
2026 Agentic Coding 
Trends Report
How coding agents are reshaping 
software development



Contents

Foreword: From assistance to collaboration	 3

Foundation trends: The tectonic shift	 4
Trend 1: The software development lifecycle  
changes dramatically	 5

Capability trends: What agents can do	 7
Trend 2: Single agents evolve into coordinated teams	 8
Trend 3: Long-running agents build complete systems	 9
Trend 4: Human oversight scales through intelligent  
collaboration	 10
Trend 5: Agentic coding expands to new surfaces  
and users	 11

Impact trends: What agents may change in 2026	 12
Trend 6: Productivity gains reshape software  
development economics	 13
Trend 7: Non-technical use cases expand across  
organizations	 14
Trend 8: Dual-use risk requires security-first  
architecture	 15

Priorities for the year ahead	 16

2



Foreword

From assistance to collaboration

In 2025, coding agents moved from experimental tools to production systems 
that ship real features to real customers. Engineering teams discovered that 
AI can now handle entire implementation workflows: writing tests, debugging 
failures, generating documentation, and navigating increasingly complex 
codebases.

In 2026, we predict these gains will extend far beyond incremental 
improvements to existing tools or models. We expect single agents to become 
coordinated teams of agents. Tasks that took hours or days may now be 
completed with minimal human intervention. And engineers who, only a few 
years ago, wrote every line of code will increasingly orchestrate long-running 
systems of agents that handle implementation details so they can focus on 
architecture and strategy.

Yet a critical nuance has emerged from studying how developers actually work 
with AI: this transformation is fundamentally collaborative. Research from our 
Societal Impacts team reveals that while developers use AI in roughly 60% of 
their work, they report being able to "fully delegate" only 0-20% of tasks. AI serves 
as a constant collaborator, but using it effectively requires thoughtful set-up and 
prompting, active supervision, validation, and human judgment—especially for 
high-stakes work.

Inspired by our own experiences working with customers, this report identifies 
eight trends we predict will define agentic coding in 2026. These predictions 
fall into three categories: foundation trends that we believe will reshape how 
development work happens, capability trends that look to expand what agents 
can accomplish, and impact trends that we anticipate will affect business 
outcomes and organizational structures.

These predictions reflect what we're seeing with customers today, not certainties 
about tomorrow. We offer them as a framework for thinking about the year 
ahead, knowing the future will surprise us.

Significantly, these trends illustrate how the gap between early adopters and 
late movers is widening. Organizations that figure out how to scale human 
oversight without creating bottlenecks are better positioned to maintain 
quality while moving faster. Teams that master agent coordination across 
the software development lifecycle today can ship features in hours instead 
of days. Companies that extend agentic coding beyond engineering teams 
to less technical roles stand to unlock productivity gains across their entire 
organization.

The patterns emerging in 2026 suggest software development is evolving toward 
a model where human expertise focuses on defining the problems worth solving 
while AI handles the tactical work of implementation. 

Let’s dive in.

3



Foundation trends: 
The tectonic shift

4



Trend 1

The software development lifecycle  
changes dramatically

The way we interact with computers is undergoing one of its most significant 
changes since the graphical user interface. From machine code to assembly to C 
to modern high-level languages, each abstraction layer reduced the gap between 
human thought and machine execution.

The most recent step in this evolution was human/machine conversation. 
In 2025, agentic AI changed how a large swath of developers write code. 
2026 is poised to be the year when the systemic effects of this evolutionary 
shift reconfigure the software development lifecycle and reshape software 
engineering roles.

Traditional SDLC stages remain, but agent-driven implementation, automated testing, and 
inline documentation collapse cycle time from weeks to hours. Monitoring feeds directly back 
into rapid iteration.

Predictions
•	 Evolution of abstraction: Most of the tactical work of writing, debugging, and 

maintaining code shifts to AI while engineers focus on higher-level work like 
architecture, system design, and strategic decisions about what to build.

•	 Engineering role transformation: Building software used to mean primarily 
writing code, although software engineering roles always involved many other 
skills. Now, being a software engineer increasingly means orchestrating agents 
that write code, evaluating their output, providing strategic direction, and 
ensuring the system as a whole solves the right problems correctly.

•	 Expedited onboarding to dynamic project staffing: Traditional timelines 
for onboarding to a new codebase or project will collapse from weeks to 
hours, changing how companies think about talent deployment and project 
resourcing.

The collaborative reality

While agents handle more implementation work, the nature of this shift 
reveals something important: engineers are becoming more "full-stack" in their 
capabilities rather than being replaced. Our research shows engineers can now 
work effectively across frontend, backend, databases, and infrastructure—areas 
where they may have previously lacked expertise—because AI fills in knowledge 
gaps while humans provide oversight and direction.

