2026 Agentic Coding
Trends Report

How coding agents are reshaping
software development

Claude

Contents

Foreword: From assistance to collaboration

Foundation trends: The tectonic shift

Trend 1: The software development lifecycle
changes dramatically

Capability trends: What agents can do
Trend 2: Single agents evolve into coordinated teams
Trend 3: Long-running agents build complete systems

Trend 4: Human oversight scales through intelligent
collaboration

Trend 5: Agentic coding expands to new surfaces
and users

Impact trends: What agents may change in 2026

Trend 6: Productivity gains reshape software
development economics

Trend 7: Non-technical use cases expand across
organizations

Trend 8: Dual-use risk requires security-first
architecture

Priorities for the year ahead

(o]

10

1

12

13

14

15

16

Foreword

From assistance to collaboration

In 2025, coding agents moved from experimental tools to production systems
that ship real features to real customers. Engineering teams discovered that
Al can now handle entire implementation workflows: writing tests, debugging
failures, generating documentation, and navigating increasingly complex
codebases.

In 2026, we predict these gains will extend far beyond incremental
improvements to existing tools or models. We expect single agents to become
coordinated teams of agents. Tasks that took hours or days may now be
completed with minimal human intervention. And engineers who, only a few
years ago, wrote every line of code will increasingly orchestrate long-running
systems of agents that handle implementation details so they can focus on
architecture and strategy.

Yet a critical nuance has emerged from studying how developers actually work
with AL this transformation is fundamentally collaborative. Research from our
Societal Impacts team reveals that while developers use Al in roughly 60% of
their work, they report being able to "fully delegate" only 0-20% of tasks. Al serves
as a constant collaborator, but using it effectively requires thoughtful set-up and
prompting, active supervision, validation, and human judgment—especially for
high-stakes work.

Inspired by our own experiences working with customers, this report identifies
eight trends we predict will define agentic coding in 2026. These predictions
fall into three categories: foundation trends that we believe will reshape how
development work happens, capability trends that look to expand what agents
can accomplish, and impact trends that we anticipate will affect business
outcomes and organizational structures.

These predictions reflect what we're seeing with customers today, not certainties
about tomorrow. We offer them as a framework for thinking about the year
ahead, knowing the future will surprise us.

Significantly, these trends illustrate how the gap between early adopters and
late movers is widening. Organizations that figure out how to scale human
oversight without creating bottlenecks are better positioned to maintain
quality while moving faster. Teams that master agent coordination across
the software development lifecycle today can ship features in hours instead
of days. Companies that extend agentic coding beyond engineering teams

to less technical roles stand to unlock productivity gains across their entire
organization.

The patterns emerging in 2026 suggest software development is evolving toward
amodel where human expertise focuses on defining the problems worth solving
while AT handles the tactical work of implementation.

Let’sdivein.

The software development lifecycle

changes dramatically

Software development life cycle: Before and after agentic coding tools

s 1.Expressintent
(Days-Weeks) 7| Minutes)

cycle repeats cycle repeats ——

8.Learn and iterate
(Ongoing)

8. Feedback and iteration
(Continuous)

2.System design
(Weeks)

2. Agent understands
(seconds)

auto fix

7. Monitoring and Traditional SDLC

observability Weeks-Month g
G jeeks-Months per cycle

3.Implementation Transformation | 7.Monitoringand
and coding N observabllity
(Weeks-Months) (Continuous)

Agentic SDLC
Hours-Days per cycle (Minutes)

3. Agentimplements

bugs

6.Deploy and release 4.Testingand QA
(Days) changes (Days-Weeks)
5.Code review
(Days)

incidents

6.Deploy and ship 4. Agent tests + docs
(Minutes) quick refine (Minutes)

5. Human review
(Min-Hours)

Sequential handoffs || Fluid agent flow)

N)

(
(
[docsasatterthovgnt__}—>[_ o)
(

Key differences

Manual incident response | Agent-assisted remediation |

Traditional SDLC stages remain, but agent-driven implementation, automated testing, and
inline documentation collapse cycle time from weeks to hours. Monitoring feeds directly back
into rapid iteration.

