

|M∪H| . E.g., if M = {a, b},

H = {a, c, d}, score is |{a}|
|{a,b,c,d}| = 0.25.

• Response Correctness: Checks the factual
accuracy and the adherence to the policies
through the review of agents.

4.2 Annotation Quality Comparison
High-quality annotations drive a robust data fly-
wheel, enhancing model performance and produc-
ing richer data for future cycles. Table 2 shows
higher annotation agreement rates in the online



workflow compared to offline across three steps:
preference, adoption, and knowledge relevance.
Step 4 (missing knowledge) was not evaluated of-
fline due to the limitations of the annotation tool in
annotating all the potential missing knowledge.

Offline Online

Step 1 (Preference Judgment) 0.635 0.832
Step 2 (Adoption Judgment) 0.721 0.775
Step 3 (Knowledge Relevancy) 0.436 0.923

Table 2: Agreement for offline vs. online setup

4.3 Impact on Model Performance

We evaluated how AITL annotations and opti-
mized fine-tuning impact retrieval-augmented gen-
eration (RAG) system performance against our
baseline (Appendix D). Models were trained using
a 90%/10% temporal split for training and evalua-
tion, respectively, comparing AITL annotations to
offline annotations (Steps 1-3).

Retrieval Accuracy. AITL annotations signif-
icantly outperform offline annotations (Table 3).
Precision@8 improved from 0.357 to 0.410
(+14.8%), exceeding offline by 4.1%. Recall@75
increased from 0.634 to 0.708 (+11.7%), surpass-
ing offline by 3.8%, highlighting the benefits of
AITL system.

Generation Quality Applying ORPO (Hong
et al., 2024) with AITL fine-tuning further im-
proved generation quality (Table 4): Helpfulness
rose from 0.658 to 0.713 (+8.4%), exceeding of-
fline fine-tuning (0.691); Citation accuracy im-
proved significantly from 0.097 to 0.134 (+38.1%),
surpassing offline (0.112); Response correctness
increased from 0.851 to 0.882 (+3.6%), higher than
offline results (0.868). These results highlight the
clear advantages of the AITL system over offline
annotation pipelines (Appendix E).

Human Preferences and Adoption. Pairwise
human evaluations (Fig. 7) showed that 60.12%
of the fine-tuned model responses were preferred
over baseline (33.32%), and 6.57% did not express
preference. This improvement also increased the
overall adoption rate by 4.5% compared to the base-
line. These findings confirm that integrating AITL
annotations with ORPO not only improves objec-
tive metrics (e.g., Precision@8 and citation correct-
ness), but also aligns with human judgments.

6.57%

33.32%

60.12%

No Difference
Baseline
AITL Fine-tuned Models

Figure 7: Human preference for end-to-end perfor-
mance: baseline vs. AITL fine-tuned models.

Figure 8: Immediate vs. Delayed Annotation Workflow

5 Learnings

5.1 Annotation Timing Ablation Study

A key concern is that our system design may not
scale effectively to channels with stricter SLA re-
quirements, such as live-chat. To enable annota-
tion with higher SLA channel, we conducted a
controlled experiment using the AITL tool, com-
paring annotations performed immediately during
customer interactions (Immediate Annotation) with
those completed after interactions ended (Delayed
Annotation). This experiment involved approxi-
mately 2,000 cases under identical tooling condi-
tions (Figure 8).

Results (Figure 9) indicate that immediate anno-
tation significantly improves annotator agreement
only for the Missing-Knowledge step (Step 4), in-
creasing from 63.9% to 76.5% (+12 pp, p < 0.05).
Conversely, differences for Preference, Adoption,
and Knowledge Feedback steps (Steps 1–3) are
negligible (complete scores in Appendix G). We
therefore recommend adopting a hybrid work-
flow: perform immediate annotation for Missing-
Knowledge when SLA allows brief delays, while
delaying the remaining annotation steps after re-
plying to customers to reliably meet stringent SLA
requirements.