This capability expansion enables tighter feedback loops and faster learning. 
Tasks that once required weeks of cross-team coordination can become focused 
working sessions. Engineers describe using AI for tasks that are easily verifiable, 

5



well-defined, or repetitive, while keeping high-level design decisions and 
anything requiring organizational context or "taste" for themselves.

Role transformation: From implementer to 
orchestrator

In 2026, the value of an engineer's contributions shifts to system architecture 
design, agent coordination, quality evaluation, and strategic problem 
decomposition. The primary human role in building software is orchestrating 
AI agents that write code, evaluating their output, providing strategic direction, 
and ensuring the system solves the right problems for the right stakeholders. 
Engineers who master orchestration can shepherd multiple features through 
development simultaneously, applying their judgment across a broader scope 
than individual implementation previously allowed.

Onboarding revolution

In 2025, the traditional timeline for onboarding to a new codebase or project 
began to collapse from weeks to hours. In 2026, we anticipate organizations 
learning how to use this capability to its fullest, changing how companies think 
about talent deployment and project resourcing.

One manifestation we envision is dynamic "surge" staffing. Businesses will be 
able to surge engineers on-demand onto tasks requiring deep codebase knowl-
edge. Organizations can start staffing projects dynamically, bringing in special-
ists for specific challenges and shifting resources without the traditional produc-
tivity dip.

Augment Code, a startup building AI-powered software development 
tools for systems like networking platforms, databases, and storage 
infrastructure, flattened the learning curve for engineers joining a 
new codebase or project by using Claude to provide contextual code 
understanding. One enterprise customer finished a project that their CTO 
had initially estimated would take 4 to 8 months in just two weeks using 
Augment Code, powered by Claude.

6



Capability trends: 
What agents can do

7



Trend 2

Single agents evolve into coordinated teams
We predict that organizations in 2026 will be able to harness multiple agents acting 
together to handle task complexity that was difficult to imagine just a year ago.

This ability will require new skills in task decomposition, agent specialization, 
and coordination protocols, along with development environments that show the 
status of multiple concurrent agent sessions and version control workflows that 
handle simultaneous agent-generated contributions.

Prediction
•	 Multi-agent systems replace single-agent workflows: Organizations adopt 

multi-agent workflows that maximize performance gains through parallel 
reasoning across separate context windows.

Fountain, a frontline workforce management platform, achieved 50% 
faster screening, 40% quicker onboarding, and 2x candidate conversions 
using Claude for hierarchical multi-agent orchestration.  
 
Their Fountain Copilot serves as the central orchestration agent to 
coordinate specialized sub-agents for candidate screening, automated 
document generation, and sentiment analysis. This architecture enabled 
one logistics customer to cut the time required to fully staff a new 
fulfillment center from one or more weeks to less than 72 hours.

Single-agent workflows process tasks sequentially through one context window. Multi-agent 
architectures use an orchestrator to coordinate specialized agents working in parallel—each 
with dedicated context—then synthesize results into integrated output.

8



Trend 3

Long-running agents build complete systems
Early agents handled one-shot tasks that took a few minutes at most: fix this bug, 
write this function, generate this test. By late 2025, increasingly adept AI agents 
were producing full feature sets over the course of several hours. In 2026, agents 
will be able to work for days at a time, building entire applications and systems 
with minimal human intervention focused on providing strategic oversight at 
key decision points.

Predictions
•	 Task horizons expand from minutes to days or weeks: Agents evolve from 

handling discrete tasks that complete in minutes to working autonomously for 
extended periods, building and testing entire applications and systems with 
periodic human checkpoints.

•	 Agents handle the messy reality of software development: Long-running 
agents plan, iterate, and refine across dozens of work sessions, adapting 
to discoveries, recovering from failures, and maintaining coherent state 
throughout complex projects.

•	 Economics of software development change: When agents can work 
autonomously for extended periods, formerly non-viable projects become 
feasible. Technical debt that accumulated for years because no one had time to 
address it gets systematically eliminated by agents working through backlogs.

•	 Path to market accelerates: Entrepreneurs use agents to go from ideas to 
deployed applications in days instead of months.

At Rakuten, engineers tested Claude Code's capabilities with a complex 
technical task: implement a specific activation vector extraction method 
in vLLM, a massive open-source library with 12.5 million lines of code in 
multiple programming languages. Claude Code finished the entire job 
in seven hours of autonomous work in a single run. The implementation 
achieved 99.9% numerical accuracy compared to the reference method.

9



Trend 4

Human oversight scales through intelligent 
collaboration
Perhaps the most valuable capability developments in 2026 will be agents 
learning when to ask for help, rather than blindly attempting every task, and 
humans stepping into the loop only when required. This isn't about removing 
humans from the process—it's about making human attention count where it 
matters most.