The way we interact with computers is undergoing one of its most significant
changes since the graphical user interface. From machine code to assembly to C
to modern high-level languages, each abstraction layer reduced the gap between
human thought and machine execution.

The most recent step in this evolution was human/machine conversation.
In 2025, agentic Al changed how a large swath of developers write code.
2026 is poised to be the year when the systemic effects of this evolutionary
shift reconfigure the software development lifecycle and reshape software
engineering roles.

Predictions

e Evolution of abstraction: Most of the tactical work of writing, debugging, and
maintaining code shifts to Al while engineers focus on higher-level work like
architecture, system design, and strategic decisions about what to build.

¢ Engineering role transformation: Building software used to mean primarily
writing code, although software engineering roles always involved many other
skills. Now, being a software engineer increasingly means orchestrating agents
that write code, evaluating their output, providing strategic direction, and
ensuring the system as a whole solves the right problems correctly.

¢ Expedited onboarding to dynamic project staffing: Traditional timelines
for onboarding to a new codebase or project will collapse from weeks to
hours, changing how companies think about talent deployment and project
resourcing.

The collaborative reality

While agents handle more implementation work, the nature of this shift

reveals something important: engineers are becoming more "full-stack" in their
capabilities rather than being replaced. Our research shows engineers can now
work effectively across frontend, backend, databases, and infrastructure—areas
where they may have previously lacked expertise—because Al fills in knowledge
gaps while humans provide oversight and direction.

This capability expansion enables tighter feedback loops and faster learning.
Tasks that once required weeks of cross-team coordination can become focused
working sessions. Engineers describe using Al for tasks that are easily verifiable,

well-defined, or repetitive, while keeping high-level design decisions and
anything requiring organizational context or "taste" for themselves.

Role transformation: From implementer to
orchestrator

In 2026, the value of an engineer's contributions shifts to system architecture
design, agent coordination, quality evaluation, and strategic problem
decomposition. The primary human role in building software is orchestrating
Al agents that write code, evaluating their output, providing strategic direction,
and ensuring the system solves the right problems for the right stakeholders.
Engineers who master orchestration can shepherd multiple features through
development simultaneously, applying their judgment across a broader scope
than individual implementation previously allowed.

Onboarding revolution

In 2025, the traditional timeline for onboarding to a new codebase or project
began to collapse from weeks to hours. In 2026, we anticipate organizations
learning how to use this capability to its fullest, changing how companies think
about talent deployment and project resourcing.

One manifestation we envision is dynamic "surge" staffing. Businesses will be
able to surge engineers on-demand onto tasks requiring deep codebase knowl-
edge. Organizations can start staffing projects dynamically, bringing in special-
ists for specific challenges and shifting resources without the traditional produc-
tivity dip.

Augment Code, a startup building Al-powered software development
tools for systems like networking platforms, databases, and storage
infrastructure, flattened the learning curve for engineers joining a

new codebase or project by using Claude to provide contextual code
understanding. One enterprise customer finished a project that their CTO
had initially estimated would take 4 to 8 months in just two weeks using
Augment Code, powered by Claude.

%%}

Capability trends:
What agents can do

Single agents evolve into coordinated teams

We predict that organizations in 2026 will be able to harness multiple agents acting

Coding agent architectures: From single agents to coordinated teams together to handle task complexity that was difficult to imagine just a year ago.
Single agent architecture Multi-agent hierarchical architecture
- This ability will require new skills in task decomposition, agent specialization,
and coordination protocols, along with development environments that show the
e orchasatoraget status of multiple concurrent agent sessions and version control workflows that
S s handle simultaneous agent-generated contributions.
All tasks in one thread R;::l\‘l‘:ycr::;zwls
& T ¥) . .
evolution Specialist A Specialist B Specialist C Specialist D Pred Ict I 0 n
Task horizons Architecture and Implementation and Testing and validation Review and docs
rinestovasks 5 5 . . e Multi-agent systems replace single-agent workflows: Organizations adopt
multi-agent workflows that maximize performance gains throu aralle
It t workflows that f through parallel
reasoning across separate context windows.
-Integrated output

Characteristics
Characteristics

o Parallel tast execution
« Diverseperspectives Fountain, a frontline workforce management platform, achieved 50%

« Linear task execution

« Single perspective
« Context limits scope

« Minutes to hours Multiple context windows

e faster screening, 40% quicker onboarding, and 2x candidate conversions

using Claude for hierarchical multi-agent orchestration.