Retrieval Model Ranking Model Recall@75 Precision@8

Baseline Baseline 0.634 0.357
Offline Data Fine-tuned Offline Data Fine-tuned 0.670 0.394
AITL Fine-tuned AITL Fine-tuned 0.708 0.410

Table 3: Performance comparisons on recall@75 and precision@8 on AITL test set. The bolded entries indicate the
highest scores.

Generation Model Retrieval Models Helpfulness Citation Response Correctness

Baseline Baseline 0.658 0.097 0.851
Offline Fine-tuned (ORPO) Offline Fine-tuned 0.691 0.112 0.868
AITL Fine-tuned (ORPO) AITL Fine-tuned 0.713 0.134 0.882

Table 4: Performance of RAG models on the AITL test set. Bold entries indicate the highest scores.
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Figure 9: Hybrid agreement (LLM + human) for im-
mediate vs. delayed annotation. Red dots show median
labeling time (min). ** denotes a significant difference
(p<0.05).

5.2 Annotation Quality Ablation Study with
LLM-based filter

This subsection quantifies the contribution of LLM-
based filter used in our data aggregation and filter-
ing stage (Sect. 3.4). The functions as a quality
gate that minimizes the lack of prompt adherence
and flags potential inconsistencies between the an-
notation of human agents and their responses to
customers (Sect. 3.3). We do not use LLM to origi-
nate missing-knowledge labels, which require op-
erational nuance.

Setup. We evaluated two otherwise identical
pipelines on the same AITL annotation batches:
(i) LLM-based prompt-adherence filtering and con-
sistency checks during data aggregation and (ii) this
gate disabled. Under LLM-based filtering, 14.3%
of examples are removed prior to retriever/ranker

Model Metric w/ Filtering w/o Filtering

Retrieval Recall@75 0.708 0.670
Precision@8 0.402 0.394

Generation
Helpfulness 0.703 0.696
Citation 0.131 0.112
Response Correct-
ness

0.880 0.880

Table 5: VJ filter ablation on identical AITL batches.
The only difference is the presence/absence of VJ gating
during data filtering (Sect. 3.4). Gains concentrate in
retrieval recall and citation accuracy.

training and 34.5% prior to generator training.

Findings. Table 5 shows that LLM-based filter-
ing yields consistent gains in Recall@75 (+3.8 pp
vs. no-filtering on the same batch) and Citation
(+1.9 pp absolute), while Precision@8, Helpful-
ness, and Response Correctness remain statistically
unchanged. This pattern aligns with the LLM’s role
as a noise gate: by down-weighting low–prompt-
adherence or hallucination-prone supervision dur-
ing data filtering, it primarily improves retrieval
and citation grounding without perturbing other
signals.

Interpretation. As detailed in Appendix G, LLM
and human evaluations are strongly correlated
(r > 0.90), enabling a cost-effective hybrid reli-
ability score that combines both sources. A notable
exception is Step 4 (Missing-Knowledge), which
benefits uniquely from immediate human anno-
tation (+12 pp agreement; Fig. 9). Accordingly,
we position the LLM-based filtering as a validator
rather than a generator for this channel, yielding
a scalable quality filter while preserving human
oversight where domain nuance is essential.



5.3 Pairwise Preference Data Effectiveness.

Fine-tuning with plus-level preference data (better
or significantly better) boosts helpfulness, but low-
ers the correctness of the citation. Adding an agent
adoption as a data filter restores the correctness of
the citation to 11.4% and retains a gain of 3.5% in
helpfulness, achieving a better balance.

Fine-tune Strategy Helpfulness Citation
Baseline 0.694 0.123
Plus Pref 0.766 0.109
Plus Pref + Adopted 0.718 0.137

Table 6: Performance comparison of generation models
by different preference dataset

5.4 Continuous Training Strategies.

Retraining the models using a mix of historical
and new annotations on the previous checkpoint
improves adaptability and robustness, increasing
precision @ 8 by 8% in historical data and 4%
in recent data compared to training only on new
data. (Appendix E) Periodically integrating fresh
feedback with diverse historical datasets mitigates
overfitting and improves retrieval, ranking, and gen-
eration performance. Similar benefits are observed
with offline annotation approaches.