Predictions
•	 Agentic quality control becomes standard: Organizations use AI agents 

to review large-scale AI-generated output, analyzing code for security 
vulnerabilities, architectural consistency, and quality issues that would 
overwhelm human capacity.

•	 Agents learn when to ask for help: Rather than blindly attempting every task, 
sophisticated agents recognize situations requiring human judgment, flagging 
areas of uncertainty and elevating decisions with potential business impact.

•	 Human oversight shifts from reviewing everything to reviewing what 
matters: Teams maintain quality and velocity simultaneously by building 
intelligent systems that handle routine verification while escalating genuinely 
novel situations, boundary cases, and strategic decisions for human input.

The collaboration paradox 

Research from Anthropic's internal studies reveals an important pattern: while 
engineers report using AI in roughly 60% of their work and achieving significant 
productivity gains, they also report being able to "fully delegate" only a small 
fraction of their tasks. The apparent contradiction resolves when you understand 
that effective AI collaboration requires active human participation.

Engineers describe developing intuitions for AI delegation over time. As models 
improve, this is shifting quickly, but historically, they tended to delegate tasks 
that are easily verifiable—where they "can relatively easily sniff-check on 
correctness"—or are low-stakes, like quick scripts to track down a bug. The more 
conceptually difficult or design-dependent a task, the more likely engineers keep 
it for themselves or work through it collaboratively with AI rather than handing 
it off entirely.

This pattern has important implications: even as AI capabilities expand, the 
human role remains central. The shift is from writing code to reviewing, 
directing, and validating AI-generated code. As one of our engineers put it: "I'm 
primarily using AI in cases where I know what the answer should be or should 
look like. I developed that ability by doing software engineering 'the hard way.'"

At CRED, a fintech platform serving over 15 million users across India, 
engineers implemented Claude Code across their entire development 
lifecycle to accelerate delivery while maintaining quality standards 
essential for financial services. The Claude-powered development 
system has doubled their execution speed—not by eliminating human 
involvement, but by shifting developers toward higher-value work.

10



Trend 5

Agentic coding expands to new surfaces and users
The earliest wave of agentic coding focused on helping professional software 
engineers work faster within familiar environments. In 2026, agentic coding is 
poised to expand into contexts and use cases that traditional development tools 
could not reach, from legacy languages to new form factors that democratize 
access beyond traditional developers.

Predictions
•	 Language barriers disappear: Support expands to less-common and legacy 

languages like COBOL, Fortran, and domain-specific languages, enabling 
maintenance of legacy systems and removing adoption barriers for specialized 
use cases.

•	 Coding democratizes beyond engineering: New form factors and 
interfaces open up agentic coding to non-traditional developers in fields 
like cybersecurity, operations, design, and data science. Tools like Cowork, 
designed for non-developers to automate file and task management, signal 
this shift is already underway.

Everyone becomes more full-stack

Analysis of how different teams use AI reveals a consistent pattern: people use 
AI to augment their core expertise while expanding into adjacent domains. 
Security teams use it to analyze unfamiliar code. Research teams use it to 
build frontend visualizations of their data. Non-technical employees use it for 
debugging network issues or performing data analysis.

This expansion challenges the long-held assumption that serious development 
work can only happen in an IDE or that only professional engineers with 
specialized tools can use code to solve problems. The barrier that separates 
"people who code" from "people who don't" is becoming more permeable.

At Legora, an AI-powered legal platform, agentic workflows are integrated 
throughout their legal technology platform, demonstrating how coding 
agents extend into domain-specific applications.  
 
"We have found Claude to be brilliant at instruction following, and at 
building agents and agentic workflows," said Max Junestrand, CEO 
of Legora. The company uses Claude Code to accelerate their own 
development while providing agentic capabilities to lawyers who need to 
create sophisticated automations without engineering expertise.

11



Impact trends: 
What agents may 
change in 2026

12



Trend 6

Productivity gains reshape software  
development economics
Organizations that intelligently integrate agents into their software development 
lifecycle will see timeline compression that affects what projects are viable and 
how quickly companies can respond to market opportunities.

Predictions
•	 Three multipliers drive acceleration: Agent capabilities, orchestration 

improvements, and better use of human experience compound to create step-
function improvements rather than linear gains as each enables the others.

•	 Timeline compression changes project viability: Development that once 
took weeks now takes days, making previously unviable projects feasible and 
enabling organizations to respond to market opportunities more quickly.

•	 Economics of software development shift: Total cost of ownership decreases 
as agents augment engineer capacity, project timelines shorten, and faster 
time to value improves return on investment.

Productivity through output volume, not just speed

Internal research at Anthropic reveals an interesting productivity pattern: 
engineers report a net decrease in time spent per task category, but a much 
larger net increase in output volume. This suggests that AI enables increased 
productivity primarily through greater output—more features shipped, more bugs 
fixed, more experiments run—rather than simply doing the same work faster.