Performance impact

Single agent] Multi-agent teams | q . . .
Sequem; — 1 ,,a,a‘.;imssing] Their Fountain Copilot serves as the central orchestration agent to
s coordinate specialized sub-agents for candidate screening, automated

document generation, and sentiment analysis. This architecture enabled
one logistics customer to cut the time required to fully staff a new
fulfillment center from one or more weeks to less than 72 hours.

General-purpose reasoning | ___Role-specific specialties

(
(
(
(" context window limits scope_}—> [_Distributed context capacity |
(
(

Minutes-to-hourstasks | Days-to-weeks projects |

Single-agent workflows process tasks sequentially through one context window. Multi-agent
architectures use an orchestrator to coordinate specialized agents working in parallel—each
with dedicated context—then synthesize results into integrated output.

Long-running agents build complete systems

Early agents handled one-shot tasks that took a few minutes at most: fix this bug,
write this function, generate this test. By late 2025, increasingly adept Al agents
were producing full feature sets over the course of several hours. In 2026, agents
will be able to work for days at a time, building entire applications and systems
with minimal human intervention focused on providing strategic oversight at
key decision points.

Predictions

e Task horizons expand from minutes to days or weeks: Agents evolve from
handling discrete tasks that complete in minutes to working autonomously for
extended periods, building and testing entire applications and systems with
periodic human checkpoints.

e Agents handle the messy reality of software development: Long-running
agents plan, iterate, and refine across dozens of work sessions, adapting
to discoveries, recovering from failures, and maintaining coherent state
throughout complex projects.

e Economics of software development change: When agents can work
autonomously for extended periods, formerly non-viable projects become
feasible. Technical debt that accumulated for years because no one had time to
address it gets systematically eliminated by agents working through backlogs.

¢ Path to market accelerates: Entrepreneurs use agents to go from ideas to
deployed applications in days instead of months.

At Rakuten, engineers tested Claude Code's capabilities with a complex
technical task: implement a specific activation vector extraction method
in vLLM, a massive open-source library with 12.5 million lines of code in
multiple programming languages. Claude Code finished the entire job
in seven hours of autonomous work in a single run. The implementation
achieved 99.9% numerical accuracy compared to the reference method.

Human oversight scales through intelligent
collaboration

Perhaps the most valuable capability developments in 2026 will be agents Engineers describe developing intuitions for Al delegation over time. As models
learning when to ask for help, rather than blindly attempting every task, and improve, this is shifting quickly, but historically, they tended to delegate tasks
humans stepping into the loop only when required. This isn't about removing that are easily verifiable—where they "can relatively easily sniff-check on
humans from the process—it's about making human attention count where it correctness"—or are low-stakes, like quick scripts to track down a bug. The more
matters most. conceptually difficult or design-dependent a task, the more likely engineers keep

it for themselves or work through it collaboratively with Al rather than handing
it off entirely.

Predictions

e Agentic quality control becomes standard: Organizations use Al agents This pattern has important implications: even as Al capabilities expand, the
toreview large-scale Al-generated output, analyzing code for security human role remains central. The shift is from writing code to reviewing,
vulnerabilities, architectural consistency, and quality issues that would directing, and validating Al-generated code. As one of our engineers put it: "I'm
overwhelm human capacity. primarily using Alin cases where I know what the answer should be or should