5.5 Cross-Model Generalization Study

We replicate AITL on Qwen2.5-32B and the Llama-
3 family (3B, 8B, 70B) using the same data split
and evaluator as the main study. As shown in Ta-
ble 7, AITL delivers consistent gains on smaller
and medium models. At 70B, where SFT baselines
are already strong, AITL shows mixed helpfulness
effects but improved/stable citation across variants,
suggesting interaction with prior objectives rather
than a lack of transfer; overall, these results in-
dicate the AITL data flywheel generalizes across
architectures and scales.

6 Conclusion and Future Work

We introduced Agent-in-the-Loop (AITL), an real-
time(near real-time) data flywheel that turns rou-
tine customer support operations into continuously
improving supervision for retrieval, ranking, and
generation. By capturing four signal types includ-
ing pairwise response preferences, agent adoption
and rationales, knowledge relevance, and missing
knowledge, AITL closes the gap between evalua-
tion and production reality. Our pilot with U.S.-
based agents shows consistent gains in retrieval

Model AITL Helpfulness Citation

Qwen2.5-32B-Instruct No 0.6718 0.1040
Qwen2.5-32B-Instruct Yes 0.6830 0.1040
Llama-3.2-3B-Instruct No 0.3731 0.0569
Llama-3.2-3B-Instruct Yes 0.6362 0.0606
Llama-3.1-8B-Instruct No 0.3787 0.0967
Llama-3.1-8B-Instruct Yes 0.6056 0.1136
Llama-3.3-70B-Instruct No 0.6322 0.1048
Llama-3.3-70B-Instruct Yes 0.6438 0.1224

Table 7: Cross-model results with the same AITL split
and evaluator.

(Recall@75, Precision@8), generation helpfulness,
citation correctness, and agent adoption, while
shrinking update cadence from months to weeks.
Building on these results, we outline three direc-
tions for future work:

• Scaling optional agent feedback. Re-
place heavy labels with lightweight micro-
annotations (default “skip”), use active sam-
pling for high-uncertainty or disagreement
cases, and correct selection bias via inverse-
propensity weighting and post-stratification.

• Product-embedded AITL for efficiency. In-
tegrate AITL into agent-facing tools; evalu-
ate with a productivity bundle (e.g., CSAT,
time-to-resolution, adoption rate, human-edit
distance); and study cognitive load, trust cali-
bration, and skill formation across novice and
expert agents.

• Toward fuller automation. Leverage sim-
ulation and judge-based validation to auto-
mate dataset curation and preference labeling
where appropriate, while preserving human
oversight for safety, policy adherence, and do-
main nuance.

Limitation

Although AITL offers clear advantages, there are
three key limitations.

First, prolonged use of real-time annotations
could lead to increased agent workload and po-
tential annotation fatigue. To mitigate this risk,
future implementations could consider strategies
such as rotating annotation responsibilities among
agents, adaptive workload management, and peri-
odic breaks from annotation duties. In addition,
targeted training and incentive programs can fur-
ther support annotation quality over time.



Second, our study exclusively focused on
English-language customer support. This leaves
open questions regarding the effectiveness and ap-
plicability of AITL in multilingual or culturally
diverse support contexts, which should be investi-
gated in future research.

Finally, the relatively short duration of this study
constrains our understanding of how annotation
practices might evolve over extended periods and,
crucially, how effectively they scale when applied
to larger groups of agents.
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A Annotation Error Types and LLM
Verifier Prompt

We identify common annotation error types, each
illustrated with concise examples:

• Preference Mismatch: Occurs when an agent
explicitly prefers response A but ultimately
selects response B.

• Adoption Mismatch: Occurs when an agent
rejects a response due to specific formatting
issues but subsequently uses the same format-
ting in their final reply.

• Incorrect Knowledge Annotation: Occurs
when the agent provides guidance based on

certain policies (e.g., advising customer can-
cellation) but inaccurately labels relevant pol-
icy documents as irrelevant.