Notably, about 27% of AI-assisted work consists of tasks that wouldn't have been 
done otherwise: scaling projects, building nice-to-have tools like interactive 
dashboards, and exploratory work that wouldn't be cost-effective if done 
manually. Engineers report fixing more "papercuts"—minor issues that improve 
quality of life but are typically deprioritized—because AI makes addressing them 
feasible.

At TELUS, a leading communications technology company, teams created 
over 13,000 custom AI solutions while shipping engineering code 30 
percent faster. The company has saved over 500,000 hours with an average 
of 40 minutes saved per AI interaction.

13



Trend 7

Non-technical use cases expand  
across organizations
We anticipate that one of the most significant trends in 2026 will be steady 
growth in agentic coding used by functional and business-process teams to 
create their own solutions to problems they experience, and improvements to 
processes they use every day.

Predictions
•	 Coding capabilities democratize beyond engineering: Non-technical teams 

across sales, marketing, legal, and operations gain the ability to automate 
workflows and build tools with little or no engineering intervention or coding 
expertise.

•	 Domain experts implement solutions directly: The hands-on experts 
who understand problems deeply gain confidence in using agents to initiate 
solutions themselves, removing the bottleneck of filing a ticket and then 
waiting for development teams.

•	 Productivity gains extend across entire organizations: Problems not 
worth engineering time get solved, experimental workflows become trivial to 
attempt, and manual processes get automated.

Zapier, a leading AI orchestration platform, has made agents accessible to 
all their employees. Design teams use Claude artifacts to rapidly prototype 
during customer interviews, showing design concepts in real-time that 
would normally take weeks to develop. The company achieved 89 percent 
AI adoption across the entire organization with 800-plus AI agents 
deployed internally. 

How Anthropic uses Claude Code 
 
Our legal team reduced marketing review turnaround from two to three 
days down to 24 hours by building Claude-powered workflows that 
automate repetitive tasks like contract redlining and content review. Using 
Claude Code, a lawyer with no coding experience built self-service tools 
that triage issues before they hit the legal queue, freeing attorneys to focus 
on strategic counsel instead of tactical busywork.  
 
The result: lawyers reduced the potential for being a bottleneck and could 
devote their time to other, more pressing matters.

14



Trend 8

Agentic coding improves security defenses— 
but also offensive uses 
Agentic coding is transforming security in two directions at once. As models 
become more powerful and better aligned, building security into products 
becomes easier. Now, any engineer can leverage AI to perform security reviews, 
hardening, and monitoring that previously required specialized expertise. But 
the same capabilities that help defenders are also capable of helping attackers 
scale their efforts.

Predictions
•	 Security knowledge becomes democratized: With improved agents, any 

engineer can become a security engineer capable of delivering in-depth 
security reviews, hardening, and monitoring. Engineers will still need to 
consider security and consult with specialists, but it will become easier to build 
hardened and secure applications.

•	 Threat actors scale attacks: While agents will benefit defensive uses, they 
will also benefit offensive uses too. In order to defend against this dual-use 
technology, it will become more important for engineers to build in security 
from the start.

•	 Agentic cyber defense systems rise: Automated agentic systems enable 
security responses at machine speed, automating detection and response to 
match the pace of autonomous threats. 
 
The balance favors prepared organizations. Teams that use agentic tools to 
bake security in from the start will be better positioned to defend against 
adversaries using the same technology.

15



Priorities for 
the year ahead

16



Priorities for the year ahead
These eight trends are poised to define agentic coding in 2026 all converge on 
a central theme: software development is shifting from an activity centered on 
writing code to an activity grounded in orchestrating agents that write code—
while maintaining the human judgment, oversight, and collaboration that 
ensures quality outcomes.

The research is clear: AI is a constant collaborator, but using it effectively 
requires active supervision and validation, especially in high-stakes work. While 
more routine coding tasks can be delegated to AI, humans are still reviewing the 
code. It's not "fully delegated" but highly collaborative. This distinction matters 
for how organizations approach AI adoption and how they think about the 
evolving role of engineers.

For organizations planning their 2026 priorities, four areas demand immediate 
attention:

1.	 Mastering multi-agent coordination to handle complexity that single-agent 
systems cannot address

2.	 Scaling human-agent oversight through AI-automated review systems that 
focus human attention where it matters most

3.	 Extending agentic coding beyond engineering to empower domain experts 
across departments

4.	Embedding security architecture as a part of agentic system design from the 
earliest stages

Organizations that treat agentic coding as a strategic priority in 2026 will define 
what becomes possible, while those that treat it as an incremental productivity 
tool will discover they are competing in a game with new rules. The key to 
success lies in understanding that the goal isn't to remove humans from the 
loop—it's to make human expertise count where it matters most.

17



claude.ai