.) look like. I developed that ability by doing software engineering 'the hard way."
¢ Agents learn when to ask for help: Rather than blindly attempting every task,

sophisticated agents recognize situations requiring human judgment, flagging

areas of uncertainty and elevating decisions with potential business impact. At CRED, a fintech platform serving over 15 million users across India,
e Human oversight shifts from reviewing everything to reviewing what engineers implemented Claude Code across their entire development
matters: Teams maintain quality and velocity simultaneously by building lifecycle to accelerate delivery while maintaining quality standards
intelligent systems that handle routine verification while escalating genuinely essential for financial services. The Claude-powered development
novel situations, boundary cases, and strategic decisions for human input. system has doubled their execution speed—not by eliminating human

involvement, but by shifting developers toward higher-value work.
The collaboration paradox

Research from Anthropic's internal studies reveals an important pattern: while
engineers report using Al in roughly 60% of their work and achieving significant
productivity gains, they also report being able to "fully delegate" only a small
fraction of their tasks. The apparent contradiction resolves when you understand
that effective Al collaboration requires active human participation.

Agentic coding expands to new surfaces and users

The earliest wave of agentic coding focused on helping professional software
engineers work faster within familiar environments. In 2026, agentic coding is
poised to expand into contexts and use cases that traditional development tools
could not reach, from legacy languages to new form factors that democratize
access beyond traditional developers.

Predictions

e Language barriers disappear: Support expands to less-common and legacy
languages like COBOL, Fortran, and domain-specific languages, enabling

maintenance of legacy systems and removing adoption barriers for specialized

use cases.

e Coding democratizes beyond engineering: New form factors and
interfaces open up agentic coding to non-traditional developers in fields
like cybersecurity, operations, design, and data science. Tools like Cowork,
designed for non-developers to automate file and task management, signal
this shift is already underway.

Everyone becomes more full-stack

Analysis of how different teams use Al reveals a consistent pattern: people use
Al to augment their core expertise while expanding into adjacent domains.
Security teams use it to analyze unfamiliar code. Research teams use it to
build frontend visualizations of their data. Non-technical employees use it for
debugging network issues or performing data analysis.

This expansion challenges the long-held assumption that serious development
work can only happen in an IDE or that only professional engineers with
specialized tools can use code to solve problems. The barrier that separates
"people who code" from "people who don't" is becoming more permeable.

At Legora, an Al-powered legal platform, agentic workflows are integrated
throughout their legal technology platform, demonstrating how coding
agents extend into domain-specific applications.

"We have found Claude to be brilliant at instruction following, and at
building agents and agentic workflows," said Max Junestrand, CEO

of Legora. The company uses Claude Code to accelerate their own
development while providing agentic capabilities to lawyers who need to
create sophisticated automations without engineering expertise.

Impact trends:
What agents may
change in 2026

Productivity gains reshape software

development economics

Organizations that intelligently integrate agents into their software development
lifecycle will see timeline compression that affects what projects are viable and
how quickly companies can respond to market opportunities.

Predictions

e Three multipliers drive acceleration: Agent capabilities, orchestration
improvements, and better use of human experience compound to create step-
function improvements rather than linear gains as each enables the others.

¢ Timeline compression changes project viability: Development that once
took weeks now takes days, making previously unviable projects feasible and
enabling organizations to respond to market opportunities more quickly.

e Economics of software development shift: Total cost of ownership decreases
as agents augment engineer capacity, project timelines shorten, and faster
time to value improves return on investment.

Productivity through output volume, not just speed

Internal research at Anthropic reveals an interesting productivity pattern:
engineers report a net decrease in time spent per task category, but a much

larger net increase in output volume. This suggests that Al enables increased
productivity primarily through greater output—more features shipped, more bugs
fixed, more experiments run—rather than simply doing the same work faster.

Notably, about 27% of Al-assisted work consists of tasks that wouldn't have been
done otherwise: scaling projects, building nice-to-have tools like interactive
dashboards, and exploratory work that wouldn't be cost-effective if done
manually. Engineers report fixing more "papercuts"—minor issues that improve
quality of life but are typically deprioritized—because Al makes addressing them
feasible.

At TELUS, a leading communications technology company, teams created
over 13,000 custom Al solutions while shipping engineering code 30
percent faster. The company has saved over 500,000 hours with an average
of 40 minutes saved per Al interaction.