• Omitted Missing Knowledge: Occurs when
the agent mentions essential details (e.g., re-
fund amount) to the customer but fails to an-
notate this critical contextual information.

Below is a refined example prompt template uti-
lized by the LLM-based verifier for missing knowl-
edge object verification:

Task: Evaluate whether the provided
knowledge objects annotated by agents
sufficiently address the customer’s issue
described in the conversation.

Follow these instructions step by step:
- Read and understand the customer’s
issue from the provided conversation and
contextual information.
- Carefully review the agent’s annotated
knowledge objects and their response to the
customer.
- Determine if the annotated knowledge
items adequately and directly resolve or
address the customer’s issue.

Provide your evaluation strictly in the fol-
lowing JSON format:
{ "missing_agreement_reason": "Provide a
concise yet specific reason why the knowl-
edge objects are sufficient or insufficient.",
"missing_agreement": 1 or 0 // 1 if knowl-
edge provided is insufficient, 0 if sufficient
}
Conversation:
[Customer]: what customer said
[Agent]: what agent said
[Customer]: what customer said

Agent’s Response to Customer:
agent’s final response provided here

Provided Knowledge Objects Annotated
by Agents:
1. Knowledge item 1 here
2. Knowledge item 2 here
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B Helpfulness Metric Definition

This section will describe the training process for
helpfulness models.

We define point-wise helpfulness score to mea-
sure the likelihood that internal domain experts
(e.g. customer support agents) would prefer a par-
ticular response. This score is generated through
an ensemble method that combines two distinct
approaches:

1. Reference Evaluator Model: We employ an
internally developed evaluation model based on
Mistral-7B, fine-tuned using human-annotated pref-
erence data via a pairwise loss objective. This
model serves as our reference evaluator, achieving
an approximate agreement rate of 80% compared
to the ground-truth annotations provided by the
expert groups.

2. GPT-4 Prompt-based Evaluations: We per-
form multiple GPT-4 evaluations using carefully
designed prompts that embody internal helpfulness
criteria. Each evaluation produces a binary indica-
tor (helpful or not), and we sum these indicators
across seven distinct prompts to yield an integer
score ranging from 0 to 7. By averaging these in-
dicators, we obtain a final continuous helpfulness
score. This prompt-based mechanism eliminates
the need for ground-truth labels during inference.
Evaluation against expert-labeled ground truth con-
firms an agreement rate of approximately 80%, val-
idating the reliability of this approach.

C Retrieval and Ranking Metrics

We empirically selected Recall@75 and Preci-
sion@8 as our primary retrieval and ranking met-
rics, guided by operational constraints and experi-
mental insights. Recall@75 evaluates the effective-
ness of our retrieval system in identifying relevant
articles within the top 75 retrieved candidates. Em-
pirical analysis showed that the recall increased
consistently with more retrieved candidates, reach-
ing approximately 70%-80% at topN=75. Beyond
75 candidates, recall improvements plateaued, in-
dicating limited benefits from retrieving additional
documents.

Precision@8 was chosen based on practical lim-
itations, as production environments restrict input
context lengths for downstream generation mod-
els. Our experiments indicated that reranker per-
formance notably surpassed retrieval-only methods
from topN=5 onward, with topN=8 providing the
optimal trade-off between performance enhance-

ment and operational feasibility. Increasing the
number of retrieved snippets beyond 8 led to re-
duced helpfulness scores due to excessive infor-
mation dilution. Thus, Precision@8 effectively
balances input quality for response generation with
practical system constraints.

D Prior AITL Baseline Details

This appendix details the baseline Retrieval-
Augmented Generation (RAG) system, outlining
the three core models: generation, retrieval, and
ranking.

Generation Model Our generation compo-
nent utilizes an 8×7B Mistral Mixture-of-Experts
(MoE) model (Jiang et al., 2024). This model is ini-
tially fine-tuned via supervised fine-tuning (SFT)
(Ouyang et al., 2022b) on offline human-agent an-
notations. Subsequently, we apply Odds Ratio Pref-
erence Optimization (ORPO) (Hong et al., 2024) to
align the model’s generation with agent-approved
preferences.

Retrieval Model Retrieval is performed by fine-
tuning a pre-trained Zeta-Alpha-E5-Mistral 7b em-
bedding model (Câmara et al., 2024). This fine-
tuned model transforms article chunks into 1024-
dimensional vector embeddings. When a user
query is received, it is encoded, and the top-N rel-
evant article chunks are retrieved based on cosine
similarity.

Ranking Model After retrieval, a ranking
model refines the top-N retrieved article chunks
to identify the most relevant and helpful content.
This ranking is accomplished using an in-house
fine-tuned FLAN-T5 model(Chung et al., 2022),
adapted for a ranking task. The model takes the
user query and each retrieved article chunk’s de-
tails as input, and outputs a relevance score, which
is then used to rank the chunks.

E AITL Training Details

This appendix details the post-training processes
and parameters for each component of our
Retrieval-Augmented Generation (RAG) baseline:
the Generation Model, Retrieval Model, and Rank-
ing Model.

E.1 Generation Model

Fine-tuning commenced from the baseline check-
point of the 8×7B Mistral Mixture-of-Experts
(MoE) model. The model was optimized via Odds
Ratio Preference Optimization (ORPO), using a



balanced dataset comprising equal parts newly an-
notated examples and previously collected train-
ing data. Training was conducted for a total of
3 epochs with a batch size of 64, employing an
initial learning rate of 2× 10−5, which linearly de-
cayed after a warm-up period covering 5% of total
training steps. The fine-tuning process utilized 4
NVIDIA A100 GPUs, each equipped with 80GB
of memory. After training, the model underwent
4-bit Quantized Low-Rank Adaptation (QLoRA)
to substantially decrease computational overhead
and memory consumption during inference. Sub-
sequently, the LoRA weights were merged back
into the original model weights, ensuring efficient
deployment. Parameter selection and alignment
loss criteria were informed by comparisons made
during previous model iterations.

• Training:

– ORPO Phase: Incorporates preference
signals through pairwise feedback. The
model learns to prioritize more ’helpful’
or relevant outputs based on labeled data.

• Observations:

– ORPO fine-tuning often yields higher co-
herence and factual correctness than SFT
alone.

– We observe slight divergences between
purely offline vs. online-labeled pref-
erence data through AITL, motivating
continuous updates.

E.2 Retrieval Model
Following the generation model’s optimization, we
proceed to detail the training process for the re-
trieval model of our RAG system.

• Training:

– Fine-tuning Methodology: The Zeta-
Alpha-E5-Mistral 7b model underwent
fine-tuning employing MultipleNega-
tivesRankingLoss. Positive training sam-
ples were comprised of article segments
marked as "RELEVANT" or "HELP-
FUL," supplemented by agent-generated
content. Negative samples consisted
of both "NOT RELEVANT" or "NOT
HELPFUL" labeled chunks (hard neg-
atives) and randomly sampled chunks
from the same batch (easy negatives).

– Training Setup: Training parameters in-
cluded a learning rate of 2 × 10−5 and
a weight decay of 2 × 10−6. The train-
ing was conducted for 1 epoch, with a
training batch size of 1. The model was
executed on an A100 GPU cluster con-
sisting of 4 GPUs.

• Observations:

– The retrieval model’s accuracy benefited
from increased training dataset size and
demonstrated resilience to data noise.
Notably, optimal performance was ob-
served when the model was trained on
a combination of high-confidence (anno-
tator and reviewer alignment) and low-
confidence (annotator and reviewer dis-
agreement) datasets.

– For RAG in live support conversations,
the retrieval models fine-tuned using
AITL data exhibited substantially supe-
rior performance compared to the base-
line, and those fine-tuned using offline
datasets.

E.3 Ranking Model
With the retrieval model established, we now turn
our attention to the ranking model, which refines
the retrieved results.