13

Non-technical use cases expand

across organizations

We anticipate that one of the most significant trends in 2026 will be steady
growth in agentic coding used by functional and business-process teams to
create their own solutions to problems they experience, and improvements to
processes they use every day.

Predictions

¢ Coding capabilities democratize beyond engineering: Non-technical teams
across sales, marketing, legal, and operations gain the ability to automate
workflows and build tools with little or no engineering intervention or coding
expertise.

e Domain experts implement solutions directly: The hands-on experts
who understand problems deeply gain confidence in using agents to initiate
solutions themselves, removing the bottleneck of filing a ticket and then
waiting for development teams.

¢ Productivity gains extend across entire organizations: Problems not
worth engineering time get solved, experimental workflows become trivial to
attempt, and manual processes get automated.

Zapier, a leading Al orchestration platform, has made agents accessible to
all their employees. Design teams use Claude artifacts to rapidly prototype
during customer interviews, showing design concepts in real-time that
would normally take weeks to develop. The company achieved 89 percent
Al adoption across the entire organization with 800-plus Al agents
deployed internally.

/
How Anthropic uses Claude Code

Our legal team reduced marketing review turnaround from two to three
days down to 24 hours by building Claude-powered workflows that
automate repetitive tasks like contract redlining and content review. Using
Claude Code, a lawyer with no coding experience built self-service tools
that triage issues before they hit the legal queue, freeing attorneys to focus
on strategic counsel instead of tactical busywork.

The result: lawyers reduced the potential for being a bottleneck and could
devote their time to other, more pressing matters.

Agentic coding improves security defenses—
but also offensive uses

Agentic coding is transforming security in two directions at once. As models
become more powerful and better aligned, building security into products
becomes easier. Now, any engineer can leverage Al to perform security reviews,
hardening, and monitoring that previously required specialized expertise. But
the same capabilities that help defenders are also capable of helping attackers
scale their efforts.

Predictions

e Security knowledge becomes democratized: With improved agents, any
engineer can become a security engineer capable of delivering in-depth
security reviews, hardening, and monitoring. Engineers will still need to
consider security and consult with specialists, but it will become easier to build
hardened and secure applications.

e Threat actors scale attacks: While agents will benefit defensive uses, they
will also benefit offensive uses too. In order to defend against this dual-use
technology, it will become more important for engineers to build in security
from the start.

e Agentic cyber defense systems rise: Automated agentic systems enable
security responses at machine speed, automating detection and response to
match the pace of autonomous threats.

The balance favors prepared organizations. Teams that use agentic tools to
bake security in from the start will be better positioned to defend against
adversaries using the same technology.

15

2

Priorities for
the year ahead

Priorities for the year ahead

These eight trends are poised to define agentic coding in 2026 all converge on
a central theme: software development is shifting from an activity centered on
writing code to an activity grounded in orchestrating agents that write code—
while maintaining the human judgment, oversight, and collaboration that
ensures quality outcomes.

The research is clear: Alis a constant collaborator, but using it effectively
requires active supervision and validation, especially in high-stakes work. While
more routine coding tasks can be delegated to Al, humans are still reviewing the
code. It's not "fully delegated" but highly collaborative. This distinction matters
for how organizations approach Al adoption and how they think about the
evolving role of engineers.

For organizations planning their 2026 priorities, four areas demand immediate
attention:

1. Mastering multi-agent coordination to handle complexity that single-agent
systems cannot address

2. Scaling human-agent oversight through Al-automated review systems that
focus human attention where it matters most

3. Extending agentic coding beyond engineering to empower domain experts
across departments

4. Embedding security architecture as a part of agentic system design from the
earliest stages

Organizations that treat agentic coding as a strategic priority in 2026 will define
what becomes possible, while those that treat it as an incremental productivity
tool will discover they are competing in a game with new rules. The key to
success lies in understanding that the goal isn't to remove humans from the
loop—it's to make human expertise count where it matters most.

17

Cl&llde claude.ai