• Training:

– SFT: Training data consisted of posi-
tive and negative examples based on
agent annotations. Positive examples
were constructed from article chunks la-
beled "RELEVANT" or "HELPFUL,"
along with agent-generated content. Neg-
ative examples comprised chunks labeled
"NOT RELEVANT" or "NOT HELP-
FUL." Each training instance was for-
matted as <prompt + user query + arti-
cle chunk details> as input, with <rele-
vant> as the target for positive examples
and <not_relevant> as the target for neg-
ative examples. During inference, the rel-
evance score is determined by the proba-
bility of the output being "relevant".

– Training Setup: The model was trained
for 3 epochs on a single A10 GPU, using
a learning rate of 1e− 5, a batch size of
16, and gradient accumulation steps of
64.



• Observations:

– The ranking model’s performance
was optimized when trained on high-
confidence annotated datasets, with
a balanced 1:2 ratio of historical and
newly generated AITL data.

– Utilizing AITL data for fine-tuning rank-
ing models yielded significantly better
performance in live support RAG sce-
narios compared to offline datasets, and
also surpassed the performance of mod-
els trained only on historical data.

F Training Experiment Efficiency

To improve the efficiency of offline experiments,
we introduced a framework for the generalized of-
fline LLM workflow (GLOW) based on reusable
and parameterized fine-tuning, batch scoring and
evaluation components. The two main areas of
focus for GLOW that benefit this research study
include infra-aware LLM developments and inte-
gration with template end-to-end workflow.

Infra-aware LLM Developments LLM compu-
tations are very sensitive to the underlying infras-
tructure, and there are multiple hyperparameters
that can drastically affect the computation capacity:

• Compute optimization: whether to apply
lower precision training, Parameter-Efficient
Fine Tuning (PEFT) adaptors and model par-
titioning strategies like DeepSpeed or FSDP

• Input dataset size, batch size and context
length

• Model capacity and architecture

A typical LLM offline task that has a specific set
of hyperparams must be deployed to a matching in-
frastructure to avoid failed tasks due to insufficient
GPU VRAM, or overprovisioning that led to low
GPU utilization rate. To solve this problem, GLOW
in its configuration is integrated with the Ray Clus-
ter spec section that combines the LLM task with
ephemeral compute cluster provisioned on-demand.
This setup not only improves the offline experiment
task stability, but also guarantees reproducible re-
sults across multiple experiment runs.

Templated end-to-end Workflow GLOW offers
reusable offline workflow building components for
end users to customize their developments, and this

Annotation Step Immediate (%) Delayed (%)

LLM Human LLM Human

Step 1 62.6 72.3 61.0 72.8
Step 2 76.7 74.2 75.1 75.2
Step 3 91.7 97.5 91.7 98.5
Step 4 76.1 76.8 57.6** 70.3**

Table 8: Annotation accuracy for LLM and human
raters. Significance marker **: difference between im-
mediate and delayed is significant (p < 0.05 for hu-
mans; ∆ > 5 pp for LLM).

unified API improves production readiness while
largely reducing prototype development cycles to
production.

G Immediate and Delayed Comparison

In practice we average the human and LLM scores
to form a hybrid metric. Because the two sources
correlate strongly (r > 0.90; Table 8), this com-
posite score inherits human-level reliability while
remaining inexpensive to scale. All subsequent
analyses, including the immediate vs. deferred com-
parison in Figure 9, are therefore reported on this
hybrid metric.

Step Q1 Median Q3 Mean Trim. Mean

Step 1 0.583 1.30 2.967 4.017 2.174
Step 2 0.483 0.95 2.733 3.711 2.065
Step 3 1.317 1.87 3.867 4.647 3.332
Step 4 0.721 1.63 3.317 3.409 2.430

Table 9: Annotation-time statistics per step (minutes).

Table 9 shows a pronounced right skew: Means
and even 10 % trimmed means sit well above the
medians of 1–2 min. Hence, we quote the median
as the best indicator of agent annotation time effort,
with the trimmed mean offered as a reference.
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